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Abstract83

Aims The accurate classification of habitats is essential for effective biodiversity conservation.84

The goal of this study was to harness the potential of deep learning to advance habitat classification85

in the European Union (EU). We aimed to develop and evaluate models capable of assigning86

vegetation-plot records to the habitats of the European Nature Information System (EUNIS), a87

widely used reference framework for European habitat types.88
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Location The framework was designed for use in Europe and adjacent areas.89

Methods We leveraged deep learning techniques, such as transformers (i.e., models with atten-90

tion components able to learn contextual relations between categorical and numerical features),91

that we trained using k-fold cross-validation (CV) on vegetation plots sourced from the European92

Vegetation Archive (EVA), to show that they have great potential for classifying vegetation-plot93

records. We experimented different network architectures, feature encodings, hyperparameter tun-94

ing and noise addition strategies to identify the optimal model. We used an independent test set95

from the National Plant Monitoring Scheme (NPMS) to evaluate its performance and compare its96

results against the traditional expert systems.97

Results We explored the use of deep learning applied to species composition and plot-location98

criteria and we developed a framework for habitat classification containing a wide range of mod-99

els. Our selected algorithm, applied to European habitat types, significantly improved habitat100

classification accuracy, achieving an improvement of over twofold compared to the previous state-101

of-the-art (SOTA) method on an external dataset. The framework is shared and maintained102

through a GitHub repository.103

Conclusions Our results demonstrate the potential benefits of the adoption of deep learning for104

improving the accuracy of vegetation classification. They highlight the importance of incorporating105

advanced technologies into habitat monitoring. Indeed, these algorithms have shown to be best106

suited for habitat type prediction than expert systems. The framework we developed can be used107

by researchers and practitioners to accurately classify habitats.108

Keywords — Artificial intelligence, Biodiversity monitoring, Deep learning, European flora, Ex-109

pert system, Habitat type, Phytosociology, Vascular plant species, Vegetation classification110

1 Introduction111

The term habitat (Hall et al., 1997) encompasses a broad range of definitions (Yapp, 1922). In this112

study, we adopt the following: “plant and animal communities as the characterising elements of the bi-113

otic environment, together with abiotic factors (soil, climate, water availability and quality, and others),114

operating together at a particular scale” (Davies and Moss, 1999). The EUNIS Habitat Classification115

(Moss, 2008) uses this definition and serves as a comprehensive and hierarchical pan-European system116

for habitat identification that covers all types of habitats, which are identified by specific codes, names117

and descriptions. The EUNIS classification system stands nowadays as a widely recognized framework118

for European habitat types (as it has already played a pivotal role in numerous applications, both119

research and applied applications (Evans, 2012), and provides a common language for communication120

among scientists, policy-makers, and other stakeholders). The European Environment Agency (EEA)121

initiated a (still on-going) process of the revision of the EUNIS habitat classification at level three, i.e.,122

habitat complexes, (and sometimes level four, i.e., biotope complexes) of its classification hierarchy.123

This revision led to a more consistent and less ambiguous typology. On this work, we focused on eight124

habitat groups (level one habitats):125

1. Littoral biogenic habitats (MA2)126

2. Inland habitats with no or little soil and mostly with sparse vegetation (U)127

3. Coastal habitats (N)128

4. Wetlands (Q)129

5. Grasslands and lands dominated by forbs, mosses or lichens (R)130

6. Heathlands, scrub and tundra (S)131

7. Forests and other wooded land (T)132

8. Vegetated man-made habitats (V)133

Habitat type classification is a fundamental process integral to ecology, involving automatically134

classifying an area based on its environmental characteristics and species composition. It is done by135
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combining observations of species co-occurrence or abundance with environmental estimates to map136

habitat distributions across landscapes. Several tools for vegetation classification with different logic137

and strategy are available. In particular machine learning algorithms (Hastie et al., 2009) and expert138

systems (Noble, 1987). The former are tools for induction of the independent knowledge base, whereas139

the latter emulate the process of expert classification done by humans by using explicitly defined140

logical formulas. These (numerical) tools can also play a vital role for nature conservation, landscape141

mapping and land-use planning and can facilitate biodiversity management (Estopinan et al., 2024).142

They make monitoring of species and habitats easier and more accurate, provide decision-support for143

nature conservation and guidance for nature restoration and development. Thus, it can be particularly144

valuable in the current context where a significant portion of habitats are at risk of collapsing (at least145

32% of terrestrial habitats and 18% of marine habitats are threatened (Janssen et al., 2016)). Therefore,146

habitat type classification has a crucial role in ecology, and using the EUNIS habitat classification can147

serve as a key instrument for assessing progress towards the European Union’s biodiversity targets.148

On the one hand, many expert systems that have been published by the global community (Tichỳ149

et al., 2019) to protect nature and have long played a crucial role in restoring habitats and species150

worldwide. Whether they classify the vegetation of precisely-defined phytosociological units (Marcenò151

et al., 2018) (Novák et al., 2023), the vegetation of entire countries (Chytrỳ et al., 2012) (Wiser152

et al., 2018) or even the vegetation of larger areas (Chytrỳ et al., 2020) (Mucina et al., 2016), these153

expert systems follow all human decisions. They are usually designed by experts in the field who have154

extensive knowledge of the characteristics of different habitats and their species composition. These155

systems thus employ assignment rules (species-based and/or location-based membership conditions)156

to classify vegetation plots into vegetation or habitat types with formal definitions. However, it’s157

important to note that these definitions can evolve over time, meaning that the structure of the expert158

systems might need to be modified in order to replace current provisional definitions with improved159

ones or to use new vegetation-plot records to characterize habitat types. Moreover, the current version160

of the expert system for automatic classification of European vegetation plots to habitat types of the161

