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Abstract

A variational formulation is proposed for a family of elastic-plastic-damage models within the framework of
rate-independent materials. That consists first in defining the total energy which contains, in particular, a
gradient damage term and a term which represents the plastic dissipation but depends also on damage. Then,
the evolution law is deduced from the principles of irreversibility, stability and energy balance. Accordingly,
the plastic dissipation term which appears both in the damage criterion and the plastic yield criterion plays
an essential role in the damage-plasticity coupling. Suitable constitutive choices on how the plastic yield
stress decreases with damage, allows us to obtain a rich variety of coupled responses. A particular attention is
paid on the equations which govern the formation of cohesive cracks where the displacement is discontinuous
and the plasticity localizes. In the one-dimensional traction test where the solution is obtained in a closed
form, we show that, because of damage localization, a cohesive crack really appears at the center of the
damage zone before the rupture and the associated cohesive law is obtained in closed form in terms of the
constitutive parameters. A Finite Element discrete version of the energy functional is used to simulate a
two-dimensional traction test over a rectangular domain with mixed boundary conditions; again a localized
band of plastic strain is generated seemingly independent of the mesh size.

Key words: gradient damage model, cohesive crack, plasticity, variational approach, ductile fracture

1. Introduction

Gradient damage models are very efficient to account for the behavior of brittle and quasi-brittle materi-
als. Such models have been developed independently by different group of authors, see for instance Peerlings
et al. (1998); Comi (1999); Bourdin et al. (2000); Comi et al. (2006); Benallal and Marigo (2007); Pham
and Marigo (2010a,b); Lorentz et al. (2011). Their main merit is that they are able to account for both the
nucleation and the propagation of cracks in a unified framework. Their basic ingredients are: (i) a decreasing
dependency of the stiffness E(α) on the damage variable α; (ii) no more rigidity at the ultimate damage
state (say E(1) = 0); (iii) a critical stress σc; (iv) a softening behavior with a decrease of the stress from σc

to 0 when the damage goes to 1; (v) a gradient damage term in the energy which necessarily contains an
internal length ℓ and which limits the damage localization.

Accordingly, it can be shown in a one-dimensional setting that the process of crack nucleation consists in
the following three successive stages, see Pham et al. (2011a); Pham and Marigo (2013a); Sicsic et al. (2013):
(i) first, damage occurs in a neighborhood of a point where the stress reaches the material critical stress;
(ii) then, damage grows inside a damage zone the width of which is related to the material characteristic
length ℓ; (iii) finally, damage reaches the critical value 1 at the center of the damage zone and a crack
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Figure 1: In one-dimension, nucleation of a crack at the center x1 of a damage zone of width πℓ/2, ℓ being the material
characteristic length. The graphs represent the growth of the damage field with time. At final time α(x1) = 1, a crack has
appeared at x1.

appears at this point, see Fig. 1. During this crack nucleation process, some energy is dissipated inside
the damage zone and this dissipated energy involves a quantity Gc which can be considered as the effective
surface energy of Griffith’s theory. Therefore, Gc becomes a byproduct of the gradient damage model which
can be expressed in terms of the parameters of the model (specifically, Gc is proportional to σ2

c ℓ/E(0) Pham
and Marigo (2013a)).

In two or three dimensions, the process of crack nucleation essentially follows the same stages. For
example, in Fig. 2 are illustrated in a two-dimensional setting these different phases of nucleation and
propagation of an array of cracks which are obtained by this type of gradient damage model in the case of
a thermal shock, see Sicsic et al. (2013) for details. Moreover, once a crack has nucleated, it can be proved
Sicsic and Marigo (2013) that its propagation is essentially governed by Griffith’s law, i.e. the law based on
the concept of critical energy release rate criterion where the role of the critical energy release rate is played
by the dissipated energy density Gc.

(a) Growth of a diffuse damage layer (b) Onset of damage localization

(c) Nucleation of periodically spaced cracks (d) Propagation and arrest of cracks

Figure 2: Numerical simulation by a gradient damage model of the damage evolution during the thermal shrinking induced
by cooling through the top surface of the sample Sicsic et al. (2013). In blue, the sound material; in red, the totally damaged
material.

However, this type of “quasi-brittle” models are not able to account for residual strains and consequently
cannot be used in the case where the fracture occurs with a significant plastic zone. Moreover there is no
discontinuity of the displacement in the damage strip before the loss of rigidity at its center, i.e. before the
nucleation of a crack. In other words such a model cannot account for the nucleation of cohesive cracks,
i.e. the existence of surface of discontinuity of the displacement with a non vanishing stress. The natural
way to include such effects is to introduce plastic strains into the model and to couple their evolution with
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damage evolution. Of course, this idea is not new and a great number of damage models coupled with
plasticity have been developed from the eighties in the spirit of Lemaitre and Chaboche (1985), see for
instance de Borst et al. (1999); Grassl and Jirásek (2006); Belnoue et al. (2007); Dimitrijevic and Hackl
(2011). But our purpose is to construct such models in a softening framework with gradient of damage
terms and to see how these models can account for the nucleation of cracks in presence of plasticity. In our
knowledge, the previous works are not able to go so far. Such regularization methods by adding gradient
terms also exist for other types of behavior exhibiting strain-softening. It is not possible to quote here all
the abundant literature devoted to this topic and it is not the goal of the present paper to compare all or a
part of these approaches with ours. The reader interested by such a comparison should refer to Lorentz and
Andrieux (2003) where a general overview was proposed, or to the more recent work Dal Corso and Willis
(2011) where a regularization by gradient plastic strain is proposed for elastic-plastic (but non damaging)
materials. Let us simply remark that none of the quoted works are able to treat in a unified manner the
delicate issue of nucleation of cohesive and non cohesive cracks.

Here we will adopt a variational approach in the spirit of previous works Mielke (2005, 2006); Bourdin
et al. (2008); Del Piero and Truskinovsky (2009); Pham and Marigo (2010a,b); Pham et al. (2011a); Sicsic
and Marigo (2013); Del Piero (2013). Such an approach is fundamental both from the theoretical and
numerical viewpoints. From the theoretical viewpoint, that allows us to construct the model in a rational
and systematic way. Indeed, the main steps are the following ones: (i) one defines the total energy of the
body in terms of the state fields which include the displacement field and the internal variable fields, namely
the damage, the plastic strain and the cumulated plastic strain fields; (ii) one postulates that the evolution
of the internal variables is governed by the three general principles of irreversibility, stability and energy

balance. Besides, we have the chance that the variational approach works and has been already developed
both in plasticity and in damage mechanics, even though only separately up to now. So, it “suffices” to
introduce the coupling by choosing the form of the total energy to obtain, by virtue of our plug and play
device, a model of gradient damage coupled with plasticity: the damage and plasticity criteria are deduced
from the stability principle; the normality flow rule for the plastic strain has not to be postulated but is a
consequence of the stability principle and the energy balance; we derive new jump conditions and another
normality flow rule on a surface of discontinuity (shear band or cohesive crack). In this paper, our choice of
coupling is minimalist in the sense that it simply consists in introducing the dependence of the yield plastic
stress σP(α) on the damage variable (with the natural assumption that σP(α) goes to 0 when the damages
goes to 1). In turn, by virtue of the variational character of the model, the product σ′

P
(α)p̄ of the derivative

of the state function σP(α) by the cumulated plastic strain p̄ enters in the damage criterion and this coupling
plays a fundamental role in the nucleation of a cohesive crack.

From the numerical viewpoint, the variational approach allows us to use an alternate minimization
algorithm to solve the incremental evolution problem. This type of algorithm is used for a long time in
plasticity and more recently in damage mechanics Bourdin et al. (2000). In the present context, it consists
in minimizing at a given time step the total energy of the body alternatively with respect to one of the three
state fields (displacement, plastic strain or damage field), the other two being fixed, and to iterate until
convergence. It turns out that such an algorithm is automatically an algorithm of descent of the energy,
what is very interesting to obtain a final state which satisfies the stability condition. It is this algorithm
which allowed us to obtain the numerical results for the thermal shock problem plotted in Figure 2 and it
will be used here in Sect. 5 to solve numerically the uniaxial traction problem.

Specifically, the paper is organized as follows. In Sect. 2 the energy and dissipation functionals of the
model are presented; the main hypotheses on their constitutive functions are discussed and the explicit form
of the balance and consistency equations, as dictated by the stability condition and by the energy balance, are
explicitly stated. To model plastic effects we choose the simple framework of Von Mises plasticity criterion
(more complex choices in this respect could be also considered). Once stated the governing equations,
the homogeneous responses are studied in Sect. 3, by requiring all the fields to do not depend on the
space variable. Three different responses are enlightened which corresponds to all basic kinds of coupling
between the evolution of damage and plasticity. This classification guides also the study of non-homogeneous
solutions in Sect. 4 and Sect. 5. Indeed it turns out that the homogeneous responses are not stable if
the size of the domain is larger than a threshold; hence we are led to study the conditions under which
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localization of both the damage and the plastic strain fields can occur. The interplay between damage and
accumulated plastic strain is, for the case of non-homogeneous solutions, much richer: in some cases the
model dictates the formation of a plastic hinge where the accumulated plastic strain must localize and the
damage profile derivative, as well as the displacement field, suffers a jump. Sect. 4 is devoted to the standard
one-dimensional traction test; in this case we are able to compute in closed form the nucleation of cohesive
cracks and the associated, Barenblatt-type, cohesive law between the stress and the displacement jump. The
two-dimensional analysis described in Sect. 5 requires instead a numerical implementation of the presented
model. To this aim a Finite Element discrete version of the variational problem is implemented within the
Fenics framework (Logg et al., 2012). Whilst for the one-dimensional traction test the code allows to recover
the discussed analytic solution, a traction test problem over a rectangular material domain in plane-strain
enlighten the formation of a 45◦ shear band and the necking of the specimen. Despite the localization
phenomena occurring, these results are shown to be mesh-independent.

