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Abstract. The Semantic Web represents an extension of the current
web o�ering a metadata-rich environment based on the Resource De-
scription Format (RDF) which supports advanced querying and infer-
ence. However, relational database (RDB) management systems remain
the most widespread systems for (Web) data storage. Consequently, the
key to populating the Semantic Web is the mapping of RDB to RDF, sup-
ported by standardized mechanisms. Con�dentiality and privacy repre-
sent signi�cant barriers for data owners when considering the translation
and subsequent utilization of their data. In order to facilitate acceptance,
it is essential to build privacy models that are equivalent and explainable
within both data formats.
Di�erential Privacy (DP) has emerged to be the �agship of data privacy
when sharing or exploiting data. Recent works have proposed DP-models
tailored for either multi-relational databases or RDF. This paper lever-
ages this �eld of work to study how privacy guarantees on RDB with
foreign key constraints can be transposed to RDF databases and vice
versa.
We consider a promising DP model for RDB related to cascade deletion
and demonstrate that it is sometimes similar to an existing DP graph
privacy model, but inconsistently so. Consequently, we tweak this model
in the relational world and propose a new model called restrict deletion.
We show that it is equivalent to an existing DP graph privacy model,
facilitating the comprehension, design and implementation of DP mech-
anisms in the context of the mapping of RDB to RDF.

Keywords: Di�erential Privacy · Relational Databases · Graph Databases
· RDB2RDF mapping.

1 Introduction

The Semantic Web represents an extension of the current web standardized by
the World Wide Web Consortium. It relies on the Resource Description Format
(RDF) and provides metadata-rich, reusable, and shareable data. RDF can be
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coupled with ontologies such as OWL, thereby enhancing the semantic value of
the data and inference capabilities. Currently, vast volumes of data still reside
in relational databases (RDB), and relational databases management systems
(RDBMS), such as Oracle or PostgreSQL, remain largely the most popular sys-
tems to manage data1.

Mapping these bulk of data from relational databases to RDF is therefore a
key to populate the Semantic Web. It has been an active �eld of research during
the last two decades [1,2,3] initiated by the RDB2RDF (Relational Database to
Resource Description Format) incubator group2.

Data collected (whether stored in RDB or RDF) can contain sensitive in-
formation. With the increasing attention on data privacy and the development
of privacy regulations (e.g., the General Data Protection Regulation in the Eu-
ropean Union), it is becoming increasingly important to protect sensitive in-
formation when sharing or allowing the utilization of data. Such concerns are
a signi�cant obstacle for RDB holders in accepting the translation and subse-
quent utilization of their data, as protection models vastly di�er between RDF
and RDB formats. It is therefore crucial to construct models that are equivalent
and explainable within both formats, easing the comprehension of the guarantees
provided in RDF within the familiar context of RDB.

Di�erential Privacy (DP) [4] provides a form of indistinguashibility: it is dif-
�cult for an entity observing the output of a DP algorithm to determine which
of several adjacent or neighboring databases was used as input. If two neigh-
boring databases di�er by the contribution of an individual, an external entity
may therefore not know with high con�dence whether the data pertaining to a
particular individual has been used. Hence, it may not infer anything signi�cant
on such data. The concept of adjacency is thus a cornerstone of DP, de�ning
what is protected. In the most simple context, a database is a single, monolithic
table of records (or tuples) that holds private data. In this context, neighboring
databases are those that di�er by one record, meaning that DP protects (or
�hides�) the presence or absence of any single record in the database [4]. The in-
tuition here is that each individual participates in, at most, one database record
and therefore DP indeed protects the contribution of each individual.

De�ning neighborhoods for multi-relational databases, i.e., databases com-
posed of many tables, is challenging for many reasons (see, for instance, [5]). In-
deed, the introduction of several relations usually comes with constraints, each
constraint stemming from the semantics of the database. It is thus no longer
possible to de�ne an adjacent database simply by adding or removing a tuple
in a table since this may violate the database constraints and thus not be an
acceptable instance. In this paper, we consider an important type of constraint,
foreign key (FK) constraints, sometimes associated to cardinality constraints.