EUNIS habitat classification (i.e., EUNIS-ESy (Chytry et al., 2021)) contains some definitions that162

are:163

• strict, e.g., to be correctly assigned to its habitat, a vegetation plot should contain at least n164

species of a given functional species group, or the total cover of a discriminating species group165

in a vegetation plot should be greater than the total cover of other discriminating species groups166

in the plot,167

• complex, e.g., to be correctly assigned to its habitat, the total cover of a functional species168

group in a vegetation plot should be greater than that of another functional group, excluding169

the species of the former group from the latter group, or the sum of square-rooted percentage170

covers of the species belonging to a discriminating species group in a vegetation plot should be171

greater than the sum of square-rooted percentage covers of the species of another discriminating172

species group,173

• and idiosyncratic, e.g., to be correctly assigned to its habitat, a vegetation plot should belong174

to a dataset, or a vegetation plot shouldn’t be located in a country.175

These intricacies motivate the exploration of alternative approaches, such as the application of deep176

learning algorithms, which we delve into in this study.177

On the other hand, even if they have shown great potential for modeling species distributions178

(SDM) (Botella et al., 2018), modern deep learning techniques have never been applied to classify179

EUNIS habitats, and their application (Černá and Chytrỳ, 2005) to the classification of habitats at a180

global scale is a relatively unexplored territory (Joly et al., 2023). Deep learning techniques are types181

of machine learning models that can automatically learn patterns and features from large amounts182

of data (Botella et al., 2023a) and that are typically designed and trained by data scientists, who183

have expertise in artificial intelligence (AI) and data analysis. As it had already been done for species184

(Deneu et al., 2021), we sought to establish that it was feasible to map EU habitats extent at (very)185

high spatial resolution (Deneu et al., 2022). Thus, we used in-situ plant species composition data,186

information on the location and some environmental features (Leblanc et al., 2022) in a framework187
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with a diverse range of deep learning models that could be trained for different types of habitats in188

order to reach an optimal compromise between accuracy and generalization. Habitat type identification189

has traditionally relied on expert knowledge, a process that is not only time-consuming and costly but190

also susceptible to subjectivity. Advances in machine learning have opened up new opportunities for191

automating this process using large datasets of environmental and and other auxiliary data. We built192

upon these techniques to enable automation and scalability in habitat classification, which forms the193

cornerstone of our study. AI-powered Habitat Distribution Models (HDMs) should thus be suited194

to represent how complex ecological niches and spatial dynamics determine the distribution of many195

habitats in a region. Machine learning could improve predictive performance in HDMs compared to196

expert systems by better mapping the actual realized distribution of habitat types.197

We trained different models on very large volumes of data (by coupling EUNIS types with plant198

species composition recorded in vegetation plots) to develop, share and maintain a generic, free and199

open-source deep learning framework capable of accurately classifying vegetation plots to their habitat200

types. Several crucial features were introduced into the software package to make it generic and201

reusable in a wide variety of contexts. We focused our work on five key areas for (i) high modularity202

(for enhanced flexibility), (ii) new data loaders (to handle both internal and external classification203

criteria (De Cáceres et al., 2015), i.e., respectively species-based and location-based criteria), (iii) new204

model’s architectures (in particular models based on transformers (Vaswani et al., 2017)), (iv) new205

loss functions (i.e., the penalty for an incorrect classification of a vegetation plot, in particular for206

species assemblage prediction with an imbalanced top-k loss (Garcin et al., 2022)) and, (v) a new207

inference module allowing to compute the top-k classification for any user-specified area and plant208

species composition.209

2 Methods210

2.1 Data211

2.1.1 EVA: a comprehensive dataset for habitat classification212

Our data source for training the deep learning framework was drawn from a subset of a data repository213

of vegetation-plot observations (i.e., records of plant taxon co-occurrence and cover-abundance at214

particular sites in plots ranging from 1 m2 to a few hundred m2 which have been collected by vegetation215

scientists (Zhongming et al., 2015)) from Europe and adjacent areas. This EVA database (Chytrỳ et al.,216

2016), which was accessed on 22 May 2023, is an initiative of the Working Group European Vegetation217

Survey (EVS). Each of the vegetation plots typically contained estimates of cover-abundance of each218

species (vascular plant in every vegetation plot, bryophytes and/or lichens in some vegetation plots)219

alongside various supplementary details and additional sources of information on vegetation structure,220

location and environmental features. Although the EVA database represents a valuable resource for221

studying vegetation patterns and dynamics, we were mindful and acknowledged potential limitations222

stemming from the representativeness of the data and the possibility of sampling bias (inherent to223

sets of data assembled from multiple sources and originally collected for various purposes) (Michalcová224

et al., 2011). The final dataset contained a total of 886 260 georeferenced plots (with an average225

of approximately around 20 species per vegetation plot), 228 different habitats and 10 481 different226

species. Refer to Appendix S4 for a detailed overview of all the preprocessing steps and to Figure 1227

for different visualizations.228

2.1.2 NPMS: an independent dataset to evaluate models229

To comprehensively assess and compare the transferability of our models and the EUNIS-ESy, we230

also established an independent and separate test dataset (whose labels weren’t generated by the231