Notation. Throughout the paper, the following notations are used. N denotes the dimension of the space,
1 ≤ N ≤ 3, N = 1 corresponds to the one-dimensional case and N > 1 to the multi-dimensional case.
In the multi-dimensional case, vectors and second order tensors are denoted by boldface letters, e.g., u for
the displacement and σ for the stress. Their components are denoted by the respective italic letters with
lower indices like ui or σij , 1 ≤ i, j ≤ N . The second order identity tensor is denoted I. Fourth order
tensors are denoted with typewriter letters, like E and C for the stiffness and compliance tensors respectively.
The summation convention is implicitly used. The inner product between vectors or between second order
tensors is indicated by a dot. Accordingly, one reads u · v = uivi, ε · ε = εijεij , E ε · ε = Eijklεijεkl. The
euclidean norm of a vector or a second order tensor is denoted ‖ · ‖ and thus ‖u‖ =

√
u · u. The trace

operator for a second order tensor is denoted Tr and thus Trp = p · I = pii. The deviatoric operator is
represented by the superscript D and thus σD denotes the deviatoric part of σ, i.e.

σD = σ − Trσ

N
I.

The dependence on the time parameter t is indicated by a subscript whereas the dependence on the spatial
coordinate x is indicated classically by parentheses, e.g. x 7→ ut(x) stands for the displacement field at time
t. In general, the state functions or the material parameters are represented by sans serif letters, like Y0 for
the Young modulus, d1 for the local dissipated energy by damage or w(α) for the damage change of variable.
The prime denotes either the derivative with respect to the spatial coordinate x in a one-dimensional setting
or the derivative with respect to the damage parameter, the dot stands for the time derivative, e.g.

u′
t(x) =

dut

dx
(x), E

′(α) =
dE

dα
(α), u̇t(x) = lim

h→0

1

h

(

ut+h(x)− ut(x)
)

.

The symbols ∇ and ∇s will be respectively used to indicate the spatial gradient and its symmetric part
when this last makes sense. Accordingly, the total strain tensor field reads as ε = ∇su. Table 1 summarizes
the main nomenclature used in this article.
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State variables and state functions
α Scalar damage variable
ω = w(α) Change of damage variable used in the particular family of damage models
∇α Gradient of damage
ε Total strain tensor
p Plastic strain tensor
p̄ Cumulated plastic strain
E(α) State function giving the stiffness tensor
C(α) State function giving the compliance tensor
d(α) State function giving the energy density dissipated by damage
σD(α) State function giving the damage critical stress
σP(α) State function giving the plastic yield stress
W(ε, α,∇α, p, p̄) State function giving the strain work density

Material constants
Y0, ν0 Young modulus and Poisson ratio of the undamaged material
d1 Energy density dissipated by a fully damaged material point
σ̄D = σD(0) Initial damage critical stress
σ̄P = σP(0) Initial plastic yield stress
ℓ Material characteristic length
Gc Effective surface energy density

Space and time variables or fields
N Dimension of the space
Ω Reference configuration of the N -dimensional body
∂DΩ Part of the boundary where the displacements are prescribed
∂FΩ Part of the boundary where the surface forces are prescribed
x = (x1, · · · , xN ) Material point and its cartesian coordinates in the reference configuration
t Time variable
M

N
s Space of symmetric second order tensors in a N -dimensional setting

u Real displacement field
ξ = (u, α,p, p̄) Real state field of the body
J(ξ) Surface where the state field is singular
[[u]] Jump discontinuity of the displacement field
pR, p̄R Regular parts of the plastic strain and cumulated plastic strain fields
P̄ Surface density of the singular part of the cumulated plastic strain field
q,qR Virtual plastic strain field and its regular part
J(v) Jump set of the virtual displacement field v

Table 1: Main nomenclature

2. The gradient damage model coupled with plasticity

2.1. Definition of the total energy state function

For quasi-brittle materials, one uses gradient damage models which are defined by assuming that the
energy density has the following form

WD(ε, α,∇α) =
1

2
E(α)ε · ε+ d(α) + d1ℓ

2∇α · ∇α, (1)

where ε ∈ M
N
s is the strain tensor and α is a scalar characterizing the damage level in the material; respec-

tively α = 0 and α = 1 mean a sound and a totally damaged material. Here E(α) represents the material
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stiffness tensor, supposed decreasing with the damage variable, d(α) account for the energy dissipation due
to damage, ∇α denotes the gradient of damage and the gradient damage term, which necessarily introduces
an internal length ℓ > 0, is used to limit the damage localization. Note that WD represents the total energy
density, sum of the stored (and recoverable) elastic energy and the energy dissipated during the damage
process. Such models are able to account for the nucleation of cracks in brittle and “quasi-brittle” materi-
als. However, they are not able to account for residual strains and consequently cannot be used in ductile
fracture. The natural way to include such effects is to introduce plastic strains and to couple their evolution
with damage evolution.

Before to introduce the coupling between damage and plasticity, it is important to recall that the classical
plasticity theory can also be formulated in a variational form (at least when the plastic flow rule follows the
normality rule). For instance, in the case of Von Mises yield criterion, the total energy density reads as

WP(ε,p, p̄) =
1
2
E (ε− p) · (ε− p) + σP p̄, (2)

where p ∈ M
N
s denotes the plastic strain tensor and p̄ the cumulated plastic strain. Their definition depends

on the dimension of the space.
In the one-dimensional case, the plastic strain is a scalar and hence is simply denoted p whereas the

cumulated plastic strain is defined by
˙̄p = |ṗ|.

In the multi-dimensional case we adopt the plastic incompressibility condition and hence p is assumed
to be purely deviatoric, Trp = 0. The cumulated plastic strain p̄ is a scalar defined by

˙̄p =

√

N − 1

N
‖ṗ‖.

Accordingly, all the cases can be synthesized by the following formula

˙̄p = kN ‖ṗ‖ with Trp = 0 if N > 1 and kN =

{

1 if N = 1
√

N−1
N

otherwise
. (3)

In (2), the fourth tensor E is the (invariable) stiffness tensor and the material constant σP represents the
Von Mises yield stress. Hence, the first term represents the stored elastic energy and the second the energy
dissipated during the plasticity process.

To couple damage with plasticity, we first define the state of a volume element by the quintuple
(ε, α,∇α,p, p̄) ∈ M

N
s × [0, 1] × R

N × M
N
s × R

+ and then define the total energy density as the follow-
ing function of state:

W(ε, α,∇α,p, p̄) = 1
2
E(α)(ε− p) · (ε− p) + d(α) + d1ℓ

2∇α · ∇α+ σP(α) p̄. (4)

The definition (1) of the energy density has been altered by introducing the plastic strain field p in the
stored elastic energy, and by adding the dissipation due to plastic deformations, namely σP(α) p̄. Our choices
in (4) are minimalist in the sense that

(i) the damage variable is still a scalar and one does not introduce another internal variable than the
cumulated plastic strain in the dissipated energy state function. At this purpose, let us note that the
most used models in ductile fracture by the engineering community, like Gurson-like models, contain
also only one damage variable, namely the microvoid porosity;

(ii) for α = 0 we are actually considering the standard Von Mises model of perfect plasticity. But there is
no difficulty to change the shape of the plasticity criterion and more complex choices will be considered
in the future;
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(iii) the coupling between damage and plasticity simply consists in introducing a dependence of the yield
plastic stress σP(α) on the damage variable. Despite this simplicity and by virtue of the variational
character of the model, we will see that the product σ′

P
(α)p̄ of the derivative of the state function

σP(α) by the cumulated plastic strain p̄ enters in the damage criterion and this coupling will play a
fundamental role in the onset of damage by plastic accumulation or in the nucleation of a cohesive
crack at the center of a damage zone.

