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Abstract  18 

Angiosperms represent most of plants that human cultivate, grow and eat. However, 19 

angiosperms are only one of five major land plant lineages. As a whole lineage, plants also 20 

include algal groups. All these clades represent a tremendous genetic diversity, that can be 21 

investigated to reveal the evolutionary history of any given mechanism. In this review, we 22 

describe the current model of the plant immune system, discuss its evolution based on the 23 

recent literature and propose future directions for the field. In angiosperms, plant-microbe 24 

interactions have been intensively studied, revealing essential cell surface and intracellular 25 

immune receptors, as well as metabolic and hormonal defence pathways. Exploring diversity 26 

at the genomic and functional levels demonstrated the conservation of theses pathways 27 

across land plants, and for some of them beyond plants. From the conserved mechanisms, 28 

lineage-specific variations have occurred leading to diversified reservoirs of immune 29 

mechanisms. In rare cases, this diversity has been harnessed and successfully transferred to 30 

other species, by integration of wild immune receptors or engineering of novel forms of 31 

receptors, for improved resistance to pathogens. We propose that exploring further the 32 

diversity of immune mechanisms in the whole plant lineage will reveal completely novel 33 

sources of resistance to be deployed in crops.  34 
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Introduction 38 

During the Cambrian (542-488 million years ago, MYA), plant colonised lands, during the so-39 

called plant terrestrialization, and rapidly split in two main lineages: the tracheophytes and 40 

the bryophytes (Harris et al., 2022). Plant macrofossils from this time have not been 41 

discovered yet. The oldest land plant macrofossils are from the Rhynie Chert in Scotland and 42 

date back to the Early Devonian (420-393 MYA) (Strullu-Derrien et al., 2019; Donoghue et 43 

al., 2021). These remarkably well-conserved relics represent tracheophytes, some of which 44 

interacting with micro-organisms. Aglaophyton major was capable of arbuscular mycorrhizal 45 

symbiosis (Taylor et al., 1995), a type of mutualistic symbiotic interaction which promotes 46 

plant growth through nutrient exchanges between the plant and Glomeromycota fungi 47 

(Harrison, 2005; Smith and Read, 2008). Arbuscular mycorrhizal symbiosis is believed to 48 

have contributed to plant terrestrialization (Rich et al., 2021). In extant plants, other types of 49 

symbiotic interactions are also described including diverse mycorrhizal forms (Delaux and 50 

Schornack, 2021) or the nitrogen-fixing root nodule symbiosis with diazotrophic bacteria 51 

(Oldroyd, 2013). The Rhynie Chert macrofossils of Asteroxylon mackiei display a cellular 52 

response to filamentous pathogens (Strullu-Derrien et al., 2023), indicating that plants have 53 

co-evolved with pathogenic microbes at least since the Devonian. Plants were flourishing on 54 

lands even before, as attested by the discovery of cryptospores from the Dapingian (470-467 55 

MYA) in Argentina (Rubinstein et al., 2010). More fossils would help filling in the missing gaps 56 

and better understand the biology of these ancient plants.  57 

Extant land plants can be categorized in seven lineages. Three are bryophytes: 58 

anthocerotophytes (horworts), bryophytes sensu stricto (mosses) and marchantiophytes 59 

(liverworts); and four are tracheophytes: lycophytes, monilophytes (ferns), gymnosperms, 60 

and angiosperms (Morris et al., 2018). Each lineage contains diverse species, making it 61 

possible to infer the history of traits. (Rich et al., 2021). The field of evolution of the molecular 62 

basis of plant-microbe interaction (evoMPMI) aims at comparing immunity and symbiosis 63 

between lineages to understand their evolution (Upson et al., 2018; Delaux and Schornack, 64 

2021; Schornack and Kamoun, 2023). One interest is eventually to describe the immune 65 

system of the first land plant. Another one is to identify the diversity of immunity mechanisms 66 

and potentially transfer novel mechanisms into crop species to improve their resistance to 67 

pests.  68 

Angiosperms diverged from others tracheophytes during the Triassic and underwent massive 69 

radiation during the Late Jurassic and Early Cretaceous to become the most diverse plant 70 

lineage (Li et al., 2019). Today they represent ~450,000 of the ~500,000 land plant species, 71 

including most of our crops (Corlett, 2016). Hence, huge efforts have been put in place to 72 
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understand the angiosperm immune system to propose genetic resistance in agriculture, with 73 

the aim to limit the need for costly and controversial chemicals (Ngou et al., 2022a). 74 

Angiosperm immunity is based on two types of receptors: some at the cell surface called 75 

Pattern-Recognition Receptors (PRRs) and some intracellular called Nucleotide-Binding (NB) 76 

and Leucine-Rich Repeats (LRR) receptors (NLRs) (Iakovidis et al., 2023). Upon activation, 77 

they trigger two signalling pathways called Pattern-Triggered Immunity (PTI) for PRR and 78 

Effector-Triggered Immunity (ETI) for NLRs. Several mechanisms are markers of ETI and 79 

PTI. They include a burst of Reactive Oxygen Species (ROS), accumulation of hormones 80 

such as Salicylic Acid (SA), activation of calcium channels and calcium-dependent protein 81 

kinases, which trigger in turn the phosphorylation of mitogen activated protein kinases, 82 

specific transcriptional reprogramming, induction of pathogenesis-related proteins including 83 

antimicrobial peptides, callose deposition or phytoalexin synthesis. The plant response might 84 

eventually culminate in triggering a form of localised cell death called hypersensitive 85 

response.  86 

The evolution of these receptors and of the signalling pathways they drive has been studied 87 

in recent years, in particular in the light of the large diversity of non-flowering plant genomes 88 

which are now available, including ferns (Li et al., 2018a; Fang et al., 2022; Marchant et al., 89 

2022; Huang et al., 2022b), gymnosperms (Wan et al., 2018; Zhao et al., 2019; Scott et al., 90 

2020; Wan et al., 2021; Liu et al., 2022), lycophytes (Banks et al., 2011; Wickell et al., 2021; 91 

Yu et al., 2023), hornworts (Li et al., 2020), liverworts (Montgomery et al., 2020; Rich et al., 92 

2021; Singh et al., 2023) and mosses (Lang et al., 2018; Yu et al., 2022b). These genomes 93 

are essential tools to assess the evolution of known immune mechanisms and to discover 94 

novel ones at the genetic level. Beyond prediction on the conservation of immunity 95 

mechanisms based on genome comparisons, the research field of evoMPMI has recently put 96 

efforts to describe pathosystems in bryophytes, going down to the mechanistic details (Davey 97 

and Currah, 2006; Oliver et al., 2009; Carella and Schornack, 2018; Carella et al., 2019; 98 

Gimenez-Ibanez et al., 2019; Matsui et al., 2019; Redkar et al., 2021; Reboledo et al., 2021; 99 

Redkar et al., 2022; Moner-Ros et al., 2023). Studying the diversity of immune mechanisms, 100 

genetically and functionally, also revealed similarities with other eukaryotic clades. In this 101 

review, we first describe the current knowledge on plant immunity. Then we discuss the 102 

conservation of these mechanisms in plants and contrast to other lineages. We also propose 103 

directions to discover novel, lineage-specific, immune mechanisms that could represent 104 

opportunities for improved disease resistance in crops.    105 

Angiosperm NLRs are major actors of the plant immune system and generally display 106 

a conserved architecture 107 
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During the 20th century, Flor proposed the gene-for-gene model to describe the genetic basis 108 

of plant resistance to pathogens. It postulates that ‘for each gene that conditions reaction in 109 

the host there is a corresponding gene in the parasite that conditions pathogenicity’ (Flor, 110 

1971). Flor called the host factor ‘resistance gene’ (R-gene in the rest of the text) and the 111 

pathogen factor ‘avirulence gene’. The concept of avirulence gene is somehow incompatible 112 

with the concepts of adaptive evolution, as factors promoting host immunity are predicted to 113 

be eliminated over time from pathogen populations. The simplest hypothesis to explain 114 

maintenance of avirulence genes is that they contribute to pathogenicity in the absence of 115 

the cognate R-gene. This led to the hypothesis that R-proteins not necessarily monitor the 116 

presence of their cognate avirulence factor, but could also guard their virulence target, in the 117 

so-called ‘guard model’ (Van Der Biezen and Jones, 1998). These working models motivated 118 

genetic screens for plant R-genes. Several of these screens pinpointed proteins from the 119 

NLR family. More than 140 NLRs with their cognate effectors have been characterised so far 120 

(Kourelis and Van Der Hoorn, 2018), revealing in most cases a canonical tripartite 121 

architecture with conserved domains. Plant NLRs are indeed part of the bigger Signal 122 

Transduction ATPase with Numerous Domains (STAND) superfamily (Jones et al., 2016). 123 

STANDs are tripartite proteins consisting of (i) a variable N-terminal signalling domain (ii) a 124 

central ATPase domain for activation switch and (iii) a C-terminal recognition domain forming 125 

super-secondary structures (Figure 1). In plants, the C-terminal super-secondary structure is 126 

often an LRR domain. NLR specifically defines STANDs with C-terminal LRRs although this 127 

term is sometimes used to describe proteins with other types of C-terminal super-secondary 128 

structure repeats. For plant NLRs, the central switch domain is always an NB adaptor shared 129 

by Apaf-1, some R-gene products, and CED-4 (NB-ARC). The N-terminal signalling domain 130 

can be a Toll, Interleukin-1 and some plant R-gene products (TIR) or a Coiled-Coil (CC), 131 

leading to diverse modes of action. TIRs are enzymes that consume oxidised Nicotinamide 132 