EUNIS expert system nor by our algorithms but relied on human annotations). As most of the ex-232

isting vegetation-plot databases indexed in the Global Index of Vegetation-Plot Databases (Dengler233

et al., 2011) (GIVD) and the Global Vegetation Database (Bruelheide et al., 2019) (sPlot) were al-234

ready included inside EVA, obtaining a representative and high-quality independent dataset for model235

validation was challenging. To address this, we selected the NPMS (Walker et al., 2015). It aims to236

survey plant species across different habitats in the United Kingdom (UK) by utilizing data collected237
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Matched concept Cover %

Artemisia campestris 2.0

Asparagus officinalis 2.0

Bellardia trixago 2.0

Brachypodium phoenicoides 3.0

Dactylis glomerata 13.0

Erigeron sumatrensis 2.0

Lagurus ovatus 3.0

Medicago minima 3.0

Phillyrea angustifolia 88.0

Phragmites australis 2.0

Rostraria cristata 2.0

Silene italica 2.0

Figure 1: Hexagonal binning showing the distribution of vegetation plots from the training dataset.
Zoom in on a specific bin with the raw spatial distribution of the vegetation plots. Further breakdown
on a vegetation plot (assigned to the habitat type S51, i.e., Mediterranean maquis and arborescent
matorral) with the list of co-occurring species.
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Figure 2: Distribution of vegetation plots in the NPMS test set

by citizens (i.e., expert volunteers who carried out surveys of wildflowers and their associated habitats).238

This scheme was designed and developed collaboratively by the Botanical Society of Britain & Ireland239

(BSBI), UK Centre for Ecology & Hydrology (UKCEH), Plantlife and the Joint Nature Conservation240

Committee (JNCC). We specifically chose this dataset because it offered an intriguing opportunity to241

validate the work of numerous European vegetation scientists across generations with a recent citizen242

science project (Bonnet et al., 2023) that employed a systematic protocol and methodology (e.g., the243

participants were allocated a 1km square in which they had to visit five plots in semi-natural habi-244

tats twice a year) and encompassed a wide range of vegetation types, providing valuable insights into245

the potential transferability of our models in a real-world context, beyond expert-driven datasets. It246

offered an interesting contrast by incorporating data collected through citizen science (Bonnet et al.,247

2020), thus expanding our understanding of the generalization of the framework beyond traditional248

scientific datasets. However, this dataset is by nature very different from EVA, and that there is a249

significant distribution shift between the two due to the different collection protocols. So we cannot250

expect the same level of performance. We detail the preprocessing steps to create the test dataset in251

Appendix S4. Refer to Figure 2 for a visual representation of the distribution of the testing dataset.252

2.2 Modeling253

2.2.1 Validation: accounting for the spatial structure of ecological data254

The goal of this paper is to use the floristic and environmental information in several locations to255

train a deep learning tabular model that can predict the habitat type of given points. To mitigate the256

influence of spatial autocorrelation and to ensure that our models generalize well beyond the spatial257

structure of the training data, we split our dataset into ten folds according to a spatial block holdout258

procedure (Roberts et al., 2017). All the vegetation plots were assigned into a grid of 10 km × 10259

km cells, all of these cells were then randomly sampled for one of the folds and each fold was used260

once as an internal validation set while the nine remaining folds formed the training set, allowing us to261

perform ten-fold CV (Stone, 1974). The performance measure reported by the ten-fold CV was then262

the average of the values computed in the loop. This method allowed us to evaluate our approaches263

in a way that limits the effect of the spatial bias in the data without wasting much of it (which can264

occur when arbitrarily setting aside a validation set). Importantly, it is worth noting that, regardless265

of the fold designated for validation in each iteration, every habitat category remained present in the266

training set formed by the remaining nine folds.267
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2.2.2 Models: using deep neural networks on tabular data for classification268

We used the ten-fold CV procedure described above to conduct a rigorous comparative analysis of269

several machine and deep learning models. Since there was not an established benchmark for tabular270

data, we had to work with some of the most used and well-established machine and deep learning algo-271

rithms in competitions, from ensembles of decision trees (Friedman, 2001) to attention-based models272

(Bahdanau et al., 2014). To ensure fairness and optimize their performances, we meticulously tuned273

each model’s main hyperparameters (for the rest, we kept the default configurations recommended274

by the corresponding papers) (Feurer and Hutter, 2019). The existing literature described a wide275

range of diverse machine and deep learning models for tabular data (Borisov et al., 2022), but none of276

them could consistently outperform all the others. To comprehensively assess model performance, we277

adopted a variety of approaches and selected neuron-based, tree-based and transformer-based mod-278

els. We illustrate each model and the associated training procedure in Appendix S1. Five common279

algorithms were retained for evaluation:280

1. A MultiLayer Perceptron classifier (MLP) (Haykin, 1998), i.e., a fully connected class of feed-281

forward artificial neural network. It works by taking input data, passing it through multiple282

layers of interconnected nodes with weighted connections and activation functions (Bircanoğlu283

and Arıca, 2018), and producing output predictions based on the learned patterns in the data.284