2.2. The total energy functional for a N -dimensional body

In (4), W denotes the energy of the volume element. Let us now consider a N -dimensional continuum
body whose reference configuration is the open bounded domain Ω and which is submitted to a time-
dependent loading process characterized by time-dependent surface forces Ft prescribed on the part ∂FΩ
of the boundary of Ω and by time-dependent displacements Ut prescribed on the complementary part
∂DΩ = ∂Ω \ ∂FΩ. (To simplify the presentation, we will neglect body forces.) Then, at a given time t, the
total energy of the body is the following functional of the quadruple

ξ = (u, α,p, p̄)

called the global state field, made of the displacement field u, the damage field α, the plastic strain field p

and the cumulated plastic strain field p̄:

Et(u, α,p, p̄) =
∫

Ω

W(∇su(x), α(x),∇α(x),p(x), p̄(x)) dx−
∫

∂FΩ

Ft(x) · u(x) dS. (5)

The above expression of the energy makes sense provided that the global state field ξ is smooth enough.
Let us briefly discuss these questions of regularity.

1. As far as the damage field is concerned, the gradient term requires that α ∈ H1(Ω) so that the total
energy be finite. Therefore, the damage field is continuous across any surface, but the gradient of
damage can be discontinuous.

2. As far as the displacement and the plastic strain fields are concerned, in our perfect plasticity setting
(at given damage) the elastic strain field ∇su−p only is regular so that the elastic energy be finite (it
must belong to L2(Ω)). In such a setting, it is well known that plasticity can localize in shear bands.
We will see that it is actually the case once the damage has appeared, because of the localization of
damage induced by the softening character of the model.

∂NΩ

∂DΩ

Ω

J(ξt)

n

Ft

+

−

Figure 3: The N-dimensional body with its loading and the jump set J(ξ
t
) of the current state field ξ

t
(light grey curve) inside

a plastic-damaged non singular zone (dark grey zone)

Accordingly, we will assume that the global state field ξ = (u, α,p, p̄) is piecewise smooth and that its
“singular part” is localized on a ξ-dependent set J(ξ) ⊂ Ω, called the jump set of ξ, which contains a finite
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number of smooth and non-intersecting surfaces in Ω. For a sake of simplicity, we also assume that this set
has zero intersection with the boundary ∂Ω, see Fig. 3. Specifically, we assume that

(i) the displacement field u is continuously differentiable on Ω \ J(ξ) and admits a jump discontinuity on
J(ξ). Therefore, the strain field ε associated with u can be decomposed into two parts: its regular
part εR which corresponds to the usual symmetric part of the gradient of u and its singular part which
can be seen as a Dirac measure concentrated on the jump set J(ξ). The singular part of ε is denoted
by εS and is written with an abuse of notation as

εS = [[u]]⊗s n δJ(ξ), (6)

where n is the normal to the positive face of J(ξ), [[u]] := u+−u− and δJ is the Dirac surface measure
concentrated on the surface J .

(ii) in order that the elastic energy be finite, the plastic strain field p has the same singular part as the
strain field and hence its singular part pS will also read as

pS = [[u]]⊗s n δJ(ξ) (7)

while its regular part (denoted x 7→ pR(x)) is assumed at least continuous on Ω \ J(ξ). In the multi-
dimensional case, for p to be deviatoric its singular part must be such that Tr([[u]]⊗s n) = [[u]] ·n = 0;
hence in dimension higher than one, only the tangential components of the displacement can jump
through J(ξ).

(iii) in the same manner, the cumulated plastic strain field is decomposed into regular and singular parts
p̄R and p̄S. Its singular part reads as

p̄S = P̄ δJ(ξ) (8)

and thus P̄ denotes its surface density.

Finally, the total energy of the body in the global state ξ = (u, α,p, p̄) will read as

Et(u, α,p, p̄) =

∫

Ω\J(ξ)

1
2
E(α(x))

(

∇su(x)− pR(x)
)

·
(

∇su(x)− pR(x)
)

dx

+

∫

Ω\J(ξ)

(

d(α(x)) + σP(α(x))p̄
R(x) + d1ℓ

2∇α(x) · ∇α(x)
)

dx (9)

+

∫

J(ξ)

σP(α(x))P̄ (x) dS −
∫

∂FΩ

Ft(x) · u(x) dS.

The only singular part which appears in (9) is that of the cumulated opening, because α and ∇α are not
singular whereas ε and p have the same singular part.

2.3. Damage irreversibility, local stability and energy balance

At this stage of the construction, nothing was said on the laws governing the evolution of the damage
and the plasticity. One of the main advantages of the variational approach is that those laws are simple
byproducts of the general physical principles of irreversibility, stability and energy balance once the total
energy has been defined. These principles are briefly recalled below and the reader interested by more
details can refer to Mielke (2005, 2006); Bourdin et al. (2008); Pham and Marigo (2010a,b); Francfort and
Giacomini (2012). Then, this section and the Appendix will be devoted to the deduction of the damage and
plasticity evolution laws from these three principles and the assumed form (9) of the energy.

2.3.1. The irreversibility condition

We require that at every point the damage can only increase with time, i.e.

α̇t(x) ≥ 0, 0 ≤ αt(x) ≤ 1, ∀x ∈ Ω. (10)

Moreover, to simplify the presentation, we will only consider the evolution before the nucleation of a full
damaged set and hence we assume that αt < 1 everywhere in Ω.
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2.3.2. Stability condition

Let ξt = (ut, αt,pt, p̄t) be the state of the body at time t and let ξ∗ = (u∗, α∗,p∗, p̄∗) be the following
virtual state

ξ∗ = ξt + h
(

v, β,q, kN‖q‖
)

where h is a positive constant. In order that u∗ be kinematically admissible, the field v must be such that
v = 0 on ∂DΩ. Moreover, the field v is assumed, like ut, piecewise smooth and we denote by J(v) the set
of points where v is discontinuous. Therefore the jump set of ξ∗ is J(ξ∗) = J(ξt) ∪ J(v). Finally the field
p∗ is admissible if, in the multi-dimensional case, Trq = 0 and if the singular part of q is related to the
jump of v by

qS = [[v]]⊗s n δJ(v). (11)

In order that αt ≤ α∗ < 1 and that α∗ ∈ H1(Ω), it is necessary and sufficient that β ≥ 0, β ∈ H1(Ω) and h
be small enough. A triple of fields (v, β,q) which satisfies the above conditions will be called an admissible
direction of perturbation. We are now in a position to define the condition of stability.

Definition (Local stability). The state (ut, αt,pt, p̄t) of the body at a time t before the nucleation of a crack

is said locally stable if, for every admissible direction of perturbation (v, β,q), there exists h̄ > 0 such that

for all h ∈ [0, h̄]

Et
(

ut + hv, αt + hβ,pt + hq, p̄t + hkN‖q‖
)

≥ E(ut, αt,pt, p̄t). (12)

2.3.3. Energy balance

Following the presentation of Pham and Marigo (2010b); Pham et al. (2011b), the energy balance prin-
ciple in our particular setting reads as

d

dt
Et(ut, αt,pt, p̄t) =

∫

∂DΩ

σt n · U̇t dS −
∫

∂FΩ

Ḟt · ut dS. (13)

Therefore, (13) is a global (and single) equation which involves the total energy of the whole body and which
must hold at every time. Note that the right hand side term in (13) involves the rate of the data whereas
the rate ξ̇t of the state field will appear in the time derivative of the total energy.

2.3.4. Consequences of the principles of irreversibility, stability and energy balance on the evolution law

Using the above three general principles with the particular form of the total energy functional gives a
set of necessary conditions that the evolution must satisfy. The details of this construction of the evolution
problem are given in the Appendix to which the reader is invited to refer in order to understand the origin
of each condition. All these conditions are summarized in Table 2 in the multi-dimensional case. Note that
these conditions are necessary but in general not sufficient in order that the “true” stability condition (12) be
satisfied at each time of the evolution. One must also verify the so-called second order stability conditions.
But these additional conditions will not be used explicitly here and the interested reader can refer to Pham
et al. (2011b); Pham and Marigo (2013b); Sicsic et al. (2013) where they play an essential role to select the
good evolutions in the cases where many evolutions satisfy the first order stability conditions.

2.4. Constraint on the constitutive functions

Our model (4) contains three state functions: E(α) (which contains for an isotropic material two scalar
state functions, namely Y(α) and ν(α) giving the Young modulus and the Poisson ratio), d(α) and σ̄P(α)
which give the dependence of the stiffness, the local damage dissipated energy and the plastic yield stress on
the damage variable. The physical meaning of these constitutive functions dictates some natural constraints
to be required.

We start from the function α 7→ d(α), fixing the amount of dissipated energy with respect to the damage
state. Specifically, we assume that it is smooth monotonically increasing function with

d(0) = 0, d′(α) > 0, ∀α ∈ [0, 1), d(1) = d1 < +∞. (14)
9



  

name statement domain

stress-strain relation σ = E(α)(∇su− p) Ω

irreversibility α̇ ≥ 0 Ω

equilibrium in the bulk divσ = 0 Ω \ J(ξ)

damage criterion in the bulk d′(α) + σ′
P
(α)p̄R − 1

2C
′(α)σ · σ − 2d1ℓ

2∆α ≥ 0 Ω \ J(ξ)

damage consistency in the bulk
(

d′(α) + σ′
P
(α)p̄R − 1

2C
′(α)σ · σ − 2d1ℓ

2∆α
)

α̇ = 0 Ω \ J(ξ)

plastic yield criterion in the bulk ‖σD‖ ≤ kN σP(α) Ω \ J(ξ)

plastic flow rule in the bulk ṗR = ‖ṗR‖ σD

kNσP(α)
Ω \ J(ξ)

equilibrium on the jump set [[σ]]n = 0 J(ξ)

damage criterion on the jump set σ′
P
(α)P̄ − 2d1ℓ

2[[∂α/∂n]] ≥ 0 J(ξ)

damage consistency on the jump set
(

σ′
P
(α)P̄ − 2d1ℓ

2[[∂α/∂n]]
)

α̇ = 0 J(ξ)

plastic yield criterion on the jump set ‖σn− (σn · n)n‖ ≤ κNσP(α) J(ξ)

plastic flow rule on the jump set [[u̇]] = ‖[[u̇]]‖σn− (σn · n)n
κNσP(α)

J(ξ)

Dirichlet boundary condition u = U ∂DΩ

Neumann boundary condition σn = F ∂FΩ

damage boundary condition
∂α

∂n
≥ 0 ∂Ω

damage consistency on the boundary
∂α

∂n
α̇ = 0 ∂Ω

Table 2: In the multi-dimensional case, the conditions that the evolution must verify in order that the irreversibility condition,
the first order stability conditions and the energy balance are satisfied. Note in particular that the cumulated plastic strain is
present in the damage condition and since σ′

P
< 0 the damage critical stress is monotonically decreasing when the plasticity

evolves. Note also all the conditions which are obtained on the jump set and which are rarely mentioned in the literature.
These latter conditions are essential to obtain the cohesive law as we will see in the next sections.

Concerning the stiffness decrement due to damage, we limit here the attention to the case where

E(α) = a(α) E0

is given in term of one scalar function a(α) and the initial sound stiffness E0. (Of course, more general cases
could be considered and that will be the subject of future works.) In isotropic material such an assumption
corresponds to the following dependence

Y(α) = a(α)Y0, ν(α) = ν0, (15)

for the Young and Poisson moduli respectively. Hence the function α 7→ a(α) gives the evolution of the
material Young modulus with its damage state. We assume that it is a smooth monotonically decreasing
function with

a(0) = 1, a′(α) < 0, ∀α ∈ [0, 1), a(1) = a′(1) = 0. (16)

Additional contraints are needed on the constitutive function α 7→ a(α) in order to obtain strain-
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hardening and stress-softening behaviors of the material. To this aim, one defines the following sets:

D(α) =
{

ε ∈ M
N
s | − 1

2
E
′(α)ε · ε ≤ d′(α)

}

, D∗(α) =
{

σ ∈ M
N
s | 1

2
C
′(α)σ · σ ≤ d′(α)

}

, (17)

which represent the domains of elasticity associated with the damage criterion at vanishing cumulated
plasticity p̄, and

P∗(α) =
{

σ ∈ M
N
s | ‖σD‖ ≤ kNσP(α)

}

, (18)

which represents the stress domain of elasticity associated with the plasticity criterion. All these elastic
domains depend on the damage state. Note that, since a(α) = E

−1
0 E(α), the inequality defining D∗(α) can

be read as

E
−1
0 σ · σ ≤ σ2

D
(α)

Y0
:=

2 d′(α)

(1/a)′(α)
.

The definitions of D∗(0) and P∗(0) introduce two thresholds, σ̄D := σD(0) and σ̄P := σP(0), for the stress;
whether σ̄D < σ̄P or σ̄D > σ̄P discriminates if, in a mono-axial traction test, damage or plasticity will evolve
first; thus σ̄D and σ̄P could be interpreted as the initial yield limits.

The strain-hardening property and the stress-softening properties are respectively equivalent to the
growth of the set D(α) and to the decrease of the set D∗(α) with respect to the damage variable; these
requirements translate into the following requests:

Strain hardening condition : α 7→ d′(α)

|a′(α)| is monotonically increasing, (19)

and

Stress softening condition : α 7→ d′(α)

(1/a)′(α)
is monotonically decreasing. (20)

Finally, it would be natural to require that the plastic yield stress progressively decreases when damage
grows and finally vanishes when the material is fully damaged. Within this softening behavior framework,
we assume the following properties for the plastic yield stress state function α 7→ σP(α):

Plastic yield stress softening : σP(0) = σ̄P > 0, σ′
P
(α) < 0, ∀α ∈ [0, 1), σP(1) = 0, σ′

P
(1) ≤ 0. (21)

Accordingly, our model is quite different of Ambrosio et al. (2012); Del Piero et al. (2012) even if those
models have also the goal for coupling fracture with plasticity by using a variational approach.

2.5. A family of admissible constitutive functions

A useful choice of the constitutive function respecting the conditions given above is the following one
which depends on three dimensionless parameters k > 1, θ > 0, n > 0 and on three parameters characterizing
the material stiffness, the material strength and the material length, namely Y0, σ̄D, ℓ:

a(α) =
1− w(α)

1 + (k− 1)w(α)
, d(α) =

kσ̄2
D

2Y0
w(α), σP(α) = (1− w(α))nθσ̄D, (22)

where
w(α) = 1− (1− α)2. (23)

Thus the state functions depend in fact on the variable ω = w(α) which grows from 0 to 1 as α does.
Accordingly, one gets

σD(α) = (1− w(α))σ̄D = (1− α)2σ̄D (24)

and

d1 =
kσ̄2

D

2Y0
, σ̄P = θσ̄D.
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a(α)
d(α)/d1

α α

σP(α)/σ̄D

σD(α)/σ̄D

Figure 4: Constitutive functions as in (22)–(24) when k = 3, n = 2 and θ = 1/2.

The solid curves in Figure 4 illustrate the dependences of the constitutive functions on the damage
variable for k = 3, n = 2 and θ = 1/2. In Sect. 3 we will discuss in some details the class of models k > 1,
n ≥ 1 and θ < 1 in which this choice falls; this class physically corresponds to the stress-strain relation
shown in Fig. 5, where a purely plastic phase is followed by a coupled evolution of damage and plasticity.

The conditions (14) and (16), the strain hardening condition (19), the softening condition (20) and
the plastic yield softening condition (21) are automatically satisfied. The parameter θ represents the ratio
between σ̄P and σ̄D. The limit case where θ = +∞ would correspond to a pure damage model without
plasticity. It corresponds to the type of damage models which is used in the variational approach to fracture,
see Amor et al. (2009); Pham et al. (2011a,b); Sicsic and Marigo (2013), and is close to those used in Lorentz
et al. (2011) for quasi-brittle materials.

3. Homogeneous solutions and their stability

Let us study the response predicted by the damage-plasticity coupled model when a single material point
is submitted to a uniaxial traction test where σ = σe1 ⊗ e1 and where the associated strain component
ε = ε11 is controlled. The axial component p11 of the plastic strain is denoted p and the cumulated plastic
strain is given by ˙̄p = |ṗ|. The state of the material point can be identified with the quadruple (ε, α, p, p̄).
We assume that the material point is at time 0 in the unstrained, unstressed and undamaged state, i.e.
(ε0, α0, p0, p̄0) = (0, 0, 0, 0), and then is submitted to an increasing uniaxial stretching where ε grows from 0
to +∞. Accordingly, we can assimilate the time parameter with the strain, i.e. ε = t. The problem is to find
the evolution of (α, p, p̄) with ε. That evolution is assumed to be smooth, in the sense that ε 7→ (αε, pε, p̄ε)
are at least absolutely continuous, and governed by the stress-strain relation, the damage irreversibility
condition, the damage and plasticity yield criteria, the damage consistency equation and the plasticity flow
rule. For the reader convenience, these equations, derived in the previous section within a three-dimensional
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setting, are here reported in scalar form:

stress-strain relation : σ = a(α)Y0(ε− p), (25)

irreversibility : 0 ≤ α ≤ 1, α̇ ≥ 0, (26)

damage criterion : −1
2
a′(α)Y0(ε− p)2 − d′(α)− σ′

P
(α)p̄ ≤ 0 if α < 1, (27)

plastic yield criterion : |σ| − σP(α) ≤ 0, (28)

damage consistency relation :
(

1
2
a′(α)Y0(ε− p)2 + d′(α) + σ′

P
(α)p̄

)

α̇ = 0, (29)

plastic flow rule : σP(α) |ṗ| − σṗ = 0. (30)

Clearly when the strain fields are identified with scalar fields, as done here and in the following section, the
request on the plastic strains to be deviatoric must be removed. While the study is trivial in the case of
uncoupled models, it becomes much more difficult in the case of a coupling. In particular, the existence of
the response is not ensured in the whole range of strains without introducing additional assumptions on the
constitutive relations. Moreover, one can obtain a great variety of responses according to the values of the
material parameters entering in the model. Thus we limit the analysis to the class of constitutive functions
(22) with k > 1, n ≥ 1 and θ < 1. This case seems to be particularly relevant for many applications; possible
responses in terms of stress-strain relationship are depicted in Fig. 5.

σ

ε

θε̄D εDP(0)

θσ̄D

σ

ε
θε̄D εDP(0) ε1

θσ̄D

Figure 5: Response of the volume element in the case θ < 1. Left: for n > 1, the response corresponds to the sequence
E–P–DP; Right: for n = 1, the response corresponds to the sequence E–P–D–F.

