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Evidence for spin current driven Bose-Einstein
condensation of magnons

B. Divinskiy"4, H. Merbouche® 24, V. E. Demidov® "™ K. O. Nikolaev!, L. Soumah?, D. Gouéré?, R. Lebrun® 2,
V. Cros® 2, Jamal Ben Youssef3, P. Bortolotti2, A. Anane? & S. O. Demokritov!

The quanta of magnetic excitations - magnons - are known for their unique ability to undergo
Bose-Einstein condensation at room temperature. This fascinating phenomenon reveals itself
as a spontaneous formation of a coherent state under the influence of incoherent stimuli. Spin
currents have been predicted to offer electronic control of Bose-Einstein condensates, but
this phenomenon has not been experimentally evidenced up to now. Here we show that
current-driven Bose-Einstein condensation can be achieved in nanometer-thick films of
magnetic insulators with tailored nonlinearities and minimized magnon interactions. We
demonstrate that, above a certain threshold, magnons injected by the spin current over-
populate the lowest-energy level forming a highly coherent spatially extended state. We
quantify the chemical potential of the driven magnon gas and show that, at the critical
current, it reaches the energy of the lowest magnon level. Our results pave the way for
implementation of integrated microscopic quantum magnonic and spintronic devices.
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ARTICLE

or a long time, the only experimentally proven approach

enabling observation of room-temperature Bose-Einstein

condensation (BEC) of magnons was the approach based on
the utilization of microwave pumping!~10. This approach relies
on the injection of low-energy non-equilibrium magnons within a
relatively small interval of energies, followed by their thermali-
zation and accumulation in the lowest-energy level. Although this
process was shown to result in a formation of the quasi-
equilibrium magnon gas, which can be described by a non-zero
chemical potential and an effective temperature, it was found to
predominantly affect low-energy magnons, which do not fully
equilibrate with high-energy ones resulting in a very high effective
temperature of the former®. Another recently demonstrated
approach relies on the dynamic spectral redistribution of mag-
nons in an overheated magnon gas caused by its rapid
cooling! 12, Due to its dynamic origin, this approach can only be
used to create BEC-like states for a few tens of nanoseconds.

An alternative way to drive magnon gas into a steady quasi-
equilibrium state characterized by a non-zero chemical
potential!l3-16 can be based on the utilization of dc electric cur-
rents converted into pure spin currents by the spin-Hall effect
(SHE)!17-18, In strong contrast to microwave pumping, the spin
torque exerted by the spin current simultaneously affects the
population of all magnon modes!%20, Importantly, it hence allows
avoiding strongly non-equilibrium transient states of the magnon
gas. The possibility to create magnon BEC by using the above
driving mechanism has been theoretically predicted a long time
ago?!1-23. However, up to now, no direct experimental con-
firmation of the current-driven BEC has been reported. Here, we
show that this mechanism can indeed lead to the formation of
stationary equilibrium magnon BEC, which has not been
achieved by using previously demonstrated approaches.

The most striking and necessary manifestation of the magnon
BEC is the spontaneous formation of a coherent dynamical state.
However, the observation of such a state alone is insufficient to
claim the BEC transition?4. Indeed, every magnetic oscillator
driven by spin-transfer effects?>~32 exhibits more or less coherent
magnetic oscillations. Although these oscillations are formed
spontaneously, the underlying mechanism is not necessarily BEC.
Instead, it can be a strongly non-equilibrium process, similar to
that responsible for the generation of coherent optical radiation in
lasers. Strictly speaking, an assertion of unambiguous BEC
identification requires that the magnon gas remains in a (quasi-)
equilibrium thermodynamic state: while the emergent coherent
dynamics is described in terms of the overpopulation of the
lowest-energy magnon level, the population of the rest of the
magnon states follows the Bose-Einstein statistics. In addition,
the formation of coherent magnetic dynamics via BEC, which is
the condensation of particles in the phase space, is inconsistent
with the formation of a dynamical bullet?”-33 or droplet34-36,
which represents the condensation of particles in the real space
due to their attractive interaction. As a general rule of thumb, the
nonlinear interactions between magnons at the lowest-energy
level is one of the main factors hindering the magnon BEC!>.

In relatively thick films of yttrium iron garnet (YIG), where
microwave-driven BEC has been evidenced!~19, the magnons at
the lowest-energy level exhibit very weak nonlinear interactions
resulting in a stabilization of BEC by extrinsic effects!®37. In
contrast, in nanometer-thick YIG films, which can be efficiently
driven by spin currents, the energy of the lowest magnon level
contains a significant dynamic dipolar contribution, which results
in a strong attractive interaction between magnons leading to
spatial instabilities and collapses?”-38. The nonlinearities asso-
ciated with dipolar effects have also been recently shown to be
responsible for the strong scattering of magnons out from the
lowest-energy state preventing its overpopulation3®.

Here, we study a current-driven system based on a nanometer-
thick Bi-substituted YIG film, in which the out-of-plane magnetic
anisotropy has been engineered in order to fully compensate the
dipolar demagnetizing field resulting in vanishing nonlinear
interactions of the lowest-energy magnons. We show that, in such
a system, the gas of weakly interacting magnons can undergo BEC
under the influence of pure spin currents. The BEC transition is
documented by the observation of the overpopulation of the
lowest-energy level resulting in a spatially extended dynamical
state exhibiting high temporal and spatial coherence. Additional
confirmation of the BEC nature of the observed transition is
provided by the measurements of the current-dependent density
of high-energy magnons. In agreement with the BEC scenario,
this density saturates, as the chemical potential of the magnon gas
reaches the lowest magnon energy, while the density of lowest-
energy magnons continues to grow. This observation indicates
that the additionally injected magnons accumulate in the lowest-
energy level, which is a clear signature of the BEC transition.

Results

Studied system and experimental approach. In Fig. 1a, we show
the schematics of our experiment. The studied system is based on
a 20-nm thick film of Bi-doped (one Bi atom per chemical unit)
BiYIG (Bi;Y,Fes0;,) grown by the PLD on substituted gallium
gadolinium garnet (sGGG) substrate?. The film is magnetized to
saturation by a static in-plane magnetic field Hy. It exhibits
significant strain-induced perpendicular magnetic anisotropy
(PMA) with the effective anisotropy field poH, = 167 mT, which
is very close to the saturation magnetization of the film p,M, =
175 mT. This leads to the compensation of the effects associated
with the dipolar anisotropy and thus results in the minimization
of nonlinear magnon interactions3®. The spin system of the
BiYIG film is driven out of the equilibrium by spin torque
through the injection of the pure spin current I created by the
SHE in the Pt electrode carrying dc electric current I. Depending
on the polarity of the current, the injected spin current either
increases or decreases the magnon population within a broad
interval of energies!? resulting in the formation of the new quasi-
equilibrium state of the magnon gas, which can be described
by the Bose-Einstein distribution with a non-zero chemical
potentiall3-15,

We experimentally evaluate the population of the magnon
states by using the micro-focus Brillouin light scattering (BLS)
spectroscopy*! (see Methods for details). The measured signal—
the BLS intensity—is proportional to the spectral density of
magnons at the position, where the probing laser light is focused
(Fig. 1a). By moving the focal spot over the surface of the BiYIG
film, we additionally obtain information about the spatial
variations of the spectral distribution of magnons.

Figure 1b shows the BLS spectrum recorded at pioHy = 100 mT
and I =0, describing magnons, which exist in the magnetic film
due to thermal fluctuations at room temperature. Under these
conditions, the magnon gas is at thermal equilibrium with the
lattice and is characterized by zero chemical potential and room
temperature!. The recorded spectrum exhibits an asymmetric
peak with the maximum at 2.9 GHz with the high-frequency tail
extending to about 3.3 GHz and an additional nearly symmetrical
peak located at 39 GHz.

Figure 1c shows the dispersion spectrum of magnons
calculated according to ref. 42, which allows identification of the
peaks. The low-frequency part of the spectrum corresponds to
magnons characterized by a nearly uniform distribution of the
dynamic magnetization across the film thickness (see the inset in
Fig. 1c). These magnons exhibit an anisotropic dispersion in the
plane of the film, as seen from the essentially different dispersion
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Fig. 1 Experimental system. a Schematics of the experiment. Magnon gas
in a BiYIG film with PMA is driven by the injection of the spin current Ig
created by SHE in the Pt electrode with an active area of 1x 2 pm2. The
spectral distribution of magnons is measured by analyzing the light
inelastically scattered from magnons. Transparent sGGG substrate is not
shown for clarity. b Normalized BLS spectrum of magnons in the BiYIG film
measured at | = 0 and poHo = 100 mT. ¢ Calculated dispersion spectrum of
magnons in the BiYIG film. Solid curves correspond to magnons with the
wavevector k oriented parallel to Hy. Dashed curves correspond to
magnons with the wavevector k oriented perpendicular to Hg. frpmr marks
the frequency of the ferromagnetic resonance. f;» marks the frequency of
the lowest-energy magnon state. Insets schematically show the
distributions of the dynamic magnetization across the film thickness for the
fundamental and the PSW magnon mode.

curves corresponding to magnons with the wavevector k oriented
parallel (solid curves) and perpendicular (dashed curves) to the
direction of the static field. The two dispersion curves merge at
k=0 at the frequency of the uniform ferromagnetic resonance
femr- The dispersion curve characterizing magnons with k L H,
shows a monotonous rise, while that for magnons with k || Hy
shows non-monotonous behavior resulting in the appearance of a
minimum at k=7.6 um~! and the frequency fiin, which is by
0.09 GHz smaller than fryr. The state corresponding to this
minimum is the lowest-energy magnon state, where BEC is
expected to take place.

As seen from the comparison of the data of Fig. 1b, ¢, the
experimentally observed low-frequency peak has the maximum at
femz- This is due to the wavevector-dependent sensitivity of the BLS
technique, which maximizes at k =0 and gradually decreases with
the increase of k. Accordingly, the BLS intensity decreases with the
increase of the frequency and vanishes at frequencies corresponding
to k> k. which is mainly determined by the wavevector of the
probing light. Note here that, at I =0, the BLS intensity at f;, is
significantly smaller than that at fmyr due to the significantly
smaller experimental sensitivity.
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Fig. 2 Formation of the Bose-Einstein condensate of magnons. a, b
Representative BLS spectra recorded at different currents in the Pt
electrode, as labeled. Dashed lines mark the frequency of the ferromagnetic
resonance. Note formation of the narrow intense spectral peak at
I=1.3mA. ¢, d Modifications of the formed peak at /> 1.3 mA. ¢ Color-
coded normalized BLS spectra in the current-frequency coordinates.

d Current dependence of the peak intensity normalized by its value at
I=1.3mA. Solid line—a guide for the eye. The data were obtained at
}.loHo =100 mT.

The small high-frequency BLS peak in Fig. 1b corresponds to
the so-called perpendicular standing-wave (PSW) magnon
modes! 14344 which possess a non-uniform distribution of the
dynamic magnetization across the film thickness (see the inset in
Fig. 1c). These modes are characterized by a nearly isotropic
dispersion (k||Hy and k L H, curves are indistinguishable in
Fig. 1c). As will be shown below, although these modes are
located at frequencies far above the frequency of the lowest-
energy magnon state, one can use the possibility to measure their
population to prove that the spin current enhances the
population of magnon states in a broad frequency range and
that the evolution of the magnon gas follows the BEC scenario.

Formation and characteristics of magnon BEC. We now ana-
lyze the modifications of the magnon spectral distribution caused
by the injection of the spin current. In agreement with the
symmetry of the SHE, at I <0, the magnon density is found to
monotonically decrease with the increase of the magnitude of the
current, while, at I>0, the magnon density exhibits a strong
enhancement (see Supplementary Fig. 1). In the following, we
focus on the latter process, as it is expected to cause BEC at
sufficiently large I. As seen from the data shown in Fig. 2a, at
small currents, the population of all magnon states becomes
increasingly enhanced with the maximum effect observed for
states at lower frequencies. In particular, the shape of the spec-
trum recorded at I = 1.2 mA clearly indicates that the population
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of the states at frequencies close t0 fi,i, grows much faster in
comparison with that at fpyvg, as expected for the chemical
potential gradually approaching the minimum energy. Finally, at
I>1.3 mA, a narrow intense peak appears in the spectra (Fig. 2b)
at the frequency, which is by about 0.08 GHz below frygr. This
frequency difference is very close to the theoretically estimated
value femr — fmin = 0.09 GHz. This allows us to conclude that the
observed peak corresponds to the overpopulated lowest-energy
magnon state, which is a first indication of the onset of BEC in
the driven magnon gas.

We emphasize that the frequency of the peak and its spectral
width remain nearly constant within the entire range I = 1.3-2.0 mA
(see Fig. 2¢c, which shows the normalized color-coded BLS spectra in
the current-frequency coordinates), while the peak intensity
increases by more than one order of magnitude (Fig. 2d). Note
that, in magnetic films without PMA, the frequency is known to
exhibit a strong negative shift with the increase of the density of
magnons>>#. Generally, this means that the local increase of the
particle density is energetically favorable, which corresponds to the
attractive interaction between them causing local accumulation of
particles in the real space followed by a collapse—the phenomenon,
which is known to hinder the formation of stable BEC*047. As
follows from the independence of the frequency of the observed
peak from its intensity (Fig. 2c, d), thanks to the effects of PMA, the
attractive interactions are well suppressed in our system, enabling
the BEC transition.

We also note that the Oersted field of the current in the Pt
electrode has a negligible effect on the frequency of the observed
peak. For the used geometry, the variation of the total static
magnetic field with the current can be estimated as 0.6 mT mA~1.
Calculations of the dispersion spectrum show that this corre-
sponds to the frequency shift of about 0.01 GHz over the range
I=1.3-2.0 mA, where the BEC peak is observed. This shift is
smaller than the frequency resolution of the BLS apparatus and
cannot be seen in the data of Fig. 2c.

We then address the spectral coherence of the observed BEC.
Because of the limited frequency resolution of the BLS apparatus,
it is not possible to directly measure the spectral linewidth of the
formed monochromatic oscillations. The fitting of the BLS
spectra shown in Fig. 2b with the Gaussian function yields the
full width at half a maximum of 0.051 GHz. This value is very
close to the frequency resolution of the BLS apparatus, which, for
the used experimental arrangement, can be estimated as
0.04-0.05 GHz. Therefore, we can conclude that the sponta-
neously formed dynamical state is characterized by a high
temporal coherence. To illustrate that the state is also coherent in
the space domain, we perform spectral measurements at different
spatial locations within the active area of the electrode. Figure 3a,
b shows the color-coded BLS spectra recorded by moving the
probing spot along the z- and x-direction, as schematically shown
in the corresponding insets. As seen from these data, the
frequency and the linewidth of the BLS peak do not change
noticeably across the entire 1 x 2 um?-large active area, indicating
that a spatially extended BEC is formed in the studied system.

Note here that, in contrast to most of the previously studied
systems exhibiting current-driven magnetic oscillations?>-32, our
system does not show transitions to multi-frequency oscillations
or mode jumps—behaviors, which are inconsistent with the BEC
scenario, where all additional magnons created at large driving
stimuli should accumulate in the single, lowest-energy state. The
latter condition can be unambiguously proven by analyzing the
current-dependent population of a spectral state corresponding to
the magnon energy far above the energy of the lowest state. To
perform this analysis, we utilize the possibility to experimentally
access PSW magnons at the frequency 39 GHz (Fig. 1b). In
Fig. 4a, we show the current-dependent intensity of the PSW peak
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Fig. 3 Spatial characterization of the BEC state. a, b Color-coded
normalized BLS spectra recorded by moving the probing spot along the z-
and x-direction, as schematically shown in the corresponding insets. The
data were obtained at / =1.3mA and poHo =100 mT.

together with the same dependence for the lowest magnon state at
fmin- First, the data show that the small-current enhancement of
the population of the high-frequency PSW states is significantly
smaller than that of the state at f.,;, (note different vertical scales).
At I=1mA, the enhancement of the BLS intensity of the PSW
peak does not exceed 20%, while the intensity at f,,;,, increases by
nearly a factor of 10. This result is consistent with the assertion
that the main effect of the spin current on the magnon gas is the
increase of its chemical potential’3-16, More importantly, at
currents where the formation of the coherent state takes place
(Fig. 2b), the intensity of the PSW peak saturates, while the BLS
intensity at fi,;, exhibits further strong growth. This result
indicates that, in agreement with the BEC scenario, additional
magnons created at large currents do not spread over the entire
energy space, but instead overpopulate the lowest-energy state.

A key parameter to characterize the BEC transition is the
chemical potential that we extract from the acquired data
following the approach in Ref.!l. As seen from Fig. 4b, the
chemical potential expressed in frequency units yh~! (here h is
the Plank constant) monotonically increases at small currents,
reaches fui, at I=Ic=1.3mA, where the formation of the
narrow spectral peak is observed (Fig. 2b), and then saturates.
This feature allows us to clearly identify the BEC transition.

In order to determine the characteristic temporal scale of the
BEC onset, we perform additional time-resolved measurements.
We apply electric current in the form of 1ps long pulses and
record the BLS intensity as a function of delay with respect to the
start of the current pulse. Figure 4c shows the temporal
dependence of the BLS intensity at the frequency of the BEC
peak recorded at the maximum used current of 2 mA. The data of
Fig. 4c show that the intensity of the BEC peak first increases
exponentially (note the logarithmic scale) and then saturates after
100-150 ns. This indicates that the discussed driving mechanism
is relatively fast and can be used for studies of dynamical BEC
phenomena.

