
The TREXIO file format
and library
Anthony Scemama

6/04/2023

Lab. Chimie et Physique Quantiques, FERMI, UPS/CNRS, Toulouse

(France)

Last Monday in my office

M. Boggio Pasqua has made hundreds of CAS-SCF calculations with Molpro
S. Battaglia wants to use these wavefunctions to apply his new variants of
CAS-PT2 with Molcas

They asked me
"I wrote a Molden file with Molpro, but I am not sure I will be able to read it in Molcas
because of the ordering of the d orbitals. Is going to work?"

Last Monday in my office

My answer
I don’t know:

1 I remember that in 2008 Molden files produced by Molcas were incorrect (1/
√
3),

so I don’t know if the molden files produced by Molpro are correct.

2 I don’t know if the molden file produced by most of the codes follow the
documentation, and use the "Molden" ordering of d orbitals.

3 Be sure to read all the basis set parameters, because if you rely on the name given
to the program, the MO coefficients might not be transferable.

This talk
How to make more science with multiple codes with very little effort

Last Monday in my office

My answer
I don’t know:

1 I remember that in 2008 Molden files produced by Molcas were incorrect (1/
√
3),

so I don’t know if the molden files produced by Molpro are correct.
2 I don’t know if the molden file produced by most of the codes follow the

documentation, and use the "Molden" ordering of d orbitals.

3 Be sure to read all the basis set parameters, because if you rely on the name given
to the program, the MO coefficients might not be transferable.

This talk
How to make more science with multiple codes with very little effort

Last Monday in my office

My answer
I don’t know:

1 I remember that in 2008 Molden files produced by Molcas were incorrect (1/
√
3),

so I don’t know if the molden files produced by Molpro are correct.
2 I don’t know if the molden file produced by most of the codes follow the

documentation, and use the "Molden" ordering of d orbitals.
3 Be sure to read all the basis set parameters, because if you rely on the name given

to the program, the MO coefficients might not be transferable.

This talk
How to make more science with multiple codes with very little effort

Last Monday in my office

My answer
I don’t know:

1 I remember that in 2008 Molden files produced by Molcas were incorrect (1/
√
3),

so I don’t know if the molden files produced by Molpro are correct.
2 I don’t know if the molden file produced by most of the codes follow the

documentation, and use the "Molden" ordering of d orbitals.
3 Be sure to read all the basis set parameters, because if you rely on the name given

to the program, the MO coefficients might not be transferable.

This talk
How to make more science with multiple codes with very little effort

Composition

A program is a function p : input −→ output

If the output of a program p1 is of the same type as the input of a program p2, we
can define a new program p3 = p2 ◦ p1:

p1 : t1 → t2

p2 : t2 → t3

p2 ◦ p1 : t1 → t3

Composition

A program is a function p : input −→ output
If the output of a program p1 is of the same type as the input of a program p2, we
can define a new program p3 = p2 ◦ p1:

p1 : t1 → t2

p2 : t2 → t3

p2 ◦ p1 : t1 → t3

Unix philosophy

Douglas McIlroy (1978)

1 Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding new "features".

2 Expect the output of every program to become the input to another, as yet
unknown, program. Don’t clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don’t insist on interactive input.

Examples
git log -1 | head -1 | cut -d ’ ’ -f 2

45 years later, the unix pipe is still widely used!
Monolythic codes are contrary to these principles

Unix philosophy

Douglas McIlroy (1978)

1 Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding new "features".

2 Expect the output of every program to become the input to another, as yet
unknown, program. Don’t clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don’t insist on interactive input.

Examples
git log -1 | head -1 | cut -d ’ ’ -f 2

45 years later, the unix pipe is still widely used!
Monolythic codes are contrary to these principles

Unix philosophy

Douglas McIlroy (1978)

1 Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding new "features".

2 Expect the output of every program to become the input to another, as yet
unknown, program. Don’t clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don’t insist on interactive input.

Examples
git log -1 | head -1 | cut -d ’ ’ -f 2

45 years later, the unix pipe is still widely used!
Monolythic codes are contrary to these principles

Input/Output of TREX codes

Quantum Package (AS): CIPSI
Input: xyz coordinates, AOs, a wave function
Output: MOs, CI expansion, 1e/2e Integrals, 1e/2e Density matrices

NECI (A. Alavi): FCIQMC
Input: 1e/2e Integrals in MO basis
Output: CI expansion, 1e/2e Density matrices

QMC=Chem (AS), TurboRVB (S. Sorella), CHAMP (C. Filippi): QMC
Input: A wave function
Output: A wave function

GammCor (K. Pernal): SAPT + AC
Input: 1e/2e Integrals, 1e/2e Density matrices

Situation two years ago

Composition

Question
How can we use composition to build easily new programs?

Answer
Making codes have the same signature with same type for input and output:

code : t −→ t

By modifying the code
Or by composition: c2 ◦ code ◦ c1 : t −→ input −→ output −→ t

With Unix programs, the type t is a string.
The string type is too primitive for Ψ, so we need to define a common file format.

Composition

Question
How can we use composition to build easily new programs?

Answer
Making codes have the same signature with same type for input and output:

code : t −→ t

By modifying the code
Or by composition: c2 ◦ code ◦ c1 : t −→ input −→ output −→ t

With Unix programs, the type t is a string.
The string type is too primitive for Ψ, so we need to define a common file format.

File formats

In Unix philosophy, text files are recommended:
portability (architecture independent)
can be read as a stream
readable in any language
no conversion required

If the common format is text, the programs can be composed with all unix tools
(grep, cut, head, tail, text editors, . . .)

Problems with text files
Large storage size (archiving), but can be compressