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Abstract

A list of Salem numbers less than 1.3 is available on M. Mossinghoff’s
website ([2]). This list is certified complete up to degree 44 in [9], and it
includes only one Salem number of degree 46. The objective of the present
work is to advance the understanding of Salem numbers by extending the
list [2] through the provision of a list of Salem numbers less than the
plastic constant, denoted by η, which is approximately equal to 1.324718.
The algorithmic approach used is based on Integer Linear Programming.
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1 Introduction

In the following lines, we recall some basic elements related to Salem numbers.

1.1 Definitions and examples

Definition 1.1. Let α ∈ C.
� We say that α is an algebraic number if α is a root of a non-zero polynomial in

Z[x], the ring of polynomials in one indeterminate x with coefficients in Z.
� We say that α is an algebraic integer if α is a root of a monic polynomial in

Z[x].
� The degree of α is defined as the degree of its minimal polynomial.

Example 1.2. The algebraic integer i has degree 2, because its minimal polynomial is
x2 + 1.

Definition 1.3. A Salem number is an algebraic integer τ such that:

� τ is a real number strictly greater than 1,

� All of its Galois conjugates (i.e., the other roots of its minimal polynomial) have
an absolute value less than or equal to 1,

� At least one of its Galois conjugates has an absolute value equal to 1.
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Definition 1.4. The minimal polynomial of a Salem number is called a Salem poly-
nomial.

Example 1.5. The Salem number τ0 = 1.176280 . . . has the minimal polynomial
P0(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1, known as the Lehmer polyno-
mial. The real number τ0 is the smallest known Salem number to date (D. Lehmer,
1933).

1.2 Some properties

Proposition 1.6.

� The minimal polynomial of a Salem number τ is reciprocal and has an even
degree greater than or equal to 4.

� The real number
1

τ
is one of the Galois conjugates of τ .

� All the roots of the minimal polynomial of τ , except for τ and
1

τ
, have an absolute

value equal to 1.

A very rich and comprehensive reference on Salem numbers is [4].

1.3 Small Salem numbers

Salem numbers less than 1.3 are referred to as small in the literature. In 1977, D. Boyd
provided a list of 39 such numbers in [5]. The following year, D. Boyd added 4 more
small Salem numbers in [6], before 4 additional small Salem numbers were discovered
and published by M. Mossinghoff in 1993 ([7]). Notably, among the 4 values provided
by M. Mossinghoff, one has a degree of 46, which is the highest known degree for a
small Salem number.

The compilation of these sources thus yields a list of 47 small Salem numbers,
which is available on M. Mossinghoff’s website ([2]). This list provides, for each Salem
number, its degree and the coefficients of its minimal polynomial. Naturally, only the
relevant part of the coefficients is given, as these polynomials are reciprocal.

This list was first certified complete up to degree 40 in [8], and later up to degree
44 in [9]. Only the degree 46 polynomial mentioned earlier does not belong to the
certified complete list.

In this work, we propose to extend the list [2] by providing Salem numbers that
are smaller than the plastic constant 1.324718 . . .. The choice of the plastic constant
as the threshold may seem somewhat arbitrary, but in fact the aim is to go slightly
beyond 1.3 in order to advance our understanding of Salem numbers by compiling
an extended list. As a reminder, the plastic constant is the unique real root of the
polynomial x3 − x− 1. This constant is also the smallest Pisot number, where a Pisot
number is a real algebraic integer strictly greater than 1 whose Galois conjugates all
have absolute values strictly less than 1. The plastic constant plays an important role
in number theory. For example, C. Smyth shows in [1] that if the Mahler measure of a
polynomial in Z[x] is less than this constant, then the polynomial must be reciprocal.

To compile our extended list, we will use a variation of a method based on inte-
ger linear optimization, which has allowed us to obtain interesting results in various
contexts. Notably, we followed this approach to provide, in [10], a list of degree 16
irreducible monic polynomials with integer coefficients, all real and strictly positive
roots and minimal trace (specifically, with trace 29). Similarly, we provided examples
of Salem numbers of degree 34 and trace −3 in [11] and [12].