Starting from a sound, unstrained and unstressed state, we find first an elastic stage E; comparing the
two yield functions (27)-(28) at α = p = p̄ = 0 we find that the limit strain ε̄I for the elastic stage is

ε̄I = min{ε̄D, ε̄P}, ε̄D :=

√

2d′(0)

|a′(0)|Y0
=

σ̄D

Y0
, ε̄P :=

σP(0)

Y0
=

θσ̄D

Y0
= θε̄D;

Since θ < 1 then ε̄I ≡ θε̄D and the plastic yield is firstly reached. During the elastic stage E, we have

∀ε ∈ [0, θε̄D], αε = 0, pε = p̄ε = 0, σ = Y0 ε.

During the plastic stage P, we have

∀ε ∈ [θε̄D, εDP(0)], αε = 0, pε = p̄ε = ε− θε̄D, σ = θσ̄D.

The plastic stage ends at the limit strain εDP(0). Indeed, during the plastic stage, the plastic strain accu-
mulation reduces the damage yield limit until the current value of stress is reached. Hence one seeks for the
value of strain where both yield criteria are satisfied: eliminating the plastic strain leads to the following

εDP(α) =

(

(1− α)−2n+2k− θ2(1− α)2n−2
(

k− 2n
(

1 + (k− 1)(2− α)α
)

)

)

ε̄D

2θn
.
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As in the plastic stage P we had α = 0, we immediately get:

εDP(0) = θε̄D +
k(1− θ2)

2nθ
ε̄D;

a value strictly larger than θε̄D, see Fig. 5. Finally, as for ε = εDP(0) the damage yield has been reached,
the damage evolves. It turns out that, for this class of constitutive parameters, both the yield limits are
identically satisfied; hence we have a damage-plastic stage DP, where both damage and plasticity could
evolve. Specifically we have

∀ε ∈ [εDP(0), εDP(α → 1)], αε = ε−1
DP

(ε), pε = p̄ε = πDP(αε), σ = σP(αε),

where

πDP(α) :=
kε̄D

2θn

(

(1− α)−2n+2 − θ2(1− α)2n−2
)

.

Note that for n > 1 the DP stage continues up to infinity as εDP(α → 1) = +∞ and the plasticity actually
increases monotonically (Fig. 5 left). However, when n = 1, we have

εDP(1) =
k(1 + θ2)ε̄D

2θ
=: ε1, pε = p̄ε =

k(1− θ2)

2θ
ε̄D.

Thus for n = 1 the plastic strain remains fixed at the value reached at the end of the plastic stage P, and we
actually have a pure damage stage D, see Fig.5 (right). A totally damaged material F, namely the condition
α = 1, is reached for a finite strain as ε1 < ∞.

4. Closed form solution for the one-dimensional traction test

4.1. General assumptions

Again with the purpose of simulating a uniaxial traction test, we now allow the fields to be functions of
one spatial coordinate. To this aim we consider Ω = (0, L) as the reference configuration of a one-dimensional
body called the bar. Its end x = 0 is fixed and the end x = L is submitted to a time dependent displacement
Ut with U0 = 0. The bar is made of a material whose local behavior is given by the plasticity-damage
models described in the previous section. The equations governing the evolution of the bar with time t are
the scalar form of the equations derived in Sect. 2; their solution is given is the map t 7→ (ut, αt, pt, p̄t) for
t ≥ 0, where ut, αt, pt and p̄t denote now, respectively, the displacement field, the damage field, the plastic
strain field and the cumulated plastic strain field of the bar at time t. We assume that, at time t = 0, the
bar is sound and was never plasticized so that α0 = p0 = p̄0 = 0 everywhere in Ω.

It is easy to check that the homogeneous response, i.e. the response such that ut(x) = Utx/L, αt(x) = αt

and pt(x) = pt for all x ∈ Ω, is still possible. In the case where Ut = tL, i.e. for a monotonically increasing
traction test, the homogeneous response is precisely that obtained in the previous section for the volume
element. This evolution, namely the E, P, and DP stages described above, satisfies the irreversibility
condition, the first order stability conditions and the energy balance because, in particular, the gradient of
damage vanishes and J(ξt) = ∅. However, we are no more ensured that it is the unique solution. Moreover,
we are not ensured that the local stability condition (12) is satisfied by the homogeneous response. If we
refer to what happens in the case of gradient damage models with softening (without plasticity), we know
that the homogeneous response is unique and stable if and only if the length L of the bar is sufficiently small
by comparison with the internal length ℓ of the material Pham et al. (2011b); Pham and Marigo (2013b).
When the length of the bar is large enough, the homogeneous response is not stable and it is possible to
construct non homogeneous responses. Accordingly, we propose here to follow the same procedure and,
assuming that L is sufficiently large by comparison with ℓ, to construct a response where the damage, when
it appears, remains localized on a time-dependent part of the bar. To construct such an evolution, we follow
the method proposed in Pham et al. (2011b); Pham and Marigo (2013a).
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To simplify the presentation and to prevent from considering too many cases, we construct such non
homogeneous responses for the family of models considered at Section 2.5 only. Therefore, a, d and σP are
given by (22)-(23) with k > 1, n = 1 and θ < 1. Despite the cases n > 1 could be treated similarly, we focus
the attention on the case n = 1 because the solution can be obtained in a closed form and all the steps for
constructing the solution are easier.

4.2. Plasticity stage followed by damage localization with nucleation and growth of a cohesive crack

The analysis starts at a time when the damage yield criterion is reached somewhere in the bar. This
time tc corresponds to the end a P stage as θ < 1. We will assume, to simplify the presentation, that the
plastic strain field and the cumulated plastic strain field are uniform at tc. Hence, the state of the bar at tc
is ξtc = (εDP(0)x, 0, πDP(0), πDP(0)), the stress is σtc = θσ̄D and the damage yield criterion is also reached at
every point of the bar:

α(x) = 0, p(x) = p̄(x) = πDP(0) =
(1− θ2)kε̄D

2θ
, σ = θσ̄D.

When t > tc, we assume that σt is monotonically decreasing from σtc to 0. We seek for non homogeneous
evolutions such that the damage zone is the interval (x1−∆t, x1+∆t) where x1 is an arbitrary point of the
bar sufficiently far from its ends so that 0 < x1 −∆t ≤ x1 +∆t < L. Thus, we exclude the case where the
damage zone is at the boundary. The half width ∆t of the damage zone, which can depend on time, has to
be determined. We will assume that the center x1 of the damage zone is the unique possible singular point,
i.e. J(ξt) = ∅ or J(ξt) = {x1}.

Therefore, the plasticity can only evolve at x1 by virtue of (43) and remains equal to πDP(0) otherwise,

pR

t (x) = p̄R

t (x) = πDP(0), ∀x ∈ (0, L) \ {x1}, ∀t ≥ tc.

Accordingly, by virtue of (53), the damage field must satisfy when 0 < σ < θσ̄D:

− C′(α)σ2 + 2d′(α) + 2σ′
P
(α)πDP(0)− 4d1ℓ

2α′′ = 0 in Iσ \ {x1}, (31)

and
α(x1 ±∆σ) = α′(x1 ±∆σ) = 0, (32)

where C(α) = 1/(a(α)Y0) is the compliance state function, Iσ = (x1 − ∆σ, x1 + ∆σ) denotes the damage
zone and ∆σ is its half-width which has to be determined. The conditions at x1 depends on whether x1 is
singular or not, but in any case and since n = 1 the plasticity criterion requires that

σ ≤ σP(α(x1)) = θ(1− α(x1))
2σ̄D. (33)

Multiplying (31) by 2α′, one obtains a first integral with the constant given by (32). Specifically, one
gets

2d1ℓ
2α′2 = 2d(α)− 2(σP(0)− σP(α))πDP(0)− (C(α)− C(0))σ2 in Iσ \ {x1}. (34)

This property holds for any plasticity-damage model. In the case of the models given by (22)-(23) with
n = 1, after introducing the variable ω, the first integral eventually reads as

ℓ2ω′2 = 4θ2ω(ω̄σ − ω) where ω̄σ = 1− σ2

θ2σ̄2
D

.

Hence, in the normalized phase plane (ω, ℓω′/2θ), the first integral is a circle of center ω̄σ/2 and radius
ω̄σ/2. The plasticity criterion (33) requires that

ω(x1) ≤ ω∗
σ := 1− σ

θσ̄D

.
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Figure 6: In the case θ < 1 and n = 1, construction of the solution in the phase plane at a given stress σ < θσ̄D. The circle
represents the damage field and the dashed line corresponds to the jump of ω′ at the center of the damage zone.

ℓω
′

2θ

ω
1

x1 −
πℓ

2θ
x1 +

πℓ

2θ
x1

1

α

Figure 7: Case with θ = 2/3, n = 1 and k = 4: evolution of the damage after the plasticity stage. On the left, evolution in the
phase plane (ω, ℓω′/2θ); on the right, evolution in the physical space. The presence of a cohesive crack from the beginning of
the damage process is visible on both spaces.