2. A Random Forest Classifier (RFC) (Ho, 1995), i.e., a meta estimator that fits a number of decision285

tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive286

accuracy and control over-fitting. A single decision tree works by recursively partitioning the287

input data based on the values of its features to create a tree-like structure, where each internal288

node represents a feature and each leaf node represents a decision or prediction based on the289

input data’s characteristics.290

3. An eXtreme Gradient Boosting classifier (XGB) (Chen and Guestrin, 2016), i.e., an optimized291

distributed gradient boosting algorithm designed to be highly efficient, flexible and portable. It292

works by iteratively training and adding decision trees to the ensemble model, each focusing on293

reducing the residual errors of the previous trees, using a combination of gradient descent opti-294

mization (Ruder, 2016), regularization techniques, and hardware-aware optimization to achieve295

high accuracy and scalability.296

4. A TabNet Classifier (TNC) (Arik and Pfister, 2019), i.e., a novel high-performance and inter-297

pretable canonical deep tabular data learning architecture. It works by selectively attending to298

the most informative features of the input data and using a sparse masking technique to allow299

for efficient and interpretable feature selection, while employing a multi-step decision-making300

process and auxiliary loss functions to enhance its performance and generalization.301

5. A Feature Tokenizer + Transformer classifier (FTT) (Gorishniy et al., 2021), i.e., a model that302

transforms all features (categorical and numerical) to embeddings and applies a stack of trans-303

former layers to the embeddings. It works by transforming all features to tokens and running a304

stack of transformer layers over the tokens, so every transformer layer operates on the feature305

level of one object.306

2.2.3 Encodings: mapping current habitat distributions under different constraints307

The vegetation plots found within EVA contain comprehensive records of plant species co-occurrence308

and abundance. All categorical variables (i.e., the country name, the terrestrial ecoregion, the coastline309

and the location on a coastal dune) are transformed using the simple and widely-used one-hot encoding310

technique (Hancock and Khoshgoftaar, 2020). It is an encoding method where a particular value of a311

categorical variable having n possible categories would be encoded with a 1-dimensional feature vector312

of length n where every component is zero except for the ith component, corresponding to the index313

of the particular category in the set of possible values, which has the value one. All numerical features314

(i.e., the degrees of latitude and longitude and the altitude in meters above sea level of the vegetation315

plot) were left untouched. We proposed different data representations (as it is known that it can be316

vital for the success or failure of models (Bengio et al., 2013)) to ensure the framework’s applicability317

to both abundance and presence–absence surveys (Joseph et al., 2006). Three distinct techniques for318

plant species encoding were employed:319
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1. The cover-abundance of each species, i.e., the natural logarithm of the raw data from EVA, which320

was recorded using a cover-abundance scale (Westhoff and Van Der Maarel, 1978) and then321

transformed to the arithmetic mid-point percent cover value corresponding to the individual322

cover-abundance class following a comprehensive database management system following the323

default values in the Turboveg database management program (Hennekens and Schaminée, 2001).324

2. The presence-absence of each species, i.e., the binarization of the raw data from EVA. Each325

non-zero entry from the original data is converted to the value one, and every explicit zero are326

preserved (Scherrer et al., 2020).327

3. The reciprocal rank of each species, i.e., the inverse of the ordinal ranking of the raw data from328

EVA. Each species is ranked in descending order of its original value (Brun et al., 2023) and is329

then associated with the value of the inverse of its position in the ranking.330

2.3 Evaluation331

2.3.1 Fitting: evaluating modelling algorithms on selected covariates332

All details about the models and their optimization are provided in Appendix S1. We evaluated the333

performance of the expert system on the training set we created. We were fully aware that EVA334

was classified using EUNIS-ESy (using its definitions of individual EUNIS habitats based on their335

species composition and geographic location) but we wanted to see if the vegetation plots would336

remain classified to the same habitat after interpreting the taxon names with the GBIF. We thus kept337

the same 886 260 vegetation plots, we took the names from the original database and proceeded to338

normalize them. Furthermore, unlike our experiments for which we kept only vascular plant species339

and species that were observed at least ten times, we also kept in this case species belonging to other340

phyla (especially bryophytes and lichens since they were used by the expert system in the definition341

of some habitats such as S12, i.e., moss and lichen tundra) and rare species (as rare species with342

occurrences concentrated in a particular habitat could be used as positive indicators of the habitat by343

the expert system). This process increased the number of observations to 18 867 936 (instead of the344

17 718 306 used to evaluate our models) and the number of different species to 17 885 (instead of the345