Here, it is not the trace of the Salem number that interests us, but its size. Our
approach, based on integer linear optimization, is well-suited for addressing this prob-
lem. In the following lines, we only outline the method, as it is described in detail in
the aforementioned articles.
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2 Algorithmic approach

2.1 Reduction to a half-degree problem

The minimal polynomial P of a Salem number τ , as mentioned above, is a reciprocal
polynomial of even degree (say 2d). It can be written as

P (x) = x2d+c1x
2d−1+c2x

2d−2+. . .+cd−1x
d+1+cdx

d+cd−1x
d−1+. . .+c2x

2+c1x+1,

and can be rewritten as

P (x) = xdQ

(
x+

1

x

)
,

where Q is a degree d monic polynomial of Z[x], whose roots are all real numbers
and lie within the interval (−2, 2), except for one root that is strictly greater than 2.
The polynomial Q is obtained explicitly as follows: the first coefficients of P are the
integers 1, c1, c2, . . . , cd (the other coefficients of P are determined by symmetry), and
then

Q(x) = Cd+1(x) + c1Cd(x) + c2Cd−1(x) + . . .+ cdC1(x),

where the Ci are the Chebyshev polynomials associated with the interval (−2, 2). As
a reminder, we have

C1(x) = 1

C2(x) = x

C3(x) = x2 − 2

C4(x) = x3 − 3x

C5(x) = x4 − 4x2 + 2

C6(x) = x5 − 5x3 + 5x

...

For example, the Lehmer polynomial P0(x) = x10 +x9 −x7 −x6 −x5 −x4 −x3 +x+1
can be written as

P0(x) = C6(x) + c1C5(x) + c2C4(x) + c3C3(x) + c4C2(x) + c5C1(x) = x5Q0

(
x+

1

x

)
,

where Q0(x) = x5 + x4 − 5x3 − 5x2 + 4x+ 3. It is easy to verify that Q0 has 4 roots
in (−2, 2) and a single root strictly greater than 2.

Since P can be easily obtained from Q and vice versa, the search for Salem numbers
of degree 2d, which is equivalent to the search for Salem polynomials of degree 2d, can
be reduced to the search for monic polynomials of degree d, with integer coefficients,
and all real roots, where d − 1 roots lie in (−2, 2) and the last one is strictly greater
than 2. In this work, we have an additional constraint: we want the polynomials P
(of degree 2d) to be Salem polynomials, and furthermore, we want their unique real
root greater than 1 to also be strictly less than η. When transitioning from the search
for P to the search for Q, this constraint translates to the fact that the unique root

of Q greater than 2 must also be strictly less than η +
1

η
.

2.2 Reformulation as an Optimization Problem

As mentioned earlier, we have an efficient algorithmic approach based on integer linear
optimization for the search for polynomials of type Q, which we outline below.
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Consider an irreducible polynomial in Z[x], q(x) = xd+

d−1∑
i=0

aix
i, with all real roots,

where d−1 roots lie in (−2, 2) and a single root is strictly greater than 2 and less than

η+
1

η
. For such a polynomial q, any (d+1)-tuple

(
−2, β1, . . . , βd−2, 2, η +

1

η

)
such that

β1, . . . , βd−2 and 2 separate its d roots, satisfies the condition that q(−2), q(β1), q(β2),

. . . , q(βd−2), q(2), q

(
η +

1

η

)
alternate in sign, which provides d+1 linear constraints

with respect to the integer variables ai. These linear constraints form an integer linear
optimization problem whose feasibility we must investigate. In other words, we must
test the existence of integers ai that satisfy all the linear constraints. The idea is to
randomly and independently sample a large number of (d − 2)-tuples (β1, . . . , βd−2)

within the interval (−2, 2) and use the (d + 1)-tuples
(
−2, β1, . . . , βd−2, 2, η + 1

η

)
as

root separators for the potential relevant polynomials. Solving the integer linear op-
timization problem (which we do for each sampled (β1, . . . , βd−2)) does not involve
maximization or minimization, as there is no objective function to optimize. The
algorithm is reduced to a feasibility study for each randomly drawn (d− 2)-tuple.