Adenosine Dinucleotide (NAD+) or dsDNA/RNA to form immune signalling molecules (Yu et 133 

al., 2022a; Jia et al., 2023). CCs can be classified into three monophyletic groups: 134 

Resistance to Powdery mildew 8 (RPW8), G10 and others CC (referred as CC in the rest of 135 

the text) (Kourelis et al., 2021). The RPW8 group specialised to function downstream of 136 

others NLRs (Bonardi et al., 2011; Qi et al., 2018; Castel et al., 2019a; Wu et al., 2019). 137 

Particularly, TIR-NLRs enzymatic product is recognised by the receptor Enhanced Disease 138 

Susceptibility 1 (EDS1), in complex with Senescence-Associated Carboxylesterase 101 139 

(SAG101) or phytoalexin dependent 4 (PAD4), which activates the RPW8-NLR N 140 

Requirement Gene 1 (NRG1) or Activated Disease Resistance 1 (ADR1) respectively 141 

(Feehan et al., 2020). G10-NLRs specialisation is not known yet, but they work as singletons 142 

(Lee et al., 2020). Both RPW8-NLRs and CC-NLRs can form calcium ion (Ca2+) channels at 143 
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the plasma membrane (Bi et al., 2021; Jacob et al., 2021). TIR and CC domains are 144 

functional only as oligomers (Maekawa et al., 2011; Duxbury et al., 2020).  145 

In their pre-activation state, NLRs are monomeric in the cytoplasm and safeguard the cell. 146 

The NB-ARC is maintained in an off-state condition by binding to an ADP. When 147 

encountering a cognate pathogenic effector, the NLR turns on. This activation leads to a 148 

switch from adenosine diphosphate (ADP) to an adenosine triphosphate (ATP), causing 149 

allosteric conformational changes. Four or five ATP-bound NLRs oligomerise and form a 150 

structure called resistosome (Wang et al., 2019a; Ma et al., 2020; Martin et al., 2020). 151 

Formation of the resistosome brings the TIR or CC domains into close proximity, enabling 152 

signalling and initiating ETI.  153 

The mechanism of NLR activation has been elucidated through research in angiosperms 154 

(Ngou et al., 2022a). Its conservation across the green lineage remains to be studied.  155 

Growing genomic knowledge reveals the range of NLR diversity  156 

The sequencing and analysis of diverse plant genomes demonstrated that plant NLRs are as 157 

ancient as the green lineage itself. They are found in streptophyte green algae and 158 

chlorophytes and specialised as TIR-, CC- and RPW8-NLRs before the diversification of the 159 

Viridiplantae (Shao et al., 2018). Besides defining the conservation of some domains, these 160 

genomic analyses lead to the identification of variations in the NLR architecture. To date, 481 161 

plant NLRs have been at least partly characterised, and they are not always canonical 162 

(Kourelis et al., 2021). In fact, several NLRs diverge from the tripartite structure (Meyers et 163 

al., 2003). Some contain extra integrated domains (Marchal et al., 2022). A common one is 164 

the C-terminal jelly roll and Ig-like (C-JID), previously known as “post-LRR”, found after the 165 

LRR of many TIR-NLRs (Saucet et al., 2021). It is a structurally defined domain required for 166 

effector recognition (Lapin et al., 2022). Other extra domains can be Kinases, WRKY, BEAF- 167 

and DREF-type zinc finger (BED), Heavy Metal Associated (HMA), Lin-11, Isl-1, and Mec-3 168 

(LIM), or even extra TIR or extra NB-ARC. Some are thought to play a role in effector 169 

recognition, acting sometimes as decoys for effectors, but it cannot be excluded that others 170 

may contribute to signalling (Meyers et al., 2003; Marchal et al., 2022). Besides, some NLRs 171 

lack one of the three domains. For instance, Chilling Sensitive 1 (CHS1) and TIR-NB 2 (TN2) 172 

are TIR-NB only proteins, they lack an LRR, but they are functional, signalling with the full 173 

TIR-NLR suppressor of chs1-2 3 (SOC3) (Liang et al., 2018). There are even functional TIR-174 

only proteins, lacking NB-ARC and LRR, such as Response to HopBA1 (RBA1) that 175 

contributes to immunity through EDS1-dependent HR and enzymatic activity, similarly to 176 

canonical TIR-NLRs (Nishimura et al., 2016; Wan et al., 2019). RPW8 domains exist alone 177 

and confer resistance to the powdery mildew fungus (after which they get named) (Xiao et 178 
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al., 2001), the rice blast fungus (Li et al., 2018b), the downy mildew oomycete (Ma et al., 179 

2014) and some pathogenic bacteria (Li et al., 2018b; Castel et al., 2019b). Others CC, CC-180 

NB, and NB-ARC alone have been identified but they are rare and their function in immunity 181 

has not been tested yet (Wroblewski et al., 2018). STANDs associated with C-terminal super-182 

secondary structure-forming tandem repeats others than LRR also exist in plants. For 183 

instance, TNPs (short for TIR-NB-ARC-TPR) are proteins with a TIR and a NB-ARC domains 184 

associated with Tetratricopeptide Repeats (TPR), instead of the canonical LRRs (Lapin et al., 185 

2022). They can induce a hypersensitive response when transiently expressed in Nicotiana 186 

tabacum leaves, a typical NLR phenotype. They do so via a signalling pathway different than 187 

classic TIR-NLRs; their role in immunity requires further investigation (Johanndrees et al., 188 

2023).  189 

Genome comparisons across land plants revealed new structural organisations among the 190 

NLR families. If genome analyses showed a strong conservation of NLR in tracheophytes, 191 

there is an enhanced diversity in this family among bryophytes. Bryophytes, ferns, 192 

gymnosperms and lycophytes also contain TIR-, CC- and RPW8-NLRs, just like angiosperms 193 

(Liu et al., 2023). However, bryophytes also harbour specific features. They encode for NLR 194 

associated with atypical N-terminal domains such as -kinases or α/β hydrolase. They fall into 195 

the same phylogenetic clade as TIR-NLRs (Gao et al., 2018; Andolfo et al., 2019). This 196 

monophyly suggests that they evolved after a signalling domain swap in the TIR-NLR of 197 

bryophytes. One typical response of angiosperm NLRs is a TIR-, CC- or RPW8-mediated cell 198 

death activation. This feature is conserved for many tested TIR, CC and RPW8 domains of 199 

NLRs from non-vascular plants such as Marchantia polymorpha, ferns and lycophytes  (Chia 200 

et al., 2022). In particular, a conserved group of CC-NLR, called MAEPL, is present in the 201 

genome of many non-flowering plant, and triggers responses analogous to the angiosperms 202 

CC-NLRs responses: hypersensitive response, transcriptional reprogramming and growth 203 

inhibition (Chia et al., 2022). 204 

Immunity (almost) without NLR in ecologically peculiar plants 205 

A survey of NLR diversity in plants revealed that their repertoire is reduced in the aquatic and 206 

floating angiosperm duckweed (Lemnoideae) (Baggs et al., 2020). As duckweeds are 207 

monophyletic, this NLR contraction could be a clade specificity linked to the adaptation to the 208 

aquatic lifestyle. The genomes of aquatic and floating ferns also contain few NLRs compared 209 

to terrestrial ferns (Liu et al., 2021). This suggests that NLR contraction is associated with 210 

evolutionary distinctiveness of aquatic and floating plants. Similarly, carnivorous and parasitic 211 

plant genomes encode for a low number of NLRs (Liu et al., 2021; Ngou et al., 2022b). One 212 

hypothesis for the reduction of the NLR repertoires in these clades could be that  aquatic 213 



8 
 

plants cannot be infected by aerial pathogens, reducing the spectrum of potential pathogens, 214 

and thus the need for a diverse immune system. However, there are yet no evidence that 215 

aquatic plants face fewer parasites than terrestrial plants. Moreover, carnivorous and 216 

parasitic plants are not aquatic, so this lifestyle is not sufficient to explain the loss of NLRs. 217 

An interesting hypothesis is that evolutionary distinctiveness prevents rapid host jump from 218 

closely related species (Huang et al., 2015). In the case of duckweed, it would mean that 219 

their floating and aquatic lifestyle prevents host jump from related terrestrial Araceae. 220 

Pathogen of a given terrestrial Araceae can evolve new effectors to become compatible with 221 

another terrestrial Araceae, expanding its host range. But to turn compatible with aquatic 222 

Araceae, it would also require aerial to aquatic adaptation, which represents an extra step in 223 

term of genetic adaptation. This hinders host jump, reducing the need for ETI in duckweed.  224 

This hypothesis could be tested by comparing the microbiome of duckweeds and a closely 225 

related terrestrial Araceae and assess whether gene-flow is higher within terrestrial than 226 

between terrestrial and aquatic microbes. Duckweeds, carnivorous and parasitic plants also 227 

share a reduction of their root system, decreasing exposure to root microbes. One can 228 

imagine that it lowers the need for a diversified NLR repertoire. Conversely, it could be that 229 

these plants still encounter pathogens but evolved an immune system less dependent on 230 