Therefore, this paper focus on distances and neighborhoods in the RDB and
RDF worlds that are equivalent through standard translation mechanisms to

1 See : https://db-engines.com/en/ranking
2 http://www.w3.org/2001/sw/rdb2rdf/
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build DP-models that are equivalent in both. More speci�cally, we focus on two
research questions:

RQ1 What does transitive deletion, a state of the art DP model for multi-RDB
with FK constraints, leads to in RDF?

RQ2 Is it possible to construct a meaningful DP model in RDB equivalent to
a state-of-the art model in RDF, making existing RDF DP mechanism ex-
plainable in the context of RDB?

Contributions. To answer these research questions, this paper:

� formalizes the notion of encoding (or mapping) from RDB to RDF in a
standard-compliant fashion consistent with R2RML mapping.

� formalizes a generalized notion of cascade deletion in RDB covering both
transitive deletion and our proposal.

� studies the translation in RDF of the DP model relying on transitive deletion.
� introduces a meaningful relaxation of this model and demonstrates that it
is equivalent to an existing graph privacy model through mapping.

The remainder of this paper is structured as follows. The next section details
relevant related works on mapping and DP. Section 3 introduces an illustrative
example as well as the formalization of the considered databases and mappings.
Section 4 proposes an analysis of the translation of transitive deletion in RDF
and details our proposed relaxation, demonstrating its equivalence to a well
known DP model in graphs through mapping. Finally, section 5 concludes this
paper and discuss future work.

2 Related Work

This section introduces background on RDB to RDF mapping, before introduc-
ing DP and its adaptations to RDB and RDF databases. To the best of our
knowledge, this paper is the very �rst at the intersection of these two �elds,
focusing on the impact of the RDB to RDF translation on DP-models and the
de�nition of equivalent DP-models in both worlds.

2.1 Mapping RDB to RDF

In September 2012, the RDB2RDF Working Group published two Recommen-
dations: Direct Mapping (DM) [6] and customized mapping (CM) R2RML [7].

The W3C DM recommendation de�nes simple mapping rules to map rela-
tional data to RDF [8]. The RDF generated straightforwardly is based on the
structure of the database schema. URIs are automatically generated [9]. Many-
to-many relations in relational databases are generally represented as a join table
where all its columns are FKs to other tables (n-ary relations). One missing part
from the DM is to represent many-to-many relation as simple triples [10]. When
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DM is applied, the join table will be translated into a distinct class, which con-
�icts with the canonical representation of many-to-many relationship in RDF.

CM R2RML [7] is a RDB to RDF mapping language that allows to manually
customize the mapping. The expert user has to know the RDB and the domain
ontology to express the schema utilizing an existing target ontology. The W3C
RDB2RDF Working Group proposed a set of core requirements for R2RML [11],
including the exposition of many-to-many join tables as simple triples [10].

Due to the representation of many-to-many join tables as simple RDF triples,
we consider mapping mechanisms conform to the R2M2RL speci�cations.

2.2 Di�erential privacy

DP proposes a robust mathematical framework for privacy protection [12]. An
algorithm respect DP if observing its output does not permit to determine with
strong con�dence which of several neighboring dataset was used as input.

De�nition 1 (ϵ-di�erential privacy). Given ϵ > 0, a function f : D → S
and a distance δ over D, is ϵ-di�erentially private if, for any couple of datasets
(D,D′) ∈ D2 such that δ(D,D′) = 1, and for any S ⊆ S:

Pr[f(D) = S] ≤ eϵ ∗ Pr[f(D′) = S]

where probability Pr is over the randomness of f .

The parameter ϵ is also known as the budget of privacy, a smaller value
indicating higher privacy. Two datasets at a distance one are said to be neighbors.

DP for RDF DP is immediately applicable to any space D given a proper dis-
tance δ or notion of neighborhood over D. When considering graphs, two models
prevail : k-edge-DP and node-DP.

In node-DP, neighboring graphs di�er by a single node and all its incident
edges, protecting each nodes and its incident edges. While the strongest of the
two models, node-DP poses a particular challenge. Two neighboring graphs can
di�er by an arbitrary high number of edges, which may lead to high variations
of outputs among a neighborhood and low utility DP mechanisms.

k-edge-DP [13] is a looser model that prevents an attacker from inferring the
presence or absence of k-edges in the graph. Compared to node privacy, edge
privacy is limited to protecting the relationships. In k-edge privacy, two graphs
are adjacent if they di�er by up to k edges. 1-edge privacy is simply called edge
privacy and the most commonly employed in the literature.