In practice, once a (d − 2)-tuple (β1, . . . , βd−2) is drawn, we solve the problem.
If no d-tuple (a0, . . . , ad−1) is found that satisfies all the constraints, we immediately
draw another sample. Conversely, if such a d-tuple (a0, . . . , ad−1) is found, this means
we have found a polynomial q (of degree d) of the type Q, which allows us to recon-
struct a Salem polynomial P of the desired type. If q is irreducible in Z[x], we add
the polynomial P reconstructed from q to our list. If q is not irreducible, we keep the

factor of q, say q1, that has a root between 2 and η +
1

η
, and we reconstruct a Salem

polynomial from q1. The following flowchart summarizes the approach used:

Sampling of the βi

Search for the aiai not found ai found

Irreducibility of q

3 Implementation and results

3.1 Implementation

The program was entirely written in the Julia language. Polynomial manipulations
were performed using the Polynomials library, while irreducibility tests were carried
out with the Nemo library.

The integer linear optimization problems for each sample were solved using the
Gurobi library ([13]).

The results were obtained on a multiprocessor server featuring two Intel Xeon Gold
6138 CPUs, each with 20 cores (2 threads per core), totaling 80 logical processors
(hyperthreading is enabled).

3.2 Results

The implementation of the algorithmic approach presented in this work did not lead
to the discovery of new Salem numbers smaller than 1.3. In the following table,
we therefore only present the Salem numbers between 1.3 and η resulting from our

4



calculations. To make the table easy to read, we follow the presentation chosen in [2],
in which the different columns respectively show the degrees of the Salem numbers, the
numbers themselves, and the relevant coefficients of the minimal polynomials (since
these are reciprocal)