10 481 used to evaluate our models). Out of the 886 260 vegetation plots, two of them had no species346

left after the species name matching, and as the expert system (unlike our framework) can’t classify347

vegetation plots solely based on external criteria, we added for both vegetation plots a fake species348

named “Unknown species” having a percentage cover of 10%.349

2.3.2 Metrics: computing accuracy to evaluate how well the models are performing350

Some of the vegetation plots that were automatically classified by EUNIS-ESy were assigned to sev-351

eral level three EUNIS habitats. In order to deal with that and to evaluate the effectiveness of our352

classification framework considering the complexity of the habitat classification task, two key metrics353

were selected:354

1. The top-one micro average multiclass accuracy, i.e., 1
N

∑N
i=1 1(yi = ŷi) where y is the target355

values and ŷ is the predictions. It is the conventional accuracy: the model’s prediction must be356

exactly the expected habitat type. This was the most important metric and played a pivotal role357

in our evaluation, as it provided crucial insights into the performance of our approaches when358

we were predicting which habitat was the most likely to be observed at a given location.359

2. The top-three accuracy, i.e., 1
N

∑N
i=1 ei where ei equals 1 if ∀k ∈ {1, 2, 3}, ŷi,k = yi and equals 0360

otherwise and where yi is a single ground-truth label and ŷi,k are candidate labels, both associated361

to a sample i. It means that any of the model’s five highest probability predictions must match362

the expected answer. This metric was useful to assess the performances of our methods on similar363

habitats (i.e., habitats that have almost identical species composition and environmental features364

and are thus hard to distinguish from one another) and on scenarios where a vegetation plot was365

associated with several different habitat labels.366
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2.3.3 Noise: assessing the robustness and generalization of models367

To enhance the robustness (Sietsma and Dow, 1991) of our approaches (to mitigate the risk of the368

phenomenon of overfitting (Dietterich, 1995)), we experimented with the incorporation of controlled369

noise to the input data. We introduced 30% of dropout, i.e., when evaluating the performance of370

the models we gave each present species a 30% chance of being randomly considered absent in the371

input data. This deliberate introduction of noise served the vital purpose of reducing the risk that our372

models will overfit the noise in the data by memorizing various peculiarities of some vegetation plots.373

Instead, it encouraged the models to identify more general and transferable patterns, thus bolstering374

their ability to make accurate predictions across diverse ecological contexts. It also helped to imitate375

the omission of plant species during vegetation sampling (e.g., if some species were small and not easily376

visible) (Morrison, 2021). After encoding the data and adding (or not) noise to it, standardization of377

the features (i.e., by removing the mean and scaling to unit variance in order to have a mean of observed378

values of zero and a standard deviation of one) was always initiated (these values were estimated from379

the training data, and then the transformation was consistently applied across all datasets), as it has380

been shown that such manipulation can benefit to some models by improving the numerical stability381

of the calculations (Kuhn et al., 2013).382

3 Results383

3.1 Selection: finding the best performing model384

Table 1 contains a comprehensive overview of all the results we obtained (with the models already385

tuned), showcasing the performance of each model-encoding combination. Among the various config-386

urations tested, the model-encoding combination with the best results is a MLP coupled with features387

encoded using the reciprocal rank method. It outperformed other models both with and without noise388

addition to the data and when measuring the performance with the top-one micro average multiclass389

accuracy (since it is the best suited metric in our case, as we want to prioritize the most likely habitat390

for each vegetation plot).391

Table 1: Comparison of the top-one (in black) and top-three (in grey) micro average multiclass accuracy
averaged over the ten CV folds for every model and encoding, with and without noise addition (best
top-one result overall with and without noise addition in green background shading)

Models

Ten-fold CV Ten-fold CV with 30% dropout

Cover
abundance

Presence-
absence

Reciprocal
rank

Cover
abundance

Presence-
absence

Reciprocal
rank

MLP 88.33/97.99 76.69/95.78 88.74/98.55 72.12/86.46 65.83/88.22 73.20/89.19
RFC 80.31/95.72 73.44/93.74 79.39/95.41 72.56/91.88 66.32/89.90 72.62/92.20
XGB 88.33/98.84 76.52/96.23 86.80/98.56 73.18/88.15 64.74/86.08 72.49/88.58
TNC 79.02/91.55 68.73/87.99 80.22/92.24 65.75/81.17 60.37/82.04 67.20/82.95
FTT 86.62/96.88 75.09/93.78 86.98/97.18 71.18/84.83 64.76/86.50 71.68/86.21

Moreover, to gain insights into the run time (since all the experiments were conducted under the392

same conditions and some people may have to use the models in the regime of a low tuning time393

budget), we conducted an in-depth analysis and plotted the time-performance characteristic for the394

models in Figure 3. For each meticulously tuned configuration, we conducted ten experiments, each395

with different random seeds (all integers ranging from zero to nine) and reported both the (averaged)396

training performance (denoting how well the models can fit the data it has seen during the training397

process) and the results obtained on the test set (using the default seed). As the encoding and the noise398

addition did not significantly affect the training time nor the inference time, we only show the time of399

the models used with the reciprocal rank and without noise addition. We can see that while the RFC400

and TNC have the lowest training time, their inference time are significantly higher compared to the401
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Figure 3: Training with ten different random states on the entire EVA training dataset of 886 260
samples (left) and prediction on the NPMS testing dataset of 7 521 samples (right) time–performance
characteristics for selected models, with features encoded with the reciprocal rank method (without
noise addition). The circle size reflects the top-one micro average multiclass accuracy standard de-
viation (left) and the size of the model, i.e., the number of trainable parameters for deep learning
algorithms and the number of estimators (i.e., respectively the number of trees in the forest for RFC
and the number of gradient boosted trees for the XGB) for machine learning algorithms (right).