Note that this two models do not consider potential attributes or labels of
the graph. Reuben [14] proposed the adaptation of DP to edge-labeled directed
graphs by de�ning sets of sensitive labels to which the protection is restricted.
This can be transposed to most models, for example, k-typed-edge DP could be
de�ned as the model where two adjacent graphs di�er by up to k sensitive edges.
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DP for multi-relational databases In the DP literature [4], a database is
commonly a single, monolithic table of records (or tuples) that holds private
data. Multi-relational databases, i.e., databases composed of many tables, are
less popular. However, DP has also been investigated in this setting [15,16,17].

PINQ [15] and FLEX [16] consider a simple de�nition of neighboring databases,
which does not consider FK constraints. According to their de�nition, neighbor-
ing databases possess the same set of relations and attributes and di�er by
exactly one tuple in one relation.

PrivateSQL system [17] introduces a richer notion of neighboring databases
that considers constraints in the schema, in particular primary and FK con-
straints. Under this model, upon deletion of one tuple from one relation, many
tuples in other relations have to be deleted because of the existence of FK con-
straints. PrivateSQL enables privacy to be designated at multiple resolutions.
Their approach permits the data owner to designate which entities in the schema
need privacy �exibly. The key idea is that one relation is speci�ed to be the
primary private relation. However, privacy protection extends to additional pri-
vate relations, which are called secondary private relations. Those secondary are
linked to the primary one via FKs. Under this DP policy, two database instances
are considered neighbors when one can be obtained from the other by deleting a
tuple t from the primary private relation and cascade deleting other tuples that
depend on t through FKs. One requirement in their approach is that the schema
needs to be acyclic. Based on this proposal, researchers began to consider FK
constraints when de�ning neighboring databases [18,19].

Due to the consideration of FK constraints, the familiarity of cascade dele-
tion on which its neighbourhood concept rely, and the general adoption of the
model presented in [17], we adopt this model as the starting point for RQ1 and
aim at providing an equivalent model in RDF. The related formal distance de�-
nition will be restated in our model in De�nition 8.

3 Setting: formalizing the concepts

This section introduces an illustrative example based on a Twitter dataset that
will be used in the remainder of the paper. It then proposes the formalization of
RDB, graphs representing RDF databases, and the mapping from RDB to RDF.

3.1 Illustrative example

Illustrative dataset In this paper, we use as an illustrative example a simple
Twitter database, inspired by the Sentiment140 dataset composed of 1.6 million
tweets 3. An instance of the database is illustrated in Fig. 1 and the ER diagram
is available online4.

3 https://www.kaggle.com/kazanova/sentiment140
4 https://github.com/sarataki/mapping/blob/main/ER-Diagram.png
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Fig. 1: A database instance of the Twitter schema

This example presents two many-to-many relationships: 1) between Person
and Tweet, captured by the References table with FK referencing the id of a
tweet and the id of the persons it references; 2) between Tweet and Emotion,
captured by the HasEmotion table. The Tweet table possesses a FK �p_id� from
table Person referencing the person that authored the tweet.

Our mapping process We select R2RML-F [20], an R2RML implementation
available on Github5. The R2RML mapping process is done with R2RML-F
whose engine takes as input the RDB, the R2RML mapping �le that dictates
the direction of relation, and the format of the output �le to generate RDF
data. We manually write R2RML mappings, which are tailored to our database
schema. The R2RML mapping �le6 is available online as well as the output �le7.

Figure 2 shows a synopsis of the RDF database resulting from the R2RML
mapping of the RDB illustrated in Fig. 1. As we can see, R2RML exposes many-
to-many relationships as simple triples.

3.2 Relational Database

We use a conventional notion of schema for relational databases. A table schema
is a set of attribute names. We assume these sets are disjoint and attributes do
not have types or domains for this formalism. A database schema is a �nite
set of tables T and of constraints C.