But since ω∗
σ < ω̄σ as soon as σ < θσ̄D, ω

′ is necessarily discontinuous at x1 and hence x1 is a singular point,
see Figure 6. Therefore, a cohesive crack appears as soon as σ < θσ̄D and, by virtue of (54) and(58), one
must have

ω(x1) = ω∗
σ, σ′

P
(α∗

σ)[[u]](x1) = 2d1ℓ
2[[α′]](x1).

Setting ω(x) = ω̄σ cos
2 ϕ(x)

2 gives ℓ2ϕ′2 = 4θ2. Therefore, the half width ∆σ of the damage zone is given
by

∆σ = (π − ϕσ)
ℓ

2θ
with ϕσ = arccos

θσ̄D − σ

θσ̄D + σ
.

So ∆σ increases from πℓ/4θ to πℓ/2θ when σ goes from θσ̄D to 0. For a given σ, the damage profile in the
damage zone is given by

α(x) = 1−
√

1− ω(x) = 1−
√

1− ω̄σ cos2
(

ϕσ

2
+

θ |x− x1|
ℓ

)

in Iσ.
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Since ω̄σ is increasing and ϕσ is decreasing (when σ decreases), the damage grows at given x and hence the
irreversibility condition is satisfied. The damage evolution is represented on Figure 7 for θ = 2/3.

As long as the cohesive law is concerned, one gets

[[u]] = kε̄Dℓ

(

√

θσ̄D

σ
−
√

σ

θσ̄D

)

or equivalently σ = θσD

(
√

1 +
[[u]]2

4k2ε̄2
D
ℓ2

− [[u]]

2kε̄Dℓ

)2

(35)

the cohesive crack appearing as soon as the damage starts.

[[u]]

kε̄Dℓ

σ

θσ̄D

1

1

Figure 8: Graph of the cohesive law obtained for n = 1 which gives σ in term of [[u]]. Note that the curve is monotonically
decreasing, but tends only asymptotically to 0.

When σ = 0, then ϕ0 = 0, ω̄0 = 1 and α(x1) = 1. A true crack has nucleated at x1 and the damage
profile is

α(x) = 1− sin

(

θ |x− x1|
ℓ

)

in
(

x1 −
πℓ

2θ
, x1 +

πℓ

2θ

)

, when σ = 0. (36)

The dissipated energy inside the damage zone at the end of the damage localization process, i.e. when σ = 0
is given by

D0 =

∫ x1+∆0

x1−∆0

(

d(α(x)) + σP(α(x))πDP(0) + d1ℓ
2α′(x)2

)

dx

with α given by (36). A part, namely 2σP(0)πDP(0)∆0, was dissipated during the P stage. So, if we define
Gc as the dissipated energy due to the damage process alone, then we obtain

Gc :=

∫ x1+∆0

x1−∆0

(

d(α(x)) + (σP(α(x))− σP(0))πDP(0) + d1ℓ
2α′(x)2

)

dx.

After some calculations, one gets

Gc =
πk

2

θσ̄2
D

Y0
ℓ.

Note that this value of Gc involves all the parameters of the model.

5. Numerical implementation

The numerical implementation of the proposed model takes advantage from the variational formulation.
Indeed, the stability condition is directly translated into a numerical strategy based on seeking local energy
minimizers. The numeric simulations will cover the most delicate aspect of the problem, that is the ability
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of the algorithm to understand and describe the plastic localization and the cohesive response in both a
one-dimensional and a two-dimensional traction test.

For technical reasons, the constitutive functions used in the numerical simulations are chosen to be:

a(α) = (1− α)2, d(α) =
σ̄2

P

θ2Y0
α, σP(α) = (1− α)2σ̄P (37)

with 0 < θ < 1. This model satisfies all the required properties of strain hardening (19), stress softening
(20) and plastic yield stress softening (21), but it does not belong to the family of models (22) because of
the linear dependence of d on α. However this choice allows to use dedicated libraries for the minimization
of the damage variable, which turns out to be a constrained quadratic optimization problem. The material
characteristic length ℓ is chosen sufficiently small by comparison to the size L of the body so that damage
localization be possible. We still have

σ̄D =
σ̄P

θ
, ε̄P =

σ̄P

Y0
, ε̄D =

σ̄D

Y0
=

ε̄P

θ

and the damage criterion reads now

1− 2(1− α)θ2
p̄

ε̄P

− θ2

(1− α)3

(

(1 + ν)
σ · σ
σ̄2

P

− ν
(Trσ)2

σ̄2
P

)

− 2ℓ2∆α ≥ 0.

5.1. Time and space discretisation and numeric algorithm

As the imposed displacement boundary conditions will be chosen proportionally to t, the time can be
interpreted as a multiplier of the applied external action. We follow the minimizers of the total energy as t
is increased in steps of uniform amplitudes until t = T for T sufficiently large.

For both 1D and 2D cases, the code has been implemented within the finite element framework FEniCS

(Logg et al., 2012). Specifically the displacement and damage fields are projected over a piecewise affine
finite element space (1-Lagrange elements) using the same triangulation domain. Motivations for not using
higher degree finite elements can be found for example in Bourdin et al. (2000). Conversely, the plastic
strain field p is projected over a discrete discontinuous space (Quadrature elements) defined only over the
Gauss integration points. These last correspond to the centers of the elements, as suggested by the local
character of the plastic model.

It is worthnoting that apparently there was no chance to describe displacement jumps and plastic sin-
gularities leading to a cohesive response since the chosen finite element spaces do not own the capability
to describe such solution. Nevertheless and quite surprisingly this kind of response is picked up from the
simulations. The reason lies on how plasticity is implemented. Although plasticity is defined over discrete
points the contribution of any point is spread over the entire finite element of size h. That is, the numerical
approximation has the effect to regularize the displacement and plastic field while the mesh size h plays the
role of a convergence parameter. In the following the responses are compared for meshes of different size.

As the energy functional is separately convex in each variable, it seems reasonable to adopt an alternate
minimization algorithm respectively in the variables u, p and α. Hence at a given time step the solution is
simply found iterating alternatively on the three following subproblems until convergence:

• the minimization of E with respect to u at fixed p and α: this is a straightforward unconstrained
optimization problem solved as an elastic problem with prescribed boundary conditions;

• the minimization of E with respect to p at fixed u and α: this is a nonlinear constrained problem.
Since no space derivatives involves the field p the optimality condition is local although non linear. A
common solution procedure involves a standard return mapping algorithm;

• the minimization of E with respect to α at fixed u and p: this is a box constrained quadratic opti-
mization problem, which can be solved by a linear bound constraint solver; in particular we use the
TAO (Toolkit for Advanced Optimization) library1.

1http://www.mcs.anl.gov/research/projects/tao/
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5.2. One-dimensional traction test

For the one-dimensional traction test, namely the same problem analytically solved in Sect. 4, we have

Ω = (0, L), u(0) = 0, u(L) = U with U increasing from 0

and the response essentially depends on the two dimensionless parameters ℓ/L and θ. The computations
are made with

ℓ/L = 0.15
√
2 ≈ 0.21, θ = 1/

√
2 ≈ 0.71.

Following the method described in the previous section, a solution with a damage localization zone can be
obtained in a closed form. Let us recall its main features. The elastic stage E ends when U = ε̄PL, then
a plastic stage P starts during which the plastic strain field remains uniform in space. The plastic stage
ends when the damage criterion is reached (everywhere) in the bar. That corresponds to the moment when
U = Uc and p = p̄ = pc, Uc and pc being given here by

Uc = εDP(0)L :=
1 + θ2

2θ2
ε̄PL = 1.5 ε̄PL, pc = πDP(0) :=

1− θ2

2θ2
ε̄P = 0.5 ε̄P.

For U > Uc damage occurs and the damage field is localized in an interval I = (x1−∆, x1+∆), the position
of its center x1 being arbitrary. In the damage zone deprived of its center, i.e. in I \ {x1}, the damage field
is given by the first integral (34) which reads here

ℓ2α′(x)2 = α(x) +
θ2σ2

2σ̄2
P

(

1

(1− α(x))2
− 1

)

− 1− θ2

2

(

1− (1− α(x))2
)

.

This first integral gives also the width ∆ of the damage zone which depends only on σ. At the center x1,
α′ and u are discontinuous, a cohesive crack appears and the cohesive law relating [[u]] to σ is obtained by
using the plastic yield criterion and the first integral above. Specifically, one gets

1− α(x1) =

√

σ

σ̄P

, [[u]](x1) =
2ℓε̄D

θ2

√

σ̄P

σ

(

1 + θ2

2
+

√

σ

σ̄P

+
σ

2σ̄P

− θ2σ2

2σ̄2
P

)

.

Finally, the stress-displacement relation σ-U is obtained by using the stress-strain relation, the boundary
condition and the first integral of the damage criterion,

U = [[u]](x1) +
σ

Y0

∫ L

0

dx

(1− α(x))2
.