NLRs. For example, in duckweed, the antimicrobial peptide family MiAMP1 has expanded 231 

and is upregulated upon pathogen inoculation (Baggs et al., 2022). Kiwi, papaya and maize 232 

also contains fewer NLRs (Baggs et al., 2017). Here the explanation could be domestication, 233 

dioecy, or both. Orchids also present a small number of NLRs, despite being the most 234 

diverse angiosperm family (Xue et al., 2020). Orchids engage in a particular type of 235 

mycorrhizal interaction (Dearnaley, 2007). For some orchids, this fungal interaction became 236 

so important that the plant became achlorophyllous and myco-heterotrophic (Gebauer et al., 237 

2016). The loss of NLR could be explained by the accommodation of this particular symbiont, 238 

but this trend is not observed in other plant lineages that have evolved diverse mycorrhizal 239 

forms (Wu et al., 2023). Understanding how orchids, duckweeds and other plant lineages 240 

with limited NLR repertoire resist to pest will reveal unexplored aspect of plant immunity.   241 

When NLRs drive plant speciation 242 

It is well known in agriculture that a cross between two plants can result in a bigger and more 243 

productive F1 progeny. This phenomenon is called hybrid vigour or heterosis (Lewontin et al., 244 

2010). But the opposite can also happen, when the F1 progeny is stunted due to hybrid 245 

necrosis or hybrid incompatibility (Bomblies and Weigel, 2007). These phenomena are 246 

explained by dysregulation of the immune system. For heterosis, the defence-related 247 

hormone salicylic acid is down-regulated (Groszmann et al., 2015). For hybrid incompatibility, 248 

genetic approaches revealed that a single locus from each parent explains the stunted 249 
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phenotype (Chae et al., 2014). The causal genes are often alleles encoding NLR immune 250 

receptors, which, when co-expressed in the same plant, cause growth detrimental effect. For 251 

example, in Arabidopsis thaliana, incompatibility between accessions Uk-1 and Uk-3 is 252 

explained by alleles of the NLRs Resistance to Peronospora Parasitica 1 (RPP1) in Uk-1 and 253 

Suppressor of Salicylic acid Insensitive 4 (SSI4) in Uk-3 (Tran et al., 2017). Incompatibility 254 

between accessions Lerik-1 and KZ10 is explained by an allele of the NLR Resistance to 255 

Peronospora Parasitica 7 (RPP7) in Lerik-1 and the atypical R-protein RPW8 in KZ10 256 

(Barragan et al., 2019). It illustrates a simple model for allopatric speciation proposed during 257 

the early 20th century by Dobzhansky, Muller and Bateson (Orr, 1996). These authors 258 

proposed that sexual incompatibility between two related organisms is driven by only two 259 

genes, one from each parent. From an aabb genotype, two population evolve: to aAbb on the 260 

one population and aabB on the other population. The A and the B allele are incompatible: 261 

when they get expressed in the same plant, for example in an aAbb x aabB cross, the 262 

resulting progeny is either dead or stunted. Over time, the two populations become 263 

independent species. This model explains the presented cases of hybrid incompatibility, 264 

suggesting that NLRs not only regulate plant-microbe interactions, but can also contribute to 265 

the evolution of plants (Calvo-Baltanás et al., 2021). 266 

NLRs beyond plants 267 

Although originally discovered in plants, NLRs are not specific to this lineage, and even play 268 

important roles in human (Bent et al., 1994; Harton et al., 2002). In animal research, NLRs 269 

stands for Nod-Like Receptors, but anyway describes STANDs with LRR. Like plant NLRs, 270 

they form ADP-bound monomer, sense nonself molecules via a C-terminal LRR and, upon 271 

ADP to ATP switch, form ring-shape oligomers (Duxbury et al., 2021). These oligomers are 272 

called inflammasomes instead of resistosomes, as such oligomers cause caspase-1 273 

inflammation in animals (Wang et al., 2019a). The central NB domain, called NACHT (named 274 

after NAIP, CIITA, HET-E and TP1), is similar to the NB-ARC domain. Structurally, they are 275 

both made of an NB domain, a helical domain 1 and a winged helix domain. The only 276 

difference is that NACHTs also contain a second helical domain (Hu et al., 2013), lacking in 277 

NB-ARCs (Wang et al., 2019b). Animal NLRs have different N-terminal signalling domains, 278 

such as a caspase recruitment domain (Poyet et al., 2001) or a pyrin domain (Martinon et al., 279 

2001) (Figure 1) which directly or indirectly activate caspases (Chou et al., 2023). Just like 280 

plant resistosomes, animal inflammasomes sense pathogens (Miao et al., 2006) and can be 281 

involved in autoimmune symptoms (Hoffman et al., 2001). Some also regulate other 282 

biological functions such as embryogenesis (Tong et al., 2000) and spermatogenesis 283 

(Westerveld et al., 2006). The presence of NLRs, among other STANDs, in sponges (Yuen et 284 

al., 2014), the sister lineage of all other animals, indicates that they originated at least in the 285 
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first animal, during the Precambrian. NLR-like are also present in other eukaryotes. Genome 286 

mining in fungi revealed an even greater diversity in STANDs (Dyrka et al., 2014; Loquet and 287 

Saupe, 2017; Daskalov et al., 2020). They are referred as NLRs in the literature, but their C-288 

terminal repeats are not LRR, unlike plants and animals. Instead, they display TPR, ankyrin 289 

or WD40 repeats (Figure 1). The central domain can either be the plant-type NB-ARC or the 290 

(almost identical) animal NACHT. Fungal STANDs, such as Patatin-Like Phospholipase-1 291 

(PLP-1) and NACHT and WD repeat domain containing 2 (NWD2), control nonself 292 

recognition to prevent hyphae fusion between incompatible strains (Heller et al., 2018; 293 

Saupe, 2020). Their role in immunity is yet to be explored (Daskalov, 2023). Besides plants, 294 

animals and fungi, STANDs have been mostly overlooked in other lineages. There are 295 

putative genes encoding LRR-, TPR- and WD40-associated STANDs in the TSAR 296 

supergroup (Telonemia, Rhizaria, Alveolata and Stramenopila) and Caspase HetF 297 

Associated with TPRs (CHAT) domain with NB-ARC and LRR in Haptista and diatom 298 

(Richter and Levin, 2019). In particular, brown algae, that belong to the Stramenopila, have 299 

NB-TPRs, and red algae, a sister clade of the green lineage, have NB-WD40 (Andolfo et al., 300 

2019) (Figure 1). These observations indicate that STANDs were already present in the 301 

eukaryote most recent common ancestor. It seems that CC-NLRs and TIR-NLRs evolved 302 

specifically in the green lineage. In angiosperms, TIR-NLRs were lost in monocots, while they 303 

expanded in rosids. CC-NLRs instead are present in all lineages and expanded in asterids 304 

(Shao et al., 2016). In bryophytes, TIR-NLRs underwent a domain swap leading to kinase-305 

NLRs and α/β hydrolase-NLRs (Andolfo et al., 2019). The evolutionary history of the other 306 

eukaryotic STANDs presented here remains to be explored. 307 

The recent discovery of NLR in bacteria and archaea repositions our view of NLR evolution 308 

(Gao et al., 2022; Kibby et al., 2023). Bacteria can be attacked by pathogens such as viral 309 

bacteriophages. The description of an antiphage system, clustered and regularly interspaced 310 

palindromic repeats (CRISPR), led to a revolutionary genome editing tool. In this context, 311 

Gao et al. looked for NLR homologues in bacterial genomes (Gao et al., 2022). They found 312 

four classes that they called antiviral STAND (Avs): Avs1, Avs2, Avs3 and Avs4. They all have 313 

a central ATPase domain homologous to NACHT and NB-ARC, C-terminal TPR domains and 314 

a N-terminal enzymatic domains. The N-terminal domain is most often a nuclease, but 315 

sometimes a protease, a TIR, a CMP-hydrolase, transmembrane helixes or a sirtuin. Avs can 316 

form oligomeric structures upon recognition of specific viral proteins, similar to 317 

inflammasomes and resistosomes. Each class likely evolved independently as they are 318 

phylogenetically distant (Gao et al., 2022). Independently, Kibby et al. searched for novel 319 

antiphage systems by looking at uncharacterised genes from “defence island” loci in bacteria 320 

(Kibby et al., 2023). They found a gene encoding for a NACHT-containing protein in 321 
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Klebsiella pneumoniae inducing phage resistance in Escherichia coli. Therefore, they 322 

conducted a systematic mining for NACHT in bacteria and found ~15,000 of them. These 323 

domains are ultimately quite common, particularly among cyanobacteria, actinobacteria and 324 

deltaproteobacteria (Kibby et al., 2023). There is co-evolution between the central NACHT 325 

and the C-terminal sensor, but not the N-terminal signalling domain. At the C-terminus, they 326 

carry super-secondary structure-forming tandem repeats such as LRR, TPR like in plants, 327 

but also HEAT (for Huntingtin, elongation factor 3 [EF3], protein phosphatase 2A [PP2A], and 328 

the yeast kinase TOR1) repeats (Kibby et al., 2023). At the N-terminus, they contain TIRs like 329 

in plants, but also nucleases, peptidases, sirtuins and domains of unknown function (Figure 330 