MLP, so there is no universally superior solution in terms of time resources. These two comparisons402

(i.e., Table 1 and Figure 3) allowed us to make some interesting findings, highlighting the nuanced403

trade-offs between various models and encodings, and emphasizing the importance of selecting the404

most appropriate approach based on both performance and runtime considerations:405

• Models based on decision tree ensembles, such as RFC or XGB, can still outperform some of the406

deep learning models we kept in our experiments, while requiring either a significantly shorter407

(RFC) or a significantly higher (XGB) amount of time to train.408

• Although there has been a clear trend towards transformer-based solutions in recent years, these409

models, such as TNC and FTT, do not consistently outperform standard neural network archi-410

tectures, such as MLP.411

• The reciprocal rank encoding usually leads to a better performance than the cover-abundance412

(except for tree-based models), despite providing less information about the plant species com-413

position in a given vegetation plot.414

• Recent state-of-the-art specialized neural network architectures (e.g., TNC and FTT) and strong415

traditional ML methods (e.g., RFC and XGB) do not provide any benefit over a tuned MLP,416

which is still more than a simple baseline or a good sanity check (Kadra et al., 2021).417

Based on these promising findings, we opted to proceed with the configuration that emerged as418

the standout performer (i.e., using a MLP classifier with features encoded using the reciprocal rank419

method and no noise addition) for the subsequent experiments. Indeed, this option was the best420

trade-off between predictive performance and computational complexity. This strategic choice will be421

useful for the next phases of our research (i.e., evaluation and interpretability of this configuration and422

rigorous comparison with the expert system). We dive into the explainability of our models and the423

ecological interpretability of the results in Appendix S6 (for example, we show that around 85% of the424

information about the habitat classification of a vegetation plot is brought by vascular plant species425

only). Having concluded the rigorous process of model selection, which included hyperparameter tuning426

and the identification of the most effective encoding technique, we proceeded to re-train the chosen427

model on the entire training dataset. This approach allowed us to evaluate the model’s performance428

in a holistic manner (i.e., without partitioning the available data into sets and holding out one of them429

for evaluation) to compare it to the EUNIS-ESy.430

3.2 Evaluation: diving into the performance of the best model431

Up until now, we employed the micro average multiclass accuracy to measure the performance of432

our models. Due to significant class imbalance within the dataset (e.g., we had almost 10 000 times433
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more samples of the R22 habitat than samples of the R1L habitat in the training set), we aggregated434

the contributions of all habitats to compute the average metric. However, in some cases, the micro435

average may not be the most appropriate metric to evaluate the overall performance of the models.436

For example, what if we were interested in measuring the performance of the model on each habitat437

separately, rather than considering the overall performance of the model across all habitats? In such438

cases, we turn to the macro average multiclass accuracy metric instead (still with k = 1 and k = 3),439

which is obtained by computing micro average multiclass accuracy for each class separately and then440

taking the average over classes. This approach ensures that the habitats with only a few vegetation441

plots contribute the same as the habitats with thousands of vegetation plots to the assessment of442

the model’s performance. The use of the macro average multiclass accuracy mitigates the potential443

issue of smaller classes being overshadowed by larger classes in the overall evaluation of the model’s444

performance.445

Before delving into the habitat-specific performance of our model, we conducted further experi-446

mentation by training two new MLPs with the reciprocal rank encoding using the exact same hyper-447

parameters as before, except for one crucial alteration: the reduction that is applied over labels which448

we replaced by the macro average (the statistics were calculated for each label and then averaged, but449

we still used one and three as the numbers of highest probability or logit score predictions considered450

to find the correct labels). There are much more variations between the different folds and a reduction451

in overall accuracy compared to our previous micro-average results (across all ten CV folds, the model452

achieved an average multiclass macro-average accuracy of respectively 73.97% and 90.80% for the top-453

one and top-three metrics, against an average of 88.74% and 98.55% in micro-average accuracy). While454

our goal was to maintain consistency by employing the same model throughout our experiments, it455

is important to acknowledge that for habitat-wise performance assessments it is possible to enhance456

the results of the MLP model. One promising avenue for improvement is to explore alternative loss457

functions, for example by switching the currently employed loss function (i.e., the cross-entropy loss458

(Good, 1952)) for the imbalanced top-one and top-three losses, which, after fine-tuning using a grid of459

parameter values recommended by the authors of the function, outperformed the model’s performance460

under the existing setup.461

3.3 Comparison: evaluating the performance of hdm-framework and EUNIS-462

ESy463

Of all 886 260 vegetation plots from the dataset we used for the expert system, 742 498 were classified to464

exactly one habitat of the level three of one of the eight habitat groups we considered in this study (i.e.,465