Note that the graph σ-U presents a snap-back at Uc when the ratio ℓ/L is small enough. Therefore, if one
prescribes a monotonic increasing displacement U , then the evolution is necessarily discontinuous at Uc and
the stress jumps from σ̄P to a smaller value which depends on L.

In Figure 9 the analytic solution is compared to the Finite Element approximation with different mesh
sizes: 20, 50, 100 and 200 elements in Ω. Thick solid lines are used to plot the analytic response, while dotted,
dotted-dashed, dashed and thin solid lines are used to represent the numerical responses at decreasing mesh
size. In Fig. 9c and 9d the integral of the cumulated plasticity and stress are plotted against the applied
end-displacement U : it is evident the critical value where a displacement jump occurs and the final cohesive
phase where despite the existence of [[u]] still the bar sustains a non-vanishing stress σ; the analytic curve is
actually the plot of cohesive law (35). For U within the final cohesive phase, we compare the responses in
terms of damage α(x) and plastic strain p(x) profiles in Figs. 9a and 9b respectively.

In all these cases, the numeric solutions monotonically converge towards the analytic solution as the
mesh size decreases. In particular, comparing Fig. 9b and 9c, one can appreciate a rather surprising mesh
independence of the plastic localization. Indeed, for a sequence of decreasing mesh sizes, the numerical
approximation mimics the singular part of the plastic response (as discussed before a Dirac delta in x = x1)
by a sequence of increasingly localized profiles with monotonically converging subtended areas.
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Figure 9: In 1D comparison of the analytic solution (solid black) with the numeric solutions for the different mesh sizes (20
elem. (dotted); 50 elem. (dot-dashed), 100 elem. (dashed), 200 elem. (thin)): (a) and (b) represent respectively the damage
field α and the additional plastic strain field p− pc at a given time step after the occurrence of the cohesive crack; (c) and (d)
represent respectively the accumulated plastic strain integrated over the domain and the stress-displacement response.

5.3. Two-dimensional traction test

This simulation has the purpose to highlight the effectiveness of both the model and the numeric imple-
mentation in spatial dimensions higher than 1. We choose:

Ω = (0, L)× (0, H), u1(x = 0) = 0, u1(x = L) = U with U increasing from 0,

where (e1, e2) is the natural orthonormal base and the transversal contraction is left free, see Fig. 10a.
Plane strain conditions are assumed and the data are ℓ/L = 0.15

√
2, H/L = 0.2, ν = 0.3, θ = 1/

√
3.

Accordingly, the deformation remains homogeneous in space during the elastic stage and the plastic stage.
The elastic stage ends when U = Ue and σ11 = σe with

Ue

ε̄PL
=

1− ν2√
1− ν + ν2

≈ 1.024,
σe

σ̄P

=
1√

1− ν + ν2
≈ 1.125.

The plastic stage ends when the damage criterion is reached everywhere in the specimen. At this moment,
the values Uc, σ

c
11 and p̄c of the displacement, the normal stress component and the cumulated plastic strain

can be obtained in a closed form, but we give here their numerical values only

Uc ≈ 1.834 ε̄PL, σc
11 ≈ 1.149 σ̄P, p̄c ≈ 0.889 ε̄P.

All these theoretical values are well captured by the alternate minimization algorithm, see Fig. 10d. After
this critical time, the solution can no more be obtained in a closed form and we will refer to the numerical
results only. The numerical computations show that, as in the 1D case, the damage localizes in a strip whose
width is of the order of the internal length ℓ and a cohesive crack nucleates at its center. The phenomenon
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(a)

(b)

(c)
(d)

Figure 10: Numerical results for the 2D traction test:
(a) The reference configuration; (b) The damage field plotted on the deformed shape when U = 2ε̄PL (blue, α = 0; red, α = 1);
(c) The accumulated plastic strain field plotted on the deformed shape when U = 2ε̄PL (blue, p̄ = min; red, p̄ = max); (d) The
average normal stress at x1 = L versus the average prescribed stretching.

is still brutal in the sense that the evolution is discontinuous at this time and the stress drops. Specifically,
in Figure 10d the global response of the specimen is reported; namely the stress component σ11, averaged
on the boundary x = L, is plotted against the end displacement U . One can see the sudden drop of the
stress value when U ≈ 1.7 ε̄PL which is accompanied by the formation of a localized plastic field (actually a
shear band) in the center of the specimen. For a greater value of the end displacement U , we have plotted
in Figs. 10b and 10c the damage field α and the cumulated plastic strain field p̄ respectively. As to be
expected, the plastic localization describes a shear band which is inclined with respect the axis of traction
(the inclination can depend on the width H of the specimen); this zone is centered within the support of
the damage profile. However, whilst the size of the damaged zone can be constitutively controlled, being
proportional to the internal characteristic length ℓ, the size of the plastic strain localization is inessential
and dictated by the mesh size. As in Fig. 9b, it is the actual subtended area in the direction normal to the
discontinuity to have a true physical meaning.

6. Perspectives

Let us finish now by some perspectives.

1. We have only considered in the present paper the case where the plasticity criterion is Von Mises
criterion. A first natural extension will consist in generalizing our approach to arbitrary convex set.

2. We have chosen here a form of the total energy which is the simplest one to couple damage with
plasticity. More complex coupling based on phenomenological considerations or physical mechanisms
should deserve to be analyzed.

3. Our approach leads to a competition between the damage criterion and the plastic yield criterion. The
latter is unbounded in the direction of hydrostatic pressure while the former one is bounded in every
stress direction. Assuming that σ̄P < σ̄D, the plastic criterion is reached before the damage criterion
in the uniaxial traction problem and consequently the fracture occurs along a shear band where the
plasticity is concentrated and which forces the jump discontinuity of the displacement to be tangential.
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In more complex situations, it could happen that the damage criterion be reached at a point without
any preliminary plasticization (because of a triaxiality effect) and hence that a non cohesive crack
nucleates at this point as in the quasi-brittle case. The highlighting of such phenomena will be the
goal of future works.

4. Accordingly, the numerical method will be tested on more complex geometry and loading.

A. Construction of the evolution problem from the irreversibility condition, the stability

principle and the energy balance

A.1. The first order stability conditions

Dividing (12) by h and passing to the limit when h → 0 yields the first order stability conditions:

d

dh
Et
(

ut + hv, αt + hβ,pt + hq, p̄t + hkN‖q‖
)

∣

∣

∣

∣

h=0

≥ 0, ∀(v, β,q) admissible.

Using the definition (9) of the energy and the assumed forms of the field leads to

0 ≤
∫

Ω\(J(ξ
t
)∪J(v))

σt · (∇sv − qR) dx+

∫

Ω\J(v)

σP(αt)kN‖qR‖ dx+

∫

J(v)

σP(αt)κN‖[[v]]‖ dS

+

∫

Ω

(

d′(αt)− 1
2
C
′(αt)σt · σt

)

β dx+

∫

Ω\J(ξ
t
)

2d1ℓ
2∇αt · ∇β dx

+

∫

Ω\J(ξ
t
)

σ′
P
(αt)p̄

R

t β dx+

∫

J(ξ
t
)

σ′
P
(αt)P̄t β dS −

∫

∂FΩ

Ft · v dS (38)

where the spatial dependence has been dropped and

σt = E(αt)(∇sut − pt)

denotes the stress field at time t. The inequality (38) must hold for all v such that v = 0 on ∂DΩ (and
[[v]] · n = 0 on J(v)), all β ≥ 0 and all q (deviatoric) which satisfies (11). Let us derive the different local
conditions which are given by (38).

1. Equilibrium equations. Taking first β = 0, q = 0 and hence J(v) = ∅, integrating by parts the gradient
of v term over Ω \ J(ξt) and considering that the boundary ∂(Ω \ J) = ∂Ω ∪ J+ ∪ J− involves both
faces (with opposite normals) of the given surface J , one gets:

∫

Ω\J(ξ
t
)

σt ·∇sv dx =

∫

∂(Ω\J(ξ
t
))

σtn · v dx−
∫

Ω\J(ξ
t
)

(∇ · σt) · v dx

=

∫

∂FΩ

σtn · v dx−
∫

J(ξ
t
)

[[σt]]n · v dx−
∫

Ω\J(ξ
t
)

(∇ · σt) · v dx. (39)

Thus by standard localization arguments one obtains from (38) and (39) the classical equilibrium
equations and the natural boundary conditions:

∇ · σt = 0 in Ω \ J(ξt), [[σt]]n = 0 on J(ξt), σtn = Ft on ∂FΩ. (40)

Note that the vector stress σtn must be continuous on the jump set J(ξt) but this is not necessarily
true for the other components of the stress tensor. It could happen that σt is discontinuous across
J(ξt) and hence not defined on J(ξt).