1). Some of these domains could be involved in protein-protein interactions rather than acting 331 

as enzymes. This corroborates the role of NACHT / NB-ARC as adaptors between C-terminal 332 

sensor repeats and N-terminal immune signalling domains. 333 

Fusion of a C-terminal super-secondary structure and an N-terminal signalling domain to a 334 

central NB domain, the characteristic of STANDs, occurred several times independently in 335 

the tree of life (Dyrka et al., 2014; Urbach and Ausubel, 2017; Gao et al., 2022). Besides, 336 

they can play a role in defence against non-self (Figure 1). Hence, we propose that they 337 

emerged at early stage of life diversification to protect from biotic stress. Plant NLRs (as 338 

STANDs with LRR) are monophyletic and they share a different origin than other plants 339 

STANDs, such as TPRs or armadillo (ARM)-associated STANDs (Andolfo et al., 2019; 340 

Johanndrees et al., 2023). They also share a different origin than metazoan NLRs (Urbach 341 

and Ausubel, 2017). We discuss here many STANDs characterised as immune signaller but 342 

they can regulate other functions. Some human NLRs regulate embryogenesis (NLR-pyrin 5, 343 

NRLP5) and spermatogenesis (NLR-pyrin 14, NRLP14) (Tong et al., 2000; Westerveld et al., 344 

2006; Chou et al., 2023). Some plant NLRs could regulate tolerance to abiotic stress, as 345 

mutants of the TIR-NLR encoding genes White Rust Resistance 4A (WRR4A)/Activated 346 

Disease Resistance 2 (ADR2) and CHS1 are more resistant to UV stress (Piofczyk et al., 347 

2015) and cold temperature respectively (Wang et al., 2013). In addition, STANDs often 348 

regulate programmed cell death (Tamborski and Krasileva, 2020), but there are exceptions. 349 

For example, in A. thaliana, ADR1 is required for immunity upon recognition of the bacterial 350 

effector AvrRps4 but not for cell death (Castel et al., 2019a). Extrapolating from the current 351 

state of research, the common feature of STANDs is to sense modifications of the 352 

environment through a C-terminal super-secondary structure, and to bring in close proximity 353 

several N-terminal signalling domains for execution of a response. The thorough description 354 

of more STANDs will highlight the specialisation and convergent evolution of these proteins.  355 

TIRs are present across the tree of life and often regulate immunity 356 
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TIR is the signalling domain of many NLRs, from prokaryotes to eukaryotes (Figure 2). It 357 

plays a central role in immunity, even beyond NLRs. TIRs were discovered in the 1990s. A 358 

striking ~200 amino acids homologous region was observed between Toll, Interleukin-1 and 359 

some plant R-gene products, and was subsequently named TIR (Parnet et al., 1996; 360 

Hammond-Kosack and Jones, 1997). It happens that these three proteins regulate immunity. 361 

Toll was first identified in Drosophila as a regulator of embryogenesis; its main role in 362 

defence against fungi was later revealed (Valanne et al., 2011). It is a transmembrane protein 363 

with an extracellular LRR sensing domain and an intracellular TIR signalling domain. Its 364 

homologues in human are Toll-like Receptors (TLRs), which sense non-self through their 365 

extracellular variable domain and induce immune response through their intracellular TIR 366 

domain (Akira and Takeda, 2004). In plants, TIR are mostly found as the N-terminus 367 

signalling domain of some NLRs, particularly in Rosids (Shao et al., 2016). For a long time, 368 

the major known features of plant TIRs were that they can dimerize and signal via the protein 369 

EDS1 (Parker et al., 1996; Bernoux et al., 2011). A breakthrough in TIR research was the 370 

discovery that Sterile Alpha and TIR Motif-containing protein 1 (SARM1), a TIR-containing 371 

regulator of neuron degeneration, is an enzyme capable of hydrolysing NAD+ (Essuman et 372 

al., 2017). This piece of research enabled to demonstrate that plant TIR can also catalyse 373 

NAD+ degradation (Horsefield et al., 2019; Wan et al., 2019). In parallel, it was shown that 374 

effector recognition induces TIR-NLR tetramerization and assembles the four TIRs in 375 

proximity (Ma et al., 2020; Martin et al., 2020). They associate to form two asymmetric 376 

homodimers, creating two composite catalytic sites. EDS1, in heterodimer with PAD4 or 377 

SAG101, is the receptor of some TIR catalytic products: pRib-AMP or pRib-ADP for EDS1-378 

PAD4 (Huang et al., 2022a), and di-ADPR or ADPr-ATP for EDS1-SAG101 (Jia et al., 2022). 379 

Ligand-bound EDS1-PAD4 or EDS1-SAG101 activate the RPW8-NLRs ADR1 or NRG1 380 

respectively, resulting in a similar transcriptional response as one observed upon CC-NLR 381 

activation (Saile et al., 2020). Bacteria also have a defence system based on TIR: Thoeris 382 

(Ths). It relies on two TIR-containing proteins: ThsB and ThsA. Upon phage infection, ThsB 383 

converts NAD+ to an isomer of cADPR. This product activates ThsA leading to depletion of 384 

NAD+, and ultimately cell death (Ofir et al., 2021). NAD+ depletion is also the cause of 385 

SARM1-mediated cell death, but it is not required for plant TIR-mediated cell death (Duxbury 386 

et al., 2020). Some phages can inactivate Thoeris by sequestering the TIR molecular 387 

product, through the viral encoded protein Tad1 (Leavitt et al., 2022). Similarly, the plant 388 

pathogen effectors HopAM1 and HopBY contain TIRs that can highjack the NAD metabolism 389 

to suppress host TIR-mediated immunity (Eastman et al., 2022; Hulin et al., 2023). By 390 

contrast, some animal TIRs, such as TLRs, function as adaptor for protein-protein interaction 391 

rather than enzymes (Takeda and Akira, 2015). The ancient TIR domain shows conserved 392 
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and divergent function and perfectly illustrates the concept that starting with identical building 393 

blocks, immunity has evolved in different directions leading to diversified mechanisms.   394 

Pikobodies: introgression of the animal adaptive immunity into plants 395 

Customizing NLR receptors to enhance their recognition spectra represents an opportunity to 396 

improve crop resistance (Zdrzałek et al., 2023). One elegant approach proposed to equip 397 

plant with a part of the animal adaptive immune system, leading to the development of the 398 

pikobodies (Kourelis et al., 2023). By contrast with plants that rely solely on genetically 399 

encoded immune receptors, each generally conferring resistance to a limited range of 400 

pathogens, vertebrates evolved a singular adaptive immune system: it generates a myriad of 401 

antibodies capable of recognising virtually any antigen (Cooper and Alder, 2006). Antibodies 402 

are combinations of protein chains defined by their length and their degree of conservation. 403 

Heavy chain-only Antibodies (HcAb) were isolated from camelids and triggered interest for 404 

their simple structure (Bao et al., 2021). They contain constant heavy chains and a variable 405 

domain binding the antigen: the nanobody.  Pikobodies are fusions between Pikm-1 and 406 

nanobodies. Pikm-1 is an NLR immune receptor from rice with an HMA  recognition domain 407 

(De la Concepcion et al., 2021). This HMA binds effectors from the rice blast fungus 408 

Magnaporthe oryzae, causing Pikm-1 to form a complex with a related NLR: Pikm-2. The 409 

effector-Pikm-1-Pikm-2 complex then initiates immune signalling. Kourelis et al. had the 410 

brilliant idea to replace the HMA by a nanobody to test if it could recognise its cognate 411 

antigen (Kourelis et al., 2023). NLRs are sensitive to even subtle changes, and many 412 

constructs were auto-active, or loss-of-function. After several trials, Kourelis et al. finally 413 

engineered pikobodies with nanobodies binding Green Fluorescent Protein (GFP) or 414 

mCherry, that were able to induce an immune response specifically in the presence of GFP 415 

or mCherry respectively (Kourelis et al., 2023). These pikobodies were expressed in 416 

Nicotiana benthamiana and the plants turned indeed resistant to viruses expressing GFP or 417 

mCherry.  418 

Plants evolved immune receptors with integrated domains capable of both recognising 419 

effectors and triggering an immune response. There is a relatively high diversity of integrated 420 

domains (Marchal et al., 2022), but still limited compared to the billions of human antibodies 421 

(Alberts et al., 2002). Pikobodies illustrate that scientists can combine knowledge on the 422 

divergent evolution of the immune systems from two lineages to engineer novel pathogen 423 

recognition capabilities in plants.  424 

Some immune receptors are at the cell surface 425 

Cells harbour at their surface proteins that can sense and respond to their environment, such 426 

as a pathogen invasion. In most eukaryotes, they are generally G protein-coupled receptors 427 
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(GPCRs) (Hanlon and Andrew, 2015). In plants, the most diversified plant cell surface 428 

receptors belong to the receptor-kinase (RK, also known as Receptor-Like Kinase, RLK) and 429 

receptor-protein (RP also known as Receptor-Like Protein, RLP) families (Bender and Zipfel, 430 

2023). These receptors combine an extracellular sensor domain and a single transmembrane 431 

domain. The extracellular domain is often an LRR but other domains have been identified 432 

such as S-domain, cell-Wall Associated Kinase (WAK), Cysteine-Rich Repeat (CRR, also 433 

known as DUF26), L-Lectin, Malectin, extensin, Lysin Motif (LysM), C-lectin, thaumatin, 434 

tumor necrosis factor receptor, NHL (NCL-1, HT2A and Lin-41) repeats, WD40 repeats, U 435 