De�nition 2 (Database). A database following a certain database schema
D = (T , C) is a set D of elements x such that:

5 https://github.com/chrdebru/r2rml
6 https://github.com/sarataki/mapping/tree/main/propR2RML/r2rml.ttl
7 https://github.com/sarataki/mapping/tree/main/propR2RML/output.ttl
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Fig. 2: Extract of the graph database resulting from the mapping of Fig. 1

� x belongs to exactly one table T ∈ T , we note x ∈ T
� For each s an attribute of T , we note x.s the value of attribute s for x. If it
is unde�ned, we say x.s = null

A constraint C ∈ C can be of two forms:

� Each table T has a primary key constraint PKT , i.e. a nonempty subset
PKT ⊆ AT that guarantees for x ∈ T , for each s ∈ PKT , x.s is de�ned,
and if x ̸= x′ then there exists s ∈ PKT such that x.s ̸= x′.s.

� There exist foreign key constraints ϕ, i.e. a partial injective mapping ϕ from
the attributes of a table T0 to the attributes of a table T1 such that the domain
of ϕ is the primary key of T0, PKT0 , and for all x′ ∈ T1, there exists an
element x ∈ T0, called its ϕ-antecedent, such that x′.ϕ(s) = x.s. Such a key
constraint is from T0 to T1.

Furthermore, we identify a common type of tables in relational databases. A
relation table is a table whose primary key contains all its attributes, and is
composed of the disjoint union of the domain of two foreign keys. Other tables
are called entities.

We say that a database schema D = (T , C) is ER-compliant if for all tables
T1 ∈ T , either for all key constraint from some T0 to T1, dom(ϕ) ∩ PKT1

= ∅
(we say T1 is an entity) or T1 is a relation between two entities, and if all foreign
keys start from entities.

Classically, many-to-many relations are stored in relation tables, whereas
one-to-many relations are directly embedded in entities through foreign keys. In
our example database, the relation �tweeted� is a one-to-many, as each tweet has
only one author, and is thus stored as a foreign key in the Tweet table. However,
the �references� relation is many-to-many, as a tweet can reference several people,
and a person can be mentionned in several tweet. The table References stores
this relation as pairs of foreign keys from Person and Tweet.

3.3 Graph Database and distances

A RDF dataset is represented as a graph:

De�nition 3 (Graph Database). A graph database is a tuple (A,L, V,E)
such that:
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� A is a potentially in�nite set of attribute values
� L is a potentially in�nite set of edge labels
� V is a �nite set of vertices
� E ⊆ V ×L×(V ∪A) is a set of edges. In an edge v, l, v′ we call v the subject,

l the predicate, v′ the object.

In this de�nition, RDF triples are modeled as edges, either between two nodes
or from a node to one of its attributes. Attributes here correspond to literals in
RDF: they cannot be the subject of a relation and cannot appear isolated. We
note that those attributes are not nodes themselves, and will not be counted
as such in future distances. L denotes all possible predicates and A denotes the
domain of de�nition of literals that may be object of a predicate.

In the �gures, by convention, we represent nodes as yellow ovals and at-
tributes as red rectangle. For example, in Fig. 2, the node �r:person_2� has an
out-edge labeled �rdf:name� whose destination is an attribute �Bob�. This repre-
sent an RDF triple whose object as URI �r:person_2�, with predicate �rdf:name�
and object the literal string �Bob�. From the remainder of the graph, we see
that the individual named Bob is the author of �r:tweet_32� which references
�r:person_1�, etc.

Fig. 3: Node deletion

Since we seek to transpose cascade deletion, which implies the suppression
of entities rather than solely relations, we formalize node deletion as follows:

De�nition 4 (Node Deletion). Let G = (A,L, V,E). We call Ermv the set
of edges incident to v: (v0, l, v1) ∈ Ermv i� v0 = v or v1 = v. The result of the
node deletion of v in G is a graph G′ = (A,L, V \{v}, E\Ermv).

Accordingly, the transposition of the node distance in this formalism is:

De�nition 5 (Node Distance). Let G = (A,L, V,E) and G = (A,L, V ′, E′)
be two graph databases. We say that G and G′ are node-distance neighbors if
G′ is the result of the deletion of a node v ∈ V in G, or G is the result of the
deletion of a node v ∈ V in G′.
The node distance is de�ned over graphs of same labels as the length of a shortest
path connecting two databases neighbor by neighbor, if it exists.
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Figure 3 illustrates the deletion of node �r:person_2� from the graph pictured
in Fig. 2. All the edges incident to it are deleted (those labeled �rdf:name�,
�rdf:tweeted�, and �rdf:references�). While still formally in A, the attribute �Bob�
does not appear in the graph anymore since the triple it was the object of has
been suppressed. Hence, literal cannot appear while isolated and do not count as
the suppression of a node toward the distance. The resulting graph, containing
4 nodes and two edges, is a node-neighbor of the original graph.