MA2, N, Q, R, S, T, U or V). Among the 143 762 other vegetation plots, 11% (i.e., 15 558 vegetation466

plots) remained unclassified and 4% (i.e., 5748) were classified to more than one habitat. The rest of467

the vegetation plots (i.e., 122 456 vegetation plots) were classified as one of: habitat groups (i.e., level468

one habitats), broad habitat types (i.e., level two habitats) or unrevised habitas (i.e., habitats not part469

of the current EUNIS list). The expert system achieved an accuracy of 85.20%. As the expert system470

itself was the tool that was used to classify the vegetation plots from EVA, this study shows the lack471

of robustness to species names normalization of the expert system which clearly overfits the original472

data. We dive deeper into this evaluation exercise in Appendix S5.473

4 Discussion474

4.1 Main advantages of hdm-framework475

We explain in detail the methodology and use of hdm-framework in Appendix S7. Our different476

experiments have highlighted the remarkable efficacy of AI in classifying vegetation-plot records into477

their respective EUNIS habitats, marking a significant milestone as the first tool to automate this478

process across Europe using deep learning techniques. Notably, our framework not only surpasses the479

performance of traditional expert systems but also achieves over double the classification accuracy, all480

while processing data more than 50 times faster than a recently developed electronic expert system.481

This efficiency carries profound academic and practical implications, benefiting phytosociologists and482

related fields by potentially expediting research processes and enabling timely conservation initiatives.483
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Furthermore, our work not only underscores the potential of AI within this domain but also points484

toward a broader paradigm shift in favor of advanced AI solutions. While we acknowledge the need for485

continued exploration and potential challenges on the horizon, our framework lays a robust foundation486

for future research and applications in habitat classification. It represents a significant leap forward in487

the practical utility of the EUNIS habitat classification system.488

EUNIS-ESy, relying on species cover information, encounters limitations when attempting to clas-489

sify vegetation plots that only record the presence of species without specifying their covers. In contrast,490

our hdm-framework seamlessly accommodates presence-only data, extending the applicability of such491

data. Furthermore, traditional expert systems typically assess every vegetation plot within a database,492

scrutinizing each one to determine if it aligns with one or more predefined habitat definitions specified493

in their scripts. This process can sometimes lead to vegetation plots remaining unclassified by the ex-494

pert system. In contrast, the deep learning models we present in this study were meticulously trained495

to assign each vegetation plot to (at least) one habitat.496

hdm-framework is an HDM platform facilitating the use of species occurrence data and environ-497

mental features retrieved from multiple sources. Inspired from the existing literature, we proposed498

several methods that are fast enough to deliver results for thousands of vegetation plots in less than499

a second. Provided with a set of 195 tunable parameters, hdm-framework has been designed for high500

customization flexibility, so it can be adapted to anyone’s objectives and computing environment. In501

contrast to the expert system which doesn’t extract itself environmental features, the framework will502

derive them from the vegetation plot coordinates using the relevant shapefiles already provided and503

store the calculated values (e.g., location on coastal dunes or in a certain ecoregion) to the header data504

of the vegetation plots.505

4.2 Potential improvements for practical applications506

We discuss the inherent limitations of the training and testing dataset in Appendix S4. An essential as-507

pect of our methodology revolves around the normalization of species names using the GBIF Backbone508

Taxonomy. This step plays a pivotal role in ensuring consistency and facilitating cross-dataset compar-509

isons, making it a necessary component of our approach. However, it is important to acknowledge that510

this process comes with inherent trade-offs, including the loss of valuable information pertaining to511

species variations and local taxonomic nuances. The harmonization of species names, while promoting512

uniformity, can inadvertently lead to the amalgamation of distinct taxa or the division of a single taxon513

into multiple names. Such outcomes have the potential to influence the accuracy of our classification514

results. Notably, in some instances, phytosociology experts conducting vegetation surveys may have515

recorded species at a higher taxonomic level, such as specifying the genus (e.g., Quercus), without516

providing precise species designations. This practice presents a challenge during the normalization517

process, particularly when the GBIF Backbone Taxonomy relies on explicit species information. Con-518

sequently, the normalization of higher-level taxonomic names may not always be feasible, potentially519

impacting the precision of species classification within our framework. It is imperative to recognize520

and navigate this inherent trade-off between achieving consistency and comparability through species521

name normalization and the potential loss of finer taxonomic details. This trade-off significantly influ-522

ences the interpretation and reliability of our classification results, warranting careful consideration in523

our biodiversity monitoring efforts. Furthermore, the GBIF API works against data kept in the GBIF524

Checklist Bank (in partnership with the Catalogue of Life (Bánki et al., 2023)) which taxonomically525

indexes all registered checklist datasets in the GBIF network. It is important to note that this taxon-526

omy store is constantly evolving through updates and takes taxonomic and nomenclatural information527

from different and new sources, thus potentially resulting in unreproducible results. However, the528

widespread public deployment of large language models in recent months (Zhao et al., 2023) might529

offer new opportunities. For example, it could soon be possible to train AI tools on data that have530

non-standardized nomenclature.531

Moreover, the efficacy of our model is intrinsically linked to the taxonomic diversity of vascular532

plant species present in the training dataset (EVA). As our models are trained on this dataset, their533

ability to recognize and classify species is contingent on exposure during training. While in Europe534
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there are more than 20 000 species of vascular plants (Med, 2006), our framework was trained on a535

subset comprising 10 481 distinct vascular plants. Consequently, when tasked with classifying plots536

that contain species not represented in the training set, certain limitations come to the forefront.537