Box, and Pathogenesis-Related (PR-1) domains (Dievart et al., 2020; Gong and Han, 2021). 436 

In addition, RKs also carry an intracellular kinase domain, while RPs do not. RPs and RKs 437 

which are specialised in pathogen detection often recognise conserved pathogen molecules 438 

known as Pathogen-Associated Molecular Patterns (PAMPs). Therefor they are also referred 439 

as  Pattern Recognition Receptors (PRRs). These receptors activate an immune signalling 440 

pathway, known as Pattern Triggered Immunity (PTI) (Jones and Dangl, 2006). In 1994, the 441 

RP Cladosporium fulvum 9 (Cf-9) was the first cell surface receptor identified as an immune 442 

receptor (Jones et al., 1994). Cf-9 harbours an extracellular LRR domain and confers 443 

resistance to the fungus Cladosporium fulvum in tomato. Since this first discovery, more than 444 

60 RPs/RKs from diverse plant species have been shown to participate in sensing varieties 445 

of pathogens (Dievart et al., 2020; Ngou et al., 2022a). For instance, the LRR-RKs Flagellin 446 

Sensing 2 (FLS2) and Elongation Factor Tu Recognition (EFR) recognise flagellin and a 447 

bacterial elongation factor epitope respectively (Gómez-Gómez and Boller, 2000; Zipfel et al., 448 

2006), the LysM-RK Chitin Elicitor Receptor Kinase 1 (CERK1) recognises the fungal cell 449 

wall constituent chitin (Shimizu et al., 2010) while the LRR-RP Receptor-Like Protein 23 450 

(RLP23) recognises epitopes from a superfamily of proteins from bacteria, fungi and 451 

oomycetes known as Necrosis- and ethylene-inducing peptide 1-Like Protein (NLP) (Albert et 452 

al., 2015). Although many of these PRRs vary across linages, some of them seem to have 453 

experienced strong purifying selection during plant evolution, as they are maintained across 454 

diverse plant lineages (Figure 3). The best studied example is the LysM-RK CERK1 which 455 

recognises chitin, leading to immune responses, in angiosperms (Miya et al., 2007; Bozsoki 456 

et al., 2017) and bryophytes (Bressendorff et al., 2016; Yotsui et al., 2023). RPs, which lack a 457 

kinase, can associate with an RK for signalling. For instance, LRR-RPs (such as RLP23) 458 

generally associate with Suppressor Of [[Brassinosteroid Insensitive 1 (BRI1)]-associated 459 

kinase 1 (BAK1)]-Interactive RK 1 (SOBIR1) to form a complete signalling unit (Albert et al., 460 

2015). Interestingly, glaucophytes, rhodophytes and many green algae lineages encode for 461 

diverse LRR-RPs but lack SOBIR1, suggesting that other mechanisms exist (Ngou et al., 462 

2023). 463 
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PRRs generally recruit RK coreceptors to form an active signalling complex. For example, 464 

FLS2, EFR or RLP23-SOBIR1 associate with the LRR-RK BAK1 (also known as Somatic 465 

Embryogenesis Receptor Kinase 3, SERK3) (Chinchilla et al., 2009), and CERK1 associates 466 

with the LysM-RP Chitin Elicitor Binding Protein (CEBiP) in rice or LysM-RK 5 (LYK5) in A. 467 

thaliana (Shimizu et al., 2010; Cao et al., 2014). The combinatorial nature of these receptor 468 

complexes suggests that a large diversity of associations may occur in response to diverse 469 

environmental triggers and might be spatially and temporally controlled. As an example, the 470 

FLS2 receptor leads to different behaviour when its expression pattern is disturbed in a 471 

spatial manner (Emonet et al., 2021). It can be anticipated that each plant lineage also 472 

evolved diverse combinations of receptors, regulated in a multitude of ways. We thus 473 

propose that an exponential number of complexes will be discovered when exploring the 474 

entire plant diversity. This diversification, driven by coevolution, represents a source of 475 

biotechnology potential for the transfer of resistance, as exemplified by the increased 476 

resistance of Solanaceae to a range of pathogenic bacteria following the transfer of the EFR 477 

receptor from A. thaliana (Lacombe et al., 2010).  478 

Upon activation at the cell surface, it has been demonstrated in several angiosperms that 479 

PRR complexes phosphorylate intracellular Receptor-Like Cytoplasmic Kinases (RLCKs), 480 

particularly those of the subfamily RLCK VII such as Avr9/Cf-9 Induced Kinase 1 (ACIK1) or 481 

Botrytis-Induced Kinase (BIK1) (Rowland et al., 2005; Lu et al., 2010a).  RLCKs are a large 482 

sub-group of RKs that lack ectodomains, and in most cases the transmembrane domain too, 483 

and are considered cytoplasmic. Specific phosphorylation of RLCKs activates downstream 484 

immune signalling such as callose deposition, Ca2+ flux, ROS burst and a PTI-specific 485 

transcriptional reprogramming (Couto and Zipfel, 2016). Particularly, flg22-recognition by the 486 

RK FLS2 results in (1) formation of a complex between FLS2 and BAK1 (Chinchilla et al., 487 

2007), (2) activation by FLS2-BAK1 of the RLCK BIK1 (Lu et al., 2010b) and (3) activation by 488 

BIK1 of the NADPH oxidase Respiratory Burst Oxidase Homologue D (RBOHD) responsible 489 

for the ROS burst (Kadota et al., 2014). Although part of these responses is PAMP-specific, 490 

such as PAMP perception itself which is receptor-dependent, most of them are similar and 491 

converge from diverse pathways on conserved integrators, such as BIK1 (Bjornson et al., 492 

2021). A recent breakthrough in our understanding of the evolution of this pathway was the 493 

discovery that BIK1-RBOHD-mediated PTI is a conserved and ancient immune pathway, as it 494 

is present in both A. thaliana and M. polymorpha, which diverged 450 million years ago 495 

during land plant colonisation (Chu et al., 2023; Yotsui et al., 2023). This conserved activation 496 

of immunity responses following PAMP activation is also described in the moss 497 

Physcomitrium patens indicating a wide conservation (Bressendorff et al., 2016). In addition 498 

to its positive activation, negative feedback loops acting on PTI have been described in A. 499 
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thaliana, such as the phosphorylation of BIK1 by Calcium-dependent Protein Kinase 28 500 

(CPK28) which regulates its turnover (Monaghan et al., 2015). As auto-immunity imposes a 501 

significant fitness cost to plants, one may speculate that the conservation of these immune 502 

homeostasis mechanisms has been essential during plant evolution, although this concept 503 

remains to be tested. This hypothesis can be tested in the future using reverse genetics in 504 

model bryophytes, such as in Marchantia sp.  in which the immune function of BIK1-RBOHD 505 

has been demonstrated (Chu et al., 2023).  506 

Genomes of extant plants shed light on the evolution of RK and RP 507 

The ectodomain of PRRs is variable (Dievart et al., 2020; Gong and Han, 2021). Because of 508 

this domain diversity, reconstructing the evolutionary history of this superfamily has proven 509 

challenging. By contrast, the more conserved kinase domain is suitable to elucidate the 510 

evolution of RKs. Plant genomes encode for hundreds of RKs (e.g. ~615 in A. thaliana), 511 

which can be classified into 46 subfamilies (Shiu and Bleecker, 2003). Twelve subfamilies (I 512 

to XII) encompass RLCKs, while 34 encompass kinases associated with specific 513 

ectodomains (including 15 with LRR). The specificities between the kinases and the 514 

ectodomains phylogenies indicate that coevolution, more than domain shuffling, drives the 515 

specialisation of RKs (Man et al., 2023).  516 

A presence / absence analysis of each family in plant genomes has enabled dating the 517 

emergence of the diverse clades known in angiosperms (Dievart et al., 2020). The presumed 518 

absence of RKs in chlorophytic algae suggests that RKs diversified during the radiation of 519 

the streptophytes (Dievart et al., 2020). One alternative hypothesis would be that RKs pre-520 

dated the diversification of the Viridiplantae and were subsequently lost specifically in 521 

chlorophytes. Dievart et al. proposed that LRR-RKs and LysM-RKs evolved before the split 522 

between streptophyte algae and embryophytes, a hypothesis supported by phylogenetic 523 

analyses (Delaux et al., 2015; Nishiyama et al., 2018). In contrast, they proposed that WAK-524 

RKs emerged along the colonisation of land, in embryophytes (Dievart et al., 2020). A recent 525 

study challenges this last assumption, identifying WAK-RPs in chlorophytes. The authors 526 

suggest that WAK-RKs predated terrestrialization but were lost multiple times in streptophyte 527 

algae, and expanded in tracheophytes (Ngou et al., 2023). These observations indicate that 528 

a mix of ancestral and convergent gains followed by lineage-specific losses occurred in this 529 

complex family. How these gains originated is an exciting question in the field. One possible 530 

model for the gain of RPs and RKs is that (1) intracellular receptor domains pre-exist, (2) 531 

gain a transmembrane domain and (3) gain an intracellular kinase domain by chromosome 532 

rearrangement. RPs still co-exist with RKs in many plants (Figure 3) indicating that this 533 

putative model is not going from a ‘less evolved’ toward a ‘better evolved’ mechanism. 534 
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Instead, both intracellular receptor domains, RPs and RKs can undergo various modifications 535 

resulting in the extant diversity (Ngou et al., 2023). This evolutionary model implies that other 536 

type of RKs probably evolved in each plant lineage, including chlorophytes, and remain to be 537 

discovered and described by exploring a wider diversity of Viridiplantae genomes. 538 