3.4 Encoding formalizing a mapping

An encoding, or mapping, from RDB to graphs modeling a RDF dataset is
de�ned as follows:

De�nition 6 (ER encoding). Let D = (T , C) be an ER-database schema. An
encoding of relational databases following D into graphs is an injective function
f from the set of all relational databases following D into the set of graphs, that
matches all ER-database D following D a graph f(D) = (A,L, V,E) such that:

� For each entity T , for each x ∈ T in D, there is a node x ∈ V in f(D)
� For each entity T , for each attribute s not in the range of a foreign key, for
each x ∈ T with a de�ned value for s x.s = a in D, there exists a node a ∈ A
and an edge (x, s, a) ∈ E in f(D)

� For each relation T with the two foreign keys ϕA from entity TA and ϕB

from entity TB, one of these tables is the source (here TA) and the other the
object (here TB) such that for each x ∈ T , xA ∈ TA its antecedent by ϕA,
xB ∈ TB its antecedent by ϕB in D, there exists an edge (xA, T, xB) ∈ E in
f(D)

� For each foreign key ϕ from an entity T0 to an entity T1, for each x1 ∈ T1

with a ϕ-antecedent x0 ∈ T0 in D, there exists an edge (xA, ϕ, xB) ∈ E in
f(D)

We note that such encodings correspond to the W3C speci�cation of R2RML
for tables, one-to-many relations as foreign keys, and many-to-many relations.
An ER encoding is an isometry w.r.t. a distance d on relational databases and
a distance d′ on graph databases i� for all D,D′ relational databases following
D, if d(D,D′) is de�ned then d′(f(D), f(D′)) is de�ned and equal to d(D,D′).

For our recurring example, one possible encoding of some entries of Fig. 1
is the graph of Fig. 2. The entities (e.g. person 2, tweet 32, emotion 4) are
translated into nodes. However, relations such as References and foreign key
relations such as HasTweeted become labellings in L and are represented as
edges, e.g. (r:tweet_32,rdf:references,r:person_1).

4 Distances and isometry for DP in RDB and RDF

We now focus on notions of neighboring databases that derive from cascade
deletion. First, we present a generalized notion of cascade deletion. Then we
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show the special case that corresponds to the transitive deletions introduced by
Kotsogiannis et al. [17], and we analyze this notion on the RDB example, Twitter.
We show the issue this de�nition carries through a translation in RDF, and
propose an alternative de�nition, based on a more restricted deletion strategy,
whose resulting distance is meaningful in both RDB and RDF worlds.

In general, a cascade deletion is the repercussion of the deletion of an element
in a table to all other elements that depended on it in others. The characteri-
zation of such dependencies usually revolves around foreign keys, but may vary
from a formalization to another. For this reason, we de�ne here the cascade
deletion as parameterized by its dependencies.

De�nition 7 (C′ Cascade Deletion). Let D be a database on a schema D =
(T , C), and C′ ⊆ C a set of foreign keys. Let x be an element of D. The cascade
deletion of x alongside C′ de�nes a set of deleted elements Lrm(x) as the
smallest set of lines such that:

� x ∈ Lrm(x)

� If z is an element in T1, such that there exists a foreign key ϕ ∈ C′ of T1 on
T0, and the ϕ-antecedent of z is y ∈ Lrm(x), then z ∈ Lrm(x).

This is turn de�nes a set Arm(x) of deleted attributes, pairs (y, s) such that:

� y ∈ T1

� there exists a foreign key constraint ϕ ̸∈ C′ from T0 to T1

� the antecedent of y by ϕ is in Lrm(x)

The result of the cascade deletion of x in D is a database D′ of schema
D = (T , C) whose elements are all the elements of D that are not in Lrm(x)

where for every (y, s) ∈ Arm(x), y.s is set to null.