2d Salem numbers Coefficients of Minimal Polynomial

12 1.302268805094 1 -1 0 0 0 -1 1
32 1.302721444014 1 -1 0 -1 0 1 0 0 0 -1 1 -1 1 0 0 0 -1
32 1.303283348964 1 1 0 -1 -2 -2 -1 0 1 1 0 -1 -1 -1 0 1 1
30 1.303385419369 1 -1 0 0 -1 0 0 0 1 0 0 1 -1 0 0 -1
26 1.304697625411 1 0 -1 -1 0 0 0 0 0 0 0 1 0 -1
22 1.305131378642 1 -1 0 0 -1 0 0 1 0 0 0 -1
38 1.306473537533 1 -2 1 0 0 0 0 0 -1 1 0 -1 1 0 -1 0 1 0 -1 1
44 1.308071085577 1 0 1 -1 0 -2 -1 -2 -1 -1 0 0 1 0 1 0 1 0 1 0 1 0 1
16 1.308409006213 1 1 0 -1 -1 -1 -1 -1 -1
36 1.308966300288 1 0 1 -1 0 -2 -1 -2 -1 -1 0 0 1 0 1 0 1 0 1
22 1.310180863375 1 0 0 -1 -1 -1 -1 0 0 1 1 1
22 1.312566632631 1 -1 -1 1 0 0 0 -1 0 1 0 -1
16 1.312773239526 1 0 0 -1 0 -1 0 -1 0
12 1.315914431926 1 0 0 0 -1 -1 -1
40 1.316069252718 1 -1 0 0 -1 0 1 -1 1 0 -1 0 0 -1 1 0 0 1 0 -1 1
14 1.318197504432 1 -1 0 -1 1 0 0 -1
20 1.319869661883 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1
14 1.321101848259 1 -1 0 0 -1 0 1 -1
22 1.322014239618 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1
22 1.322692457903 1 0 0 -1 0 -1 0 -1 0 -1 0 -1
18 1.323198173512 1 -1 -1 1 0 0 0 -1 0 1
18 1.323576201647 1 0 0 0 0 -1 -1 -1 -1 -2
26 1.323859346186 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
24 1.324071761641 1 -1 0 0 0 -1 1 -1 0 0 0 -1 1
28 1.324231319862 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
20 1.324351296267 1 -1 0 -1 0 1 0 0 0 -1 1
24 1.324441583513 1 0 0 0 -1 -1 -1 -1 -1 0 0 0 1
30 1.324509572546 1 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
32 1.324560796779 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
30 1.324599405908 1 -1 0 0 0 -1 1 -1 0 0 0 -1 1 -1 0 0
30 1.324628516131 1 0 -1 -1 0 1 0 -1 -1 0 1 0 -1 -1 0 1
34 1.324650470079 1 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
34 1.324667030364 1 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1
32 1.324679524104 1 0 0 -1 -1 -1 0 0 1 0 0 -1 -1 -1 0 0 1
30 1.324688951068 1 0 0 0 0 0 -1 -1 -1 -1 -2 -2 -2 -2 -2 -3
32 1.324696064745 1 -2 1 0 0 0 0 -1 1 0 0 -1 1 -1 1 0 -1
40 1.324701433212 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
40 1.324705484871 1 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0
36 1.324708542862 1 0 0 0 -1 -1 -1 -1 -1 0 0 0 1 0 0 0 -1 -1 -1
36 1.324710850968 1 0 0 0 0 -1 -1 -1 -1 -2 -1 -1 -1 -1 0 0 0 0 1
40 1.324712593127 1 0 -1 -1 0 1 0 -1 -1 0 1 0 -1 -1 0 1 0 -1 -1 0 1
38 1.324713908140 1 -1 0 0 -1 0 1 -1 1 0 -1 0 0 -1 1 0 0 0 0 -1
46 1.324714900752 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
46 1.324715650017 1 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
46 1.324716215600 1 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1
44 1.324716642533 1 -1 0 -1 1 0 0 -1 0 0 1 -1 0 -1 1 0 0 -1 0 0 1 -1 0
50 1.324716964809 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
48 1.324717208083 1 -1 0 0 0 -1 1 -1 0 0 0 -1 1 -1 0 0 0 -1 1 -1 0 0 0 -1 1
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2d Salem numbers Coefficients of Minimal Polynomial

52 1.324717391722 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
48 1.324717530347 1 0 0 -1 -1 -1 0 0 1 0 0 -1 -1 -1 0 0 1 0 0 -1 -1 -1 0 0 1
44 1.324717634990 1 -1 0 0 -1 1 -1 0 0 0 1 -1 1 -1 0 1 -2 1 -1 0 1 -1 1
54 1.324717713983 1 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
56 1.324717773612 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
54 1.324717818625 1 -1 0 0 0 -1 1 -1 0 0 0 -1 1 -1 0 0 0 -1 1 -1 0 0 0 -1 1 -1 0 0
58 1.324717852604 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
54 1.324717878254 1 -1 0 -1 1 0 0 -1 0 0 1 -1 0 -1 1 0 0 -1 0 0 1 -1 0 -1 1 0 0 -1
58 1.324717897616 1 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1
50 1.324717912232 1 0 0 0 -1 -1 -1 -1 0 -1 0 0 -1 0 0 0 1 0 1 0 -1 0 -1 -1 0 -1
60 1.324717946211 1 0 0 0 -1 -1 -1 -1 -1 0 0 0 1 0 0 0 -1 -1 -1 -1 -1 0 0 0 1 0 0 0 -1 -1 -1

4 Conclusion

A new Salem number smaller than 1.3 would of course have been welcome. In any case,
our line of research has proven fruitful, as dozens of Salem numbers lower than the
plastic constant are now available. It should be noted, of course, that this algorithmic
approach does not guarantee the exhaustiveness of the tables it provides. But since it
is based on random sampling, the repeated discovery of values already present in our
list suggests that any missing values are likely to be few. In particular, the repeated
discovery of known Salem numbers below 1.3 using this algorithmic approach, without
finding new ones, suggests that List [2] might be complete well beyond degree 44
certified in [9].
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