PTI and ETI are part of an integrated and conserved immunity pathway 539 

ETI and PTI were first conceptualized as separate pathways, but it appears that they 540 

potentiate each other and can be considered as two parts of a single immunity pathway. This 541 

novel concept comes from two observations (Ngou et al., 2021; Yuan et al., 2021). On the 542 

one hand, effector recognition by NLR is not sufficient to trigger hypersensitive response, the 543 

hallmark of ETI. It also requires PTI elicitors. On the other hand, effector-activated NLRs can 544 

enhance flg22-induced ROS burst, a hallmark of PTI. The way ETI potentiates PTI is by 545 

boosting the expression of BAK1 and BIK1, as well as sustaining the activation of RBOHD 546 

(Ngou et al., 2021). The exact mechanism linking PTI and ETI is not known yet. This 547 

crosstalk between NLR and PRR signalling led to the hypotheses that these separate 548 

receptors could have co-evolved. Genome comparison in spermatophytes revealed that 549 

indeed NLRs expanded or contracted in concert with RKs and RPs. Particularly, the 550 

subfamilies VII_1, VIII_2, Xa and XII of RKs are specifically expended in genomes where 551 

NLRs are expanded, while others RPs/RKs are not (Ngou et al., 2022b). Well-described 552 

PRRs, including FLS2 and EFR, belong to these families. The drivers of this putative 553 

coevolution are not known yet, and the fact that some PRRs, such as CERK1, do not show 554 

evidence of coevolution with NLRs (Ngou et al., 2022c) indicates specificity in this 555 

coevolution process. In the future, accumulating more details on NLR and PRR crosstalk in 556 

diverse plant lineages, in various environmental conditions, including on their shared targets 557 

(such as RBOHD and BIK1) will shed light on the mechanisms and ecological drivers of the 558 

coevolution between these two classes of immune receptors. 559 

PRRs show similarities with receptors from other eukaryotes 560 

We described above that PRRs have expanded in all known streptophyte lineages, and 561 

presumed that the same occurred in chlorophytes, indicating that they have been the 562 

standard cell surface sensing mechanism since the beginning of plant diversification (Dievart 563 

et al., 2020) (Figure 3). Homologous receptors also exist in metazoans. Some homologs of 564 

plant RKs are animal Receptor Tyrosine Kinases (RTKs), sharing a similar architecture with 565 

an extra-cellular, a transmembrane and an intracellular kinase domain (Shiu and Bleecker, 566 

2001). RTKs differ from RKs in that they phosphorylate tyrosine, instead of serine/threonine 567 

for plant RKs. Moreover, they contribute to cell homeostasis, rather than stress sensing 568 

(Lemmon and Schlessinger, 2010). Based on sequence identity, plant RKs are more closely 569 
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related to Pelle/IRAKs proteins found in animals and alveolate (Shiu and Bleecker, 2001; 570 

Dievart et al., 2020). It suggests a common origin in early eukaryotes, pre-dating the 571 

emergence of plants, alveolates and animals. Mammalian IRAKs do not harbour a 572 

transmembrane domain. Instead, they form a complex with the TLR transmembrane immune 573 

receptors and Myd88 adaptor, forming the myddosome (Figure 2) (Balka and De Nardo, 574 

2019). This myddosome can be seen as a structural homolog of a plant RK containing an 575 

extracellular sensing domain and a kinase in a single protein. In the myddosome, binding 576 

between TLR and Myd88 is mediated by a TIR-TIR interaction. Here, TIR functions as 577 

adaptor rather than enzyme, a function we discussed in the paragraph related to plant TIRs.  578 

The different diversification of RPs and RKs observed between plants and mammals are the 579 

result of two distinct evolutionary trajectories. In animals, this pathway has not diversified, 580 

instead cell surface surveillance is mediated mainly by G-Protein-Coupled Receptors GPCR 581 

(Hanlon and Andrew, 2015), biochemically unrelated to RPs/RKs. This exemplifies that 582 

eukaryotes select non-homologous pathway to sustain analogous functions. Beyond plants 583 

and mammals, one can hypothesize that studying immunity mechanisms in other eukaryotes 584 

will reveal yet other pathways. 585 

Conserved and divergent immunity functions for phytohormones across land plants 586 

Phytohormones control diverse processes including immunity. Salicylic Acid (SA) and 587 

Jasmonic Acid (JA) are the main hormones involved in plant immunity. In angiosperms, 588 

infection with (hemi)-biotrophic pathogens induce SA biosynthesis while JA is important 589 

against necrotrophic pathogens (Berens et al., 2017). In most plant species, increase of SA 590 

levels occurs upon infection with pathogens (Klessig et al., 2018). SA accumulation has also 591 

been described in the moss P. patens infected with the fungus Botrytis cinerea (Ponce De 592 

León et al., 2012). Infection with Pseudomonas syringae also triggers SA biosynthesis in M. 593 

polymorpha (Gimenez-Ibanez et al., 2019). SA is also essential for the establishment of a 594 

broad spectrum and long-lasting resistance, named Systemic Acquired Resistance (SAR) 595 

(Durrant and Dong, 2004). In SAR, a signal is transmitted via the phloem throughout the 596 

plant, priming the plant for subsequent infections. Despite the absence of vascular tissue, 597 

Winter et al., described a SAR-like response in the moss Amblystegium serpens upon 598 

inoculation with the oomycete Pythium irregulare (Winter et al., 2014). Yet, presence of SAR 599 

in M. polymorpha has not been described.  600 

Hormone detection by receptors is necessary to initiate their signalling pathway. In A. 601 

thaliana, Non-expressors of PR1 (NPRs): NPR1, NPR3 and NPR4 are SA receptors (Ding et 602 

al., 2018). While NPR1 is a positive regulator of SA signalling, NPR3/NPR4 act as repressors 603 

(Ding et al., 2018). The liverwort M. polymorpha presents a single NPR ortholog (Bowman et 604 
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al., 2017). Its recent characterization showed that MpNPR can complement Atnpr1 mutant 605 

but not Atnpr3-npr4 mutants (Jeon et al., 2022). Similarly, the single NPR protein of the moss 606 

Physcomitrium patens can partially complement the Atnpr1 mutant but not Atnpr3-npr4 607 

mutants (Peng et al., 2017). Thus, NPR biochemical functions are likely at least partially 608 

conserved between bryophytes and tracheophytes. However, Mpnpr is more resistant to P. 609 

syringae than Tak-1 (wild-type background, WT), while an Atnpr1 mutant is more susceptible 610 

than the wild-type background (Cao Hui et al., 1994). This indicates that unlike A. thaliana 611 

NPR1, MpNPR acts as a negative regulator of immunity in M. polymorpha (despite MpNPR 612 

being able to complement an A. thaliana npr1 mutant, as we saw earlier). Paradoxically, 613 

Mpnpr1 is hypersensitive to SA exogenous treatment, as compared to WT, but Mpnpr and 614 

WT share the same transcriptional pattern after treatment with SA (Jeon et al., 2022). Taken 615 

together, there recent data show both conservation and specialisation of NPR in land plants. 616 

In addition, NPR orthologues have been lost in hornworts, while SA is still produced in this 617 

lineage (Li et al., 2020; Zhang et al., 2020; Rieseberg et al., 2023). It seems that NPR is 618 

generally contributing to immunity, by regulating SA signalling in A. thaliana and by an 619 

unknown mechanism in bryophytes. If NPR is not a receptor for SA in M. polymorpha and in 620 

hornwort, it could be that other proteins bind SA - as do other angiosperm proteins (Pokotylo 621 

et al., 2019) - explaining the persistence of SA in bryophytes. Further characterization of 622 

NPR in M. polymorpha, A. thaliana and other plant clades is now required to understand how 623 

the biological function of NPR in land plants, while maintaining the ability to complement 624 

mutants between bryophytes and tracheophytes. 625 

In angiosperms, JA biosynthesis is important for inducing responses against necrotrophic 626 

pathogens. After pathogen attack, JA-Isoleucine (JA-Ile) and the precursor 12-oxo-627 

phytodienoic acid (OPDA) accumulate in angiosperms and bryophytes respectively (Ponce 628 

De León et al., 2012; Berens et al., 2017; Chini et al., 2023). In fact, tracheophytes can use 629 

both OPDA and JA-Ile. But the JA-Ile pathway is favoured in angiosperms while the OPDA 630 

pathway is favoured in ferns, and even more in lycophytes (Fang et al., 2022). It is not known 631 

if the JA-Ile synthesis pathway existed in the first land plant but was lost or reduced in 632 

bryophytes, lycophytes and ferns, or if it is an innovation of tracheophytes which became 633 

fundamental in angiosperms. In A. thaliana, JA is perceived by the complex coronatine 634 

insensitive 1 (COI1) (Xie et al., 1998) and requires the transcription activator complex 635 

Jasmonate ZIM-domain (JAZ)-Myelocytomatosis oncogenes (MYC) (Santner and Estelle, 636 

2007). These proteins are conserved in bryophytes and tracheophytes (Monte et al., 2018). 637 