De�nition 8 (C′ Cascade Distance). Let D,D′ be two database of same
schema, and C′ a set of foreign keys. We say that D and D′ are C′ Cascade
neighbors if D′ is the result of the cascade deletion of an element x in D along-
side C′, or D is the result of the cascade deletion of an element x in D′ alongside
C′.
The C′ cascade distance is de�ned over databases of same schema as the length
of a shortest path connecting two databases neighbor by neighbor, if it exists.

We note that this de�nition is �eager� in its deletion, which is to say elements
are deleted as soon as one of their relevant antecedents is deleted. There exists
another, �cautious� cascade deletion, where elements get deleted only if all their
relevant antecedents are deleted. The de�nition of transitive deletions [17] uses
this eager deletion strategy, and our own proposal circumvents the problem by
limiting deletions in a way this distinction no longer matters.

4.1 Mapping the Transitive Deletion Distance

To model cascade deletions in a way that corresponds to [17], we consider that
one can compute a join between tables starting from a primary entity T and
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(a) in RDB

(b) in RDF

Fig. 4: Transitive cascade deletion with Person as primary entity

following all outgoing foreign key constraints. To study the impact a deletion
in the primary table would have on the join, we can delete every line of every
table that would no longer occur in it. This corresponds to a transitive deletion
alongside those foreign keys.

De�nition 9 (T Transitive Cascade Deletion). Let D be a database on a
schema D = (T , C), and T ∈ T a table. A T transitive deletion in D is the C
cascade deletion of an element x ∈ T .

The T transitive cascade distance is de�ned over databases of same schema
as the length of a shortest path connecting two databases neighbor by neighbor,
if it exists.

As an example, the transitive deletion of Bob in the Person table, illustrated
in Fig. 4, cascades to the Reference table as tweet 30 can no longer reference
him, but also leads to the deletion of his tweet (tweet number 32) which in turns
deletes two more lines in the database, one in References, one in HasEmotion.

Limitations. We now discuss the two limitations of this distance. First, the
choice of a primary table is restricting. While the join approach and transitive
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deletion as described in [17] necessitates picking a starting point, this has the
undesirable side-e�ect of locking the privacy model towards certain protections
and away from other. In RDF, it is possible to use privacy model protecting any
node (DP with node distance) or even nodes from one or several tables exclusively
(DP with type-node distance). This is not always possible in databases once a
primary table is picked. For instance, in the given database, if we pick Person
as the primary table, Fig. 4a shows the only possible way to delete tweet 32.
It is then impossible to delete a speci�c tweet without deleting its author and
all its other tweets. In turn, choosing Tweet as a primary table would make
it impossible to protect a Person. In a privacy setting, this a restriction that
(typed) node DP would not exhibit.

Furthermore, cascade deletion can have a greater or lesser impact based on
the chosen starting table. To illustrate this point, in Fig 5, we show a cascade
deletion from the Tweet primary relation. In the corresponding RDF graph, this
leads to the deletion of a single node and all its adjacent edges, which is coherent
with a node distance of 1. However, in Fig 4, we show a cascade deletion from
the Person primary relation. In the corresponding RDF graph, this leads to the
deletion of two nodes and their adjacent edges, which is coherent with a node
distance of 2. While it is possible to de�ne an equivalent distance in graphs and
propose DP mechanisms accordingly, they would be at risk of having low utility.
Indeed, the number of nodes a�ected by a single deletion being unbounded is a
problem in a DP setting, as it aims to guarantee a protection between neighbors.
Providing node-DP while maintaining acceptable utility can be challenging, and
in the present case neighboring database would di�er even more.

Fig. 5: Transitive cascade deletion of a tweet as shown on a graph

4.2 A new meaningful distance : Restrict Cascade Distance

To circumvent the issues highlighted above, we propose another instance of the
cascade deletion: the restrict cascade deletion. The key idea is that the dele-
tion of elements from an entity only propagates on the neighboring relations.
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De�nition 10 (Restrict Cascade Deletion). Let D be an ER-compliant
database on a schema D = (T , C), T ∈ T a table, and x ∈ T be an element
of D. The restrict cascade deletion of x in D is its C′ cascade deletion, where C′

is the set of foreign keys from entities to relations.