2. Plasticity yield criterion in the regular part of the domain. Taking v = 0, β = 0 and hence qS = 0,
(38) gives

∫

Ω\J(ξ
t
)

(

σP(αt)kN‖q‖ − σt · q
)

dx ≥ 0, ∀q smooth(, Tr q = 0). (41)
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In the multi-dimensional case, since Tr q = 0, one gets σt ·q = σD

t ·q where σD

t denotes the deviatoric
part of σt and one deduces from (41) that

σD

t · q ≤ kNσP(αt), ∀q ∈ M
N
s : Trq = 0, ‖q‖ = 1. (42)

This inequality must hold everywhere in Ω \ J(ξt) and hence the stress must satisfy:

‖σD

t ‖ ≤ kN σP(αt) in Ω \ J(ξt). (43)

Thus (43) is actually the standard Von Mises plastic yield criterion obtained as a stability condition
associated with the plastic incompressibility hypothesis and the form of the plastic dissipated energy.
In the one-dimensional case, one simply deduces from (41) that |σt| ≤ σP(αt) in Ω \ J(ξt). But since
σt is a constant and αt is continuous in space, this inequality must hold everywhere.

3. Plasticity yield criterion on the jump set J(ξt). Taking β = 0, qR = 0, v such that J(v) 6= ∅ and
using (40), (38) gives

0 ≤
∫

J(v)

(

σP(αt)κN‖[[v]]‖ − σtn · [[v]]
)

dS. (44)

In the one-dimensional case, since J(v) and [[v]] can be chosen arbitrarily and since κN = 1, one simply
re-obtains that |σt| ≤ σP(αt) must hold everywhere in Ω.
In the multidimensional case, the jump of v is restricted by the plastic incompressibility condition,
[[v]] · n = 0 on J(v). Therefore σtn · [[v]] involves the shear stress only and can read as

σtn · [[v]] =
(

σtn− (σtn · n)n
)

· [[v]].
Considering first v such that J(v) ∩ J(ξt) = ∅ and using the fact that in such a case the direction n

can be chosen arbitrarily, (44) gives the following condition which must hold in Ω \ J(ξ):
(

σtn− (σtn · n)n
)

· t ≤ κNσP(αt), ∀n, t ∈ R
N : ‖n‖ = ‖t‖ = 1,n · t = 0.

It is easy to see that this condition is equivalent to

max
n : ‖n‖=1

‖σtn− (σtn · n)n‖ ≤ κNσP(αt) in Ω \ J(ξt). (45)

So, we obtain a maximal shear stress condition which differs from Von Mises plastic yield criterion.
In fact this maximal shear stress condition (45) is weaker than Von Mises plastic yield criterion (43)
in the sense that (45) is automatically satisfied when (43) holds, but the converse is not true. (The
proof of this property is left to the reader.) Accordingly we can disregard (45).
If we consider now v such that J(v) ⊂ J(ξt), then the normal vector n is fixed by ξt and (44) gives
the following condition on J(ξt):

(

σtn− (σtn · n)n
)

· t ≤ κNσP(αt), ∀t ∈ R
N : ‖t‖ = 1, t · n = 0 (46)

which is equivalent to
‖σtn− (σtn · n)n‖ ≤ κNσP(αt) on J(ξt). (47)

So, the plasticity yield criterion on the jump set is formulated in terms of the norm of the shear stress
vector, what has a sense since the stress vector is well defined on this surface by virtue of (40). Of
course, when all the stress tensor field is continuous and hence well defined on J(ξt), then Von Mises
yield criterion must hold and since it contains the shear stress condition this latter condition can be
disregarded. In the doubt we keep (47).

4. The damage yield criteria. Taking v = 0 and q = 0, integrating by parts the term in ∇αt · ∇β,
we obtain by classical arguments of Calculus of Variations the following damage yield criteria in the
regular part, the singular part and the boundary ∂Ω:

d′(αt) + σ′
P
(αt)p̄

R

t − 1
2C

′(αt)σt · σt − 2d1ℓ
2∆αt ≥ 0 in Ω \ J(ξt) (48)

σ′
P
(αt)P̄t − 2d1ℓ

2[[∂αt/∂n]] ≥ 0 on J(ξt) (49)

∂αt/∂n ≥ 0 on ∂Ω. (50)
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In the case where σP does not depend on α, we recover the damage yield criteria obtained in Pham
and Marigo (2010b); Pham et al. (2011a,b) by the same variational approach and in Comi (1999). But
note that here, because of the coupling term between damage and plasticity, the localization of the
plastic strain on a surface will in general induce a discontinuity of the damage normal derivative and
vice versa.

A.2. The plastic flow rules and the consistency equations as consequences of the energy balance

Assuming that the evolution t 7→ ξt is smooth, t 7→ p̄t is obtained from t 7→ pt by

˙̄pR

t (x) = kN ‖ṗR

t (x)‖ ∀x ∈ Ω \ J(ξt), ˙̄Pt(x) = κN ‖[[u̇t]](x)‖ ∀x ∈ J(ξt),

where

κN =

{

1 if N = 1

kN/
√
2 otherwise

. (51)

Note that t 7→ J(ξt) is not decreasing, i.e. the number of singular points can only increase. Indeed, if a
jump discontinuity of the displacement appears at a point xs at some time ts, then P̄t(xs) > 0 for all t ≥ ts.
Therefore those points are material points and their position does not depend on time, but their number can
increase because new points can appear all along the evolution. Accordingly, using the initial conditions,
we can set

p̄R

t (x) =

∫ t

0

kN ‖ṗR

s (x)‖ds, ∀x ∈ Ω \ J(ξt) and P̄t(x) =

∫ t

0

κN ‖[[u̇s]](x)‖ds, ∀x ∈ J(ξt). (52)

Let us now use the energy balance (13). Expanding the time derivative of the total energy, (13) becomes

0 =

∫

Ω\J(ξ
t
)

(

σt · (∇su̇t − ṗR

t ) + kNσP(αt)‖ṗR

t ‖
)

dx−
∫

∂DΩ

σt n · U̇t dS −
∫

∂FΩ

Ft · u̇t dS

+

∫

Ω\J(ξ
t
)

(

− 1
2
C
′(αt)σt · σt α̇t + d′(αt)α̇t + σ′

P
(αt)p̄

R

t α̇t + 2d1ℓ
2∇αt · ∇α̇t

)

dx

+

∫

J(ξ
t
)

(

σ′
P
(αt)P̄tα̇t + κNσP(αt)‖[[u̇t]]‖

)

dS.

Integrating by parts the terms in ∇su̇t and ∇α̇t above, using the equilibrium equations (40) and the
boundary conditions u̇t = U̇t on ∂DΩ, the energy balance leads to the following equality

0 =

∫

Ω\J(ξ
t
)

(

kNσP(αt)‖ṗR

t ‖ − σt · ṗR

t

)

dx+

∫

J(ξ
t
)

(

κNσP(αt)‖[[u̇t]]‖ − σtn · [[u̇t]]
)

dS

+

∫

Ω\J(ξ
t
)

(

d′(αt) + σ′
P
(αt)p̄

R

t − 1
2
C
′(αt)σt · σt − 2d1ℓ

2∆αt

)

α̇t dx

+

∫

J(ξ
t
)

(

σ′
P
(αt)P̄t − 2d1ℓ

2[[
∂αt

∂n
]]
)

α̇t dS +

∫

∂Ω

2d1ℓ
2 ∂αt

∂n
α̇t dS.

1. The consistency equations. By virtue of the irreversibility condition (10) and the local first order
stability conditions (43), (47), (48)–(50), each of the five integrands above is non negative and hence
each must vanish so that their sum be zero. Therefore, we have obtained the three following consistency
equations for the damage evolution:

(

d′(αt) + σ′
P
(αt)p̄

R

t − 1
2C

′(αt)σt · σt − 2d1ℓ
2 ∆αt

)

α̇t = 0 in Ω \ J(ξt) (53)
(

σ′
P
(αt)P̄t − 2d1ℓ

2[[∂αt/∂n]]
)

α̇t = 0 on J(ξt) (54)

(∂αt/∂n) α̇t = 0 on ∂Ω. (55)
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2. The plasticity flow rules. In the multi-dimensional case, the vanishing of the first integrand gives

σD

t · ṗR

t = kNσP(αt)‖ṗR

t ‖ in Ω \ J(ξt).

But, by virtue of (42) and since Tr ṗR

t = 0, the equality above can hold if and only if the normality
flow rule for the plastic strain rate holds, i.e.

ṗR

t = ‖ṗR

t ‖
σD

t

kNσP(αt)
in Ω \ J(ξt). (56)

In the same way, one deduces from the vanishing of the second integrand and [[u̇t]] · n = 0 that

(

σtn− (σtn · n)n
)

· [[u̇t]] = κNσP(αt)‖[[u̇t]]‖ on J(ξt)

and hence, by virtue of (46), another normality plastic flow rule on the jump set

[[u̇t]] = ‖[[u̇t]]‖
σtn− (σtn · n)n

κNσP(αt)
on J(ξt). (57)

Note that this latter flow rule is rarely mentioned in the literature and the interest reader can refer to
Francfort and Giacomini (2012) where this flow rule is obtained at each interface of an heterogeneous
elastic-plastic body.
In the one-dimensional case, these flow rules read as

ṗR

t = |ṗR

t |
σt

σP(αt)
in Ω \ J(ξt), [[u̇t]] = |[[u̇t]]|

σt

σP(αt)
on J(ξt). (58)
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