Dependence on the static magnetic field. Finally, we aim at
determining the conditions of the BEC formation over a broad
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Fig. 4 Thermodynamic and temporal characteristics of the current-driven
magnon gas. a Current dependences of the BLS intensity for the PSW peak
and that for the lowest magnon state at fin, as labeled. The data are
normalized by the value at | = 0. Note different vertical scales for the two
dependencies. The data were obtained at poHo =100 mT. b Current
dependence of the chemical potential expressed in frequency units.
Horizontal dashed line marks the frequency of the lowest-energy magnon
state fmin. A vertical dashed line marks the critical current I, at which the
formation of the BEC peak is observed. ¢ Temporal dependence of the BLS
intensity at fn,;, obtained at /=2 mA and poHo =100 mT.

range of the static magnetic field H,. The experimental data show
that the variation of the static field mainly influences the fre-
quency of the condensate and the value of the critical current Ic,
while the scenario of the BEC formation remains qualitatively the
same (compare the data in Fig. 2a, b with those presented in
Supplementary Fig. 2). As seen from the data of Fig. 5, both the
BEC frequency and I¢ exhibit nearly linear dependence on Hj.
Within the entire addressed field range, the experimentally
determined BEC frequency matches exactly the calculated fre-
quency of the lowest-energy magnon state f,,;, (dashed curve in
Fig. 5). The linear variation of the BEC frequency with H, indi-
cates that the dipolar demagnetizing fields are precisely com-
pensated by the anisotropy. The linear field dependence of the
critical current extrapolates to a finite value at Hy = 0. This result
is expectable since the efficiency of the magnon creation by the
spin torque depends on the magnon relaxation frequency w,. For
our system, where the dipolar fields are compensated by the
anisotropy, in the first approximation, w,can be considered as a

I, mA

0.0 +F——1r
0 50 100 150

UoHy, mT

11+ 0

Fig. 5 Dependence on the magnetic field. Static-field dependence of the
critical current Ic and of the BEC frequency fgec. A solid line is the linear fit
of the experimental data. Dashed curve—calculated frequency of the
lowest-energy magnon state fiin.

sum of two terms: the field-independent term w,, originating
from the influence of the inhomogeneity of the magnetic film,
and the term ayH,,, which scales linearly with Hy (here « is the
Gilbert damping constant and y is the gyromagnetic ratio)?®. The
found almost linear field dependence of the critical current shows
that this simple description is applicable within the used range of
the static field.

In conclusion, our experimental results provide the direct
experimental evidence of room-temperature BEC in a magnon
gas driven by spin currents—the phenomenon, which was
theoretically predicted nearly a decade ago and has been actively
discussed in the scientific community since then. We show that
stable spatially extended BEC of magnons can be created in
systems, where nonlinear magnon interactions are minimized by
using compensation of the dipolar effects by the anisotropy.
These findings open new avenues for the studies of magnon BEC
by demonstrating an approach enabling the creation of magnon
BEC without breaking the equilibrium between low-energy and
high-energy magnons. The simple and robust driving method
based on the utilization of SHE at the micrometer scale enables
the implementation of a large variety of new experiments. We
believe that our findings will strongly move forward the field of
magnon thermodynamics and quantum magnetic phenomena in
general.

Methods

Sample fabrication. The growth of BiYIG films by pulsed laser deposition (PLD) is
realized using a stoichiometric BiYIG target. The laser used is a frequency tripled
Nd:YAG laser (A =355nm), of a 2.5 Hz repetition rate and a fluency of about
1Jcm™2, and a substrate temperature of about 500 °C. The distance between the
target and the substrate is fixed at 44 mm. Prior to the deposition, the substrate is
annealed at 700 °C under 0.4 mbar of O,. For the growth, the pressure is set at
0.25 mbar O, pressure. At the end of the growth, the sample is cooled down under
300 mbar of O,. No post annealing is performed. Deposition of Pt is performed
using dc magnetron sputtering. Prior to Pt deposition, a slight O, etch is performed
to remove photo-resist residues and promote surface spin transparency. The Pt
electrode is 6 nm thick, its width is reduced to 1 pm over a length of 2 um. Hence,
the current density and the resulting spin-orbit torque is maximum over this

1 x2 um? constriction.

Micro-focus BLS measurements. All the measurements were performed at room
temperature. The measurements of current-dependent magnon spectral distribu-
tions were based on the analysis of the inelastic scattering of laser light from
magnons. The probing light with the wavelength of 532 nm and the power of
0.1 mW was produced by a single-frequency laser possessing the spectral linewidth
<10 MHz. The light was focused through the sample substrate (sGGG) into a
submicrometer-size diffraction-limited spot by using a 100x corrected microscope
objective lens with the numerical aperture of 0.85. The scattered light was collected
by the same lens and analyzed by a six-pass Fabry-Perot interferometer. The lateral
position of the probing spot was controlled by using a high-resolution custom-
designed optical microscope and was actively stabilized with a precision better
than 50 nm.
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