In instances where our trained models encounter species absent from the training data, we confront538

a challenge. To address this issue, it becomes necessary to exclude species not encompassed in the539

training set, as our models may lack familiarity with these unrepresented species. Consequently, this540

constraint introduces the potential for classification errors, especially in scenarios where a substantial541

proportion of species within a plot diverge from those within the training set. This limitation is a542

crucial consideration when applying our framework to novel datasets (Schmidt et al., 2012) or datasets543

characterized by high species diversity (Botella et al., 2023b). To enhance the framework’s utility and544

robustness, future endeavors could concentrate on broadening the training set to encompass a more545

extensive spectrum of species. This expansion could be achieved through various means, including546

the acquisition of supplementary data sources (Estopinan et al., 2022) or collaboration with domain547

experts to identify and incorporate missing species (Szymura et al., 2023). Exploring strategies to548

mitigate the impact of species mismatch between training and testing data would be pivotal, further549

augmenting the framework’s versatility and applicability in diverse vegetation classification scenarios.550

An essential limitation of our framework pertains to its reliance on predefined habitats for classifi-551

cation. The predictions generated by our models are grounded in the established definitions of EUNIS552

habitats at the time of model training. In this paper, we focus on eight distinct habitat groups, reflect-553

ing the updated EUNIS classification: littoral biogenic habitats, coastal habitats, wetlands, grasslands554

and lands dominated by forbs, mosses or lichens, heathlands, scrub and tundra, forests and other555

wooded land, inland habitats with no or little soil and mostly with sparse vegetation and vegetated556

man-made habitats. However, it’s paramount to recognize that the dynamism of environmental clas-557

sifications can result in evolving habitat definitions or the emergence of entirely new habitats, driven558

by agencies such as the EEA. In such cases, our models would necessitate retraining with vegetation559

plots categorized according to these revised or newly established habitat types. This process can be560

resource-intensive and potentially environmentally taxing, given the associated energy consumption561

(Strubell et al., 2020). Therefore, we must acknowledge this limitation and emphasize the importance562

of periodic model updates to align with any changes in habitat definitions. Furthermore, it underscores563

the need to consider the ecological footprint of these retraining procedures and explore strategies to564

optimize their efficiency and sustainability. This may encompass efforts to minimize energy consump-565

tion, employ renewable energy sources during the training phase, or investigate eco-friendly training566

methodologies. By doing so, we can ensure that our framework remains adaptable and environmentally567

responsible in the face of evolving habitat classifications.568

Currently, our framework operates by selecting an integer K (by default set to one) and returning569

the top-K habitats with the highest score, a method known as top-K classification. Given the com-570

plexity of classifying vegetation plots into a substantial number of habitats (a total of 228), relying on a571

single value for K can lead to challenges in precision. To address this issue, we conducted experiments572

with K = 3. However, our observations revealed that in cases of high certainty, such as T3B (i.e., Pinus573

canariensis forest, where our MLP model, trained using the reciprocal rank feature encoding method574

without noise addition, achieved an impressive average top-one micro average multiclass accuracy of575

98.95% across all ten folds), employing K > 1 resulted in an excessive number of predictions. Con-576

versely, for instances characterized by significant ambiguity, like R1L (i.e., Madeiran oromediterranean577

siliceous dry grassland, where the same model, trained using the same method, achieved an average578

accuracy of 0.00% with the same metric and evaluation procedure, although it should be noted that579

only ten occurrences of this habitat are present in EVA), employing K ≤ 3 (for example) proved to580

be overly restrictive. An alternative and promising strategy to address this challenge is the imple-581

mentation of conformal prediction (Gammerman et al., 2013). This approach dynamically adjusts the582

number of predicted habitats based on the computed ambiguity for each sample, while still aiming to583

maintain an average of K predictions across all samples, a technique referred to as average-K classifi-584

cation (Lorieul et al., 2021). While this approach presents a potential solution for handling ambiguity585

more effectively, it is important to note that it has not yet been integrated into our framework but586

represents a promising avenue for future development.587

14



5 Conclusions588

In summary, the deep learning framework presented in this paper has demonstrated its remarkable589

capability to accurately assign vegetation-plot records to their respective EUNIS habitats, as confirmed590

through rigorous expert evaluation. This framework not only achieves high accuracy but also ushers591

in a new era of possibilities. It helps big vegetation data classification and management. The results592

produced, that are understandable to experts in vegetation classification, highlight the importance of593

dominant species and the species composition of sites as a whole. The fusion of data sources offers594

unprecedented flexibility, making it suitable for a wide spectrum of applications across diverse habitat595

types. For instance, as we consistently assign a substantial number of vegetation plots from various596

European regions to EUNIS habitat classifications using our framework, it paves the way for pre-597

cise characterizations of species composition, distribution patterns, and their intricate environmental598

associations within these habitats. The development of this comprehensive framework represents a599

significant step towards more efficient, accurate and cost-effective classification of habitat types.600
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Acosta, A. T. R., FitzPatrick, Ú., et al. (2018). Classification of european and mediterranean coastal802

dune vegetation. Applied Vegetation Science, 21(3):533–559.803

Med, E. (2006). Euro+ med plantbase–the information resource for euro-mediterranean plant diversity.804

October 9 2014.805
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