Nevertheless, the ligands perceived by COI1 differ across land plants. In bryophytes and 638 

lycophytes, two isomers of dn-OPDA served as ligands (Chini et al., 2023) while 639 

angiosperms and ferns perceive JA-Ile (Chini et al., 2023). This is in line with the absence of 640 

ortholog of Jasmonate Resistant 1 (JAR1), which conjugates Ile to JA, in bryophytes and 641 
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lycophytes (Monte et al., 2018). It has been shown that ligand specificity is due to a variation 642 

of a single amino acid in the binding pocket (Ala in A. thalianavs Val/Ile in bryophytes) and 643 

two residues of the loop region in JAZ (Monte et al., 2018; Monte et al., 2022). The lycophyte 644 

Selaginella moellendorffii synthesizes both dn-OPDA and JA-Ile (Chini et al., 2023). It 645 

constitutes a good model to discriminate the role of both ligands in JA-mediated responses. 646 

Development of pathosystems involving lycophytes will help to decipher the evolution of JA-647 

related molecules in plant immunity. 648 

In tracheophytes, with few exceptions, the signalling pathways mediated by SA and JA 649 

antagonize(Thaler et al., 2012; Berens et al., 2017). Antagonism between SA and JA 650 

signalling pathways is also described in M. polymorpha (Matsui et al., 2019). Indeed, when 651 

treated with SA, M. polymorpha is more susceptible to the necrotrophic fungus Irpex lacteus. 652 

This is reversed by co-treatment with OPDA (Matsui et al., 2019). Also, treatment with OPDA 653 

increases susceptibility to P. syringae.  654 

The study of the interaction between SA and JAs pathways in additional plant species are 655 

needed to support the conservation of the antagonism. Further investigation of non-seed 656 

plants species, notably lycophytes and ferns, is necessary for understanding evolution of 657 

plant hormones signalling during immunity.   658 

Specialized metabolism illustrates non-angiosperm immune specificities 659 

One strategy against pathogens is the accumulation of metabolites that have antimicrobial 660 

activities (Compean and Ynalvez, 2014), such as glucosinolates from the Brassicales 661 

(Bischoff, 2016) or flavonoids and anthocyanins from the phenylpropanoid pathway (Agar 662 

and Cankaya, 2020). As in angiosperms, the phenylpropanoids pathway is activated upon 663 

pathogen infection in bryophytes, with the example of auronidins in M. polymorpha (Berland 664 

et al., 2019; Davies et al., 2022). Phythophtora palmivora, a plant pathogen with broad host 665 

range, can infect M. polymorpha (Carella et al., 2018). It enters the thallus via air pores and 666 

activates the expression of pathogenesis-related proteins, and a Myb14-dependent 667 

accumulation of flavonoid and phenylpropanoids important to limit the spread of infection 668 

(Carella et al., 2019). This response is conserved in the angiosperm Nicotiana benthamiana 669 

inoculated with the same pathogen (Carella et al., 2019). Thus, as for receptor-based 670 

immunity, the role of phenylpropanoids in defence described in angiosperms can be 671 

expanded to the land plants.  672 

Terpenes metabolism is also important in plant defence (Osbourn, 1996). Bryophytes are 673 

well-known for their wide array of metabolites, with the terpene pathway being the main 674 

source (Chen et al., 2018). Some bryophyte terpenes are rare as they only occur in a few 675 

species, while others appear to be specific to liverworts, as they have not been detected in 676 
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any other living organisms (Chen et al., 2018). For example, pinguisanes are a noteworthy 677 

type of terpenes specific to liverworts (Asakawa, 2004). Terpene synthases (TPS) drive this 678 

diversity (Chen et al., 2018). Interestingly, bryophytes have two types of TPS: typical ones 679 

(also found in tracheophytes) and Microbial TPS like (MTPSL). MTPSL share similarities with 680 

TPS from bacteria and fungi (Jia et al., 2016). M. polymorpha encode 39 TPS genes, of 681 

which 32 are MTPSL genes. In contrast, no MTPSL has been identified in P. patens. The 682 

genomes of the hornworts Anthoceros agrestis and Anthoceros punctatus contain 6 and 7 683 

MTPSLs respectively (Jia et al., 2016). To date, MTPSLs from bryophytes and ferns have 684 

been biochemically characterized as mono and sesquiterpene synthases (Jia et al., 2018). 685 

Such diversity of terpenes likely played a crucial role in the adaptation of plants to land and 686 

during the diversification of bryophytes, but their actual role in plant adaptation to stress 687 

remains to be determined. This might reveal lineage-specific immune mechanisms absent 688 

from angiosperms. In its natural environment, M. polymorpha interacts with many bacteria 689 

and fungi (Nelson et al., 2018; Alcaraz et al., 2018; Matsui et al., 2019). They include many 690 

Proteobacteria, Xylariaceae, Glomerellaceae, Irpicaceae and Phanerochaetaceae. Some of 691 

these microbes, such as Irepex lacteus and Xylaria cubensis, induce disease symptoms. As 692 

exemplified for NLRs, PRRs and specialized metabolism, studying the evolution of immune 693 

mechanisms in bryophytes delivered a broader understanding of plant immunity. The 694 

development of new pathosystems and the use of forward genetics will complement the 695 

existing reverse genetic based approaches to reveal the bryophyte immunity toolkit. 696 

However, shifting the focus from angiosperm to only liverworts and mosses does not allow 697 

understanding diversity at the scale of the land plants.  698 

Immunity in non-angiosperm vascular plants 699 

Beyond bryophytes, assessing immunity mechanisms in gymnosperms, ferns and lycophytes 700 

is the next obvious, and essential, step to get the full picture of plant immunity. In that 701 

respect, ferns have an interesting potential. It is a diverse group, with evolutionary 702 

distinctiveness. They undergo a macroscopic gametophytic phase and reproduce by spores, 703 

which distinguish them from gymnosperms and angiosperms. They have megaphylls (multi-704 

vessel leaves), which distinguish them from lycophytes having microphylls (single-vein 705 

leaves). 18th century naturalist Miles Joseph Berkeley noticed that ferns where less infected 706 

by pathogens than angiosperms (Berkeley, 1862). However, many fungi have been observed 707 

on ferns (Stevenson, 1945; Kirschner et al., 2019), making questionable the statement that 708 

ferns are more resistant to pests than angiosperms. The best described fern pathogen so far 709 

is Mixia osmunda, isolated from the fern Osmunda japonica. Its genome is 13 Mb, the 710 

smallest of plant pathogenic basidiomycetes, and encodes about 500 secreted proteins 711 

(Toome et al., 2014). The host response is not known, as the fern immune system, in part 712 
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due to complex genomes. To date, five genomes including two aquatic floating ferns (Azolla 713 

filiculoides, 0.75 Gb, n = 22,  and Salvinia cucullata, 0.25 Gb, n = 9) (Li et al., 2018a), one 714 

semi-aquatic fern (Ceratopteris richardii, 9.6 Gb, n = 39) (Marchant et al., 2022), one tree 715 

fern (Alsophila spinulosa, 6.23 Gb, n = 69) (Huang et al., 2022b) and one terrestrial fern 716 

(Adiantum capillus-veneris, 5 Gb, n = 30) (Fang et al., 2022) have been sequenced. The 717 

large genome sizes are not explained by a high number of genes, but instead by large 718 

introns, and more repetitive regions and transposons than other plant lineages. The genomes 719 

of the two aquatic floating ferns are reduced due to gene losses and gene family 720 

contractions, reminiscent of duckweeds in angiosperms that shares an analogous lifestyle 721 

and genome reduction (An et al., 2018). Exploring these additional lineages, from ferns, 722 

lycophytes to the massive diversity observed in gymnosperms (Woudstra et al., 2023) could 723 

reveal the conservation and innovations for immunity in these lineages.  724 

Managing pathogenic and mutualistic interactions 725 

In this review article, we have focussed on the diversity of mechanisms plants have evolved 726 

to fight against the pathogens present in their microbiota. Beyond the pathogens, more and 727 

more studies have identified genetic components involved in modulating the interactions 728 

between plants and their microbiota as a whole (Paasch and He, 2021), identifying 729 

mechanisms shared with plant immunity (Chen et al., 2020, Rey and Jacquet 2018) but also 730 

more general physiological processes such as the phosphate-starvation response (Finkel et 731 

al., 2019). Among the microbiota members, specific groups of microorganisms co-evolved 732 

with plants to form mutualistic symbioses (Delaux and Schornack, 2021). The mutualistic 733 

associations include for instance the nitrogen-fixing root-nodule symbiosis between plant 734 

species from the Fabales, Fagales, Cucurbitales and Rosales clades and rhizobia or Frankia 735 

bacteria, which evolved 100 MYA (Griesmann et al., 2018; van Velzen et al., 2018; Libourel 736 

et al., 2023), the arbuscular mycorrhizal symbiosis that evolved between the first land plants 737 

and Glomeromycota fungi (Remy et al., 1994; Rich et al., 2021) or ectomycorrhizal symbiosis 738 

that evolved in a convergent manner in several tracheophyte lineages (Genre et al., 2020). 739 