De�nition 11 (Restrict Cascade Distance). Let D,D′ be two ER-compliant
databases of same schema. We say that D and D′ are Restrict Cascade neighbors
if D′ is the result of the cascade deletion of an element x in D, or D is the result
of the cascade deletion of an element x in D′.

The Restrict cascade distance is de�ned over ER-compliant databases of same
schema as the length of a shortest path connecting two databases neighbor by
neighbor, if it exists.

The restrict cascade deletion behaves similarly to the transitive distance ex-
cept that in some cases it accepts a null as FK rather than deleting the con-
cerned line. For example, the restrict cascade deletion is exactly equivalent to
the transitive deletion in Fig. 5. In the case of Fig. 4, the FK p_id with value
2 is replaced by a null, the line being preserved and the process stopping rather
than leading to the suppression of lines in the tables References and HasEmotion.

Notably, this meaningful notion of distance in the relational world, is, no
matter the starting table or the data we are trying to protect, always isometric
to RDF node distance.

Theorem 1. All ER encodings are isometric w.r.t the restrict cascade deletion
distance and the node distance

The proof of this theorem is made by establishing the following lemma:

Lemma 1. In an ER database, restrict cascade deleting an element of an entity
is exactly deleting adjacent relations and erasing adjacent foreign keys

Proof (Lemma). Restrict cascade deletion only propagates through foreign keys
from an entity to a relation, hence the �rst part of the lemma: every element
of a relation pointing towards the original element are deleted, and it does not
propagate further. Erasure concerns foreign keys coming from deleted nodes.
However, the only deleted nodes are the original and adjacent relations. Since in
an ER database, foreign keys only come from entities, the foreign keys coming
from deleted nodes all come from the original.

The proof of the theorem is a direct consequent:

Proof (Theorem). Let D be a database, x one of it's elements, D′ the database
resulting from the cascade deletion of x in D, and f an ER encoding. D and
D′ are neighbors in the restrict cascade deletion distance, from Lemma 1. We
will prove f(D) and f(D′) are neighbors in the node deletion distance. The only
di�erence between D and D′ is:
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� The deletion of x: this translates as the disappearance of the node x from V
and the deletion of all its information, which translates as a deletion of all
edges outgoing from x between f(D) and f(D′).

� The deletion of every adjacent relation element: this translates as the disap-
pearance of some edges between x and other elements of V that corresponds
to the encoding of relations between f(D) and f(D′).

� The erasure of every foreign key coming from x: this translates as the dis-
appearance of all remaining edges between x and elements of V that cor-
responds to the encoding of entity-to-entity foreign keys between f(D) and
f(D′).

As a summary, between f(D) and f(D′), we have removed x from V , and all
edges incident to x from E. We note that this is the exact de�nition of the node
deletion of x in f(D), and conclude that f(D) and f(D′) are neighbor in the
node deletion distance.

Note that this argument goes both ways: any node deletion in f(D) would
result in a new graph which is the encoding of another relational database D′′,
which is identical to D save for one restrict cascade deletion.

Since both the cascade deletion distance and the node deletion distance are
de�ned as the shortest distance from neighbor to neighbor between two points,
this preservation of neighborhood is su�cient to prove that f is an isometry.

5 Conclusion

In this paper, we analyze the transposition to RDF through mapping of a popular
DP model for multi-tables relational databases with FK constraints related to
transitive deletion [17]. We showed that it sometimes translates to typed-node
DP in RDF, a natural adaptation of the classical node DP model to typed graph.
To ease the construction of RDF DP mechanisms while remaining explainable in
the relational world, we tweak the original privacy model in a meaningful way so
that it's translation is always equivalent to typed-node DP. Thus, we proposed
the restrict deletion for relational databases, which captures privacy policies and
FK constraints. Moreover, we proposed an implementation based on R2RML to
illustrate our approach.

For future work, we plan to strengthen and implement relational-to-graph
and graph-to-relational database mapping methods, by matching known and
useful distances of RDB or RDF as well as neighborhood de�nitions which would
make more sense in this context into corresponding notions in the other formal-
ism. Furthermore, another interesting research direction is establishing a bench-
mark to compare the e�ciency of di�erent privacy methods through mapping.
This would lead to a wider choice of comparable options for information stored
as RDB or RDF while preserving important privacy guaranteeing properties.
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