The co-occurrence of pathogenic and mutualistic microorganisms within the same microbial 740 

communities, and their similarities – they are for instance fungi or bacteria – led the research 741 

field to ask a simple question: How do plant lineages discriminate between pathogens and 742 

mutualists (Zipfel and Oldroyd, 2017)? 743 

One satisfying hypothesis came early on from the work carried on the symbionts. Rhizobia, 744 

which induce nodule formation and colonize Fabaceae during the nitrogen-fixing root nodule 745 

symbiosis, produce blends of lipochitooligosaccharides (LCOs) which are essential for the 746 

symbiosis to occur and are perceived by the host plants with high level of specificity (Lerouge 747 
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et al., 1990). This specific symbiotic signal explained both the discrimination between 748 

pathogens and symbionts because pathogenic bacteria do not produce these molecules, and 749 

the specificity of this particular symbiosis. Indeed, the blends of specific LCOs produced by a 750 

given bacteria correlates with its host range (Dénarié et al., 1996). Two additional discoveries 751 

corroborated this view. First, Fabaceae, such as Lotus japonicus or Medicago truncatula 752 

have specific LysM-RK receptors that recognize these molecules with high affinity, and these 753 

receptors are essential for symbiosis with rhizobia to occur (Radutoiu et al., 2003; Limpens et 754 

al., 2003; Bozsoki et al., 2020). Second, Arbuscular mycorrhizal fungi also produce these 755 

compounds (Maillet et al., 2011). This link between LCOs and mutualism was even expanded 756 

to the ectomycorrhizal symbiosis in poplar (Cope et al., 2019). The hypothesis that LCOs are 757 

the key to initiate symbiosis lasted for three decades, and probably holds true in the context 758 

of the nitrogen-fixing root nodule symbiosis that has evolved high-affinity receptors (Bozsoki 759 

et al., 2020). However, its extension to all mutualistic symbiosis is now compromised. On the 760 

plant side, the LysM-RKs chitin receptors were found to be essential for both immunity but 761 

also symbiotic signalling (Rey et al., 2013; Zhang et al., 2015; Feng et al., 2019; Giblin-Viala 762 

et al., 2019), and small and large chitin fragment were as potent as LCOs to triggering 763 

symbiotic responses (Genre et al., 2013; Feng et al., 2019). Expanding the range of 764 

organisms analysed for their ability to produce LCOs, it was found that the vast majority of 765 

the fungi, either symbiotic, pathogen or saprotrophs, produce LCOs (Rush et al., 2020). If 766 

LCOs are the universal symbiotic signals, the question of discriminating pathogens and 767 

symbionts remains unresolved. Two main hypotheses can be proposed. First, additional 768 

signalling components, possibly downstream the LysM-RKs may channel the chitin/LCO 769 

perception toward symbiosis or immunity. What leads to the switch from one to the other 770 

pathway remains to be discovered, but the general, or local, physiological status of the host 771 

is the leading candidate (Li et al., 2022). Indeed, phosphate starvation seems to reduce the 772 

immune response while at the same time favouring the interaction with the microbiota and 773 

symbionts (Finkel et al., 2019; Li et al., 2022; Paries and Gutjahr, 2023). The second 774 

hypothesis would be that other symbiotic signals, either generic or symbiosis-specific, exist 775 

and have yet to be characterized. Expanding the breadth of symbioses explored at the 776 

mechanistic level, and the diversity of covered plant lineages should improve our 777 

understanding of this complex process. The recent finding that M. polymorpha LysM-RKs are 778 

essential for chitin-triggered immunity (Yotsui et al., 2023) indicates that this function, at 779 

least, is conserved across land plants. Whether the symbiotic pathway is also conserved is a 780 

question to be addressed in the near future. This could be achieved for instance using 781 

Marchantia paleacea, the sister species to M. polymorpha. By contrast to M. polymorpha, M. 782 

paleacea retains the association with arbuscular mycorrhizal fungi. Genomic and genetic 783 
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tools have been recently developed for that species, making it an ideal model liverwort to 784 

study symbiosis (Radhakrishnan et al., 2020; Rich et al., 2021; Kodama et al., 2022a). 785 

Concluding remarks and perspective 786 

Decades of genetics in angiosperms has revealed layers of immune mechanisms, from 787 

surface-localized to intracellular receptors. From this angiosperm-centred view of plant 788 

immunity, the sequencing of many plant genomes in non-flowering plants has allowed the 789 

description of variations in the plant immune repertoire. Development of pathosystems in 790 

model bryophytes such as the liverwort M. polymorpha, is now allowing the evoMPMI 791 

community to test assumptions defined based on genomic comparisons. From these 792 

extensive comparative studies, three main conclusions can be reached. First, immunity in 793 

plants relies on highly conserved components. Chitin perception, the BIK1-RBOH module or 794 

the biosynthesis of phenylpropanoids are conserved across all land plants studied so far. 795 

This is reminiscent of other highly conserved pathways, the ones allowing association with 796 

symbiotic fungi (Rich et al., 2021; Kodama et al., 2022b). Plants have thus evolved for 450 797 

million years with pathways for accommodating or protecting against microorganisms. One 798 

can propose that mechanisms to negatively regulate these pathways and selecting one over 799 

the other depending on the context must have co-evolved with them. Future investigation of 800 

conserved, yet undeciphered, gene networks should shed light on these mechanisms, and 801 

possibly resolve the question of how plants distinguish and adapt their responses to 802 

symbionts and pathogens. A second conclusion is that immune mechanisms have diversified 803 

from these conserved pathways. This is exemplified by PRRs and STANDs, shared by most 804 

plants, yet showing extremely diverse repertoire and architecture. Increasing the set of 805 

explored genomes and lineages should lead to the discovery of even more diverse sets of 806 

receptors. From this diversity to be described, biotechnological options to augment immunity 807 

in crops may emerge. The use of pikobodies to engineer resistance is the perfect 808 

demonstration that diversifying the sets of immune receptors can contribute to improved crop 809 

resilience. The last, and possibly most important conclusion, is that despites the massive 810 

effort in describing and dissecting immune mechanisms, our understanding remains limited 811 

to very few lineages. The discovery of plants with an almost absent repertoire of STANDs, 812 

such as carnivorous or aquatic species, exemplifies this limitation. In the future, the 813 

development of additional pathosystems in all the five main land plants lineages, coupled 814 

with forward genetics and genome-wide association studies, will finally enable the community 815 

to grasp the diversity of immunity mechanisms in plants. 816 
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Figure legends 1574 

Figure 1: STANDS are diverse in plants, other eukaryotes and bacteria 1575 
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This figure displays some NLRs mentioned in this review. Some other domains not discussed 1576 

in the text but mentioned in the literature cited in this review are indicated below the cartoons 1577 

for each clade. ’… ?’ indicates that other domains may exist for a given clade, but their 1578 

diversity has not been fully explored yet. In plants, α-β hydrolase (Hyd.) and kinase (Kin.) 1579 

signalling domains are specific to bryophytes. General domains terms are: CC (coiled-coil), 1580 

G10 (G10 coiled-coil), Kin. (kinase), Hyd. (hydrolase), Nuc. (nuclease). Domains with an 1581 

InterPro entry (www.ebi.ac.uk/interpro) are: RPW8 (IPR008808),  (IPR000157), CARD 1582 

(IPR001315), PYD (IPR004020), BIR (IPR001370), PLP (patatin-like phospholipase, 1583 

IPR002641), HET (IPR031351), CHAT (IPR024983), NACHT (IPR007111), NB-ARC 1584 

(IPR002182), LRR (IPR032675), TPR (IPR011990), WD40 (IPR036322), HEAT (IPR000357), 1585 

ANK (IPR036770) and MORN (IPR003409). Silhouette images are from www.phylopic.org. 1586 

This figure is not exhaustive. For example in plants, non-canonical STANDs exist, such as 1587 

truncated domains or extra Integrated Domains (ID) not displayed on this figure. It is 1588 

expected that genome mining will reveal more diversity in the future. 1589 

Figure 2: TIR are conserved protein domain often involved in immunity 1590 

TIR domains are present in the whole tree of life as singleton or protein domain. They are 1591 

often involved in immunity but can also fulfil other functions such as neurone degeneration. 1592 

They generally function as NADase but can also be adaptors in the case of Toll-like 1593 

Receptors. Orange indicates supersecondary structure-forming tandem repeat domain. 1594 

Yellow indicates oligomerization domain. Dark blue indicates other protein domains. Light 1595 

blue indicates a TIR domain. For the figure, the crystal structure of a monomeric TIR domain 1596 

of L6 (NLR from the flax plant, PDB: 3OZI) was used. 1597 

Figure 3: Cell surface immune receptors evolved in archeoplasids 1598 

Phylogenetic tree of archeoplastids displaying major events of two types of cell surface 1599 

immune receptors: LysM and LRR. Other types of cell surface immune receptors are not 1600 

displayed on this figure. Estimated lineage divergence dates are from (Cheng et al., 2019). 1601 

Besides tracheophytes, only a few genomes have been explored and it is likely that future 1602 

genome comparisons will reveal a more ancient date for the events displayed, with 1603 

subsequent lost in the other lineages. For example, LysM-RK were thought to be land plant 1604 

specific, but a recent analyse revealed that they exit in Charophyceae and are lost in 1605 

Zygnematophyceae (Yotsui et al., 2023). Light blue represents a cell from Glaucophyta, red 1606 

from Rhodophyta and green from Viridiplantae. Silhouette images are from 1607 

www.phylopic.org.  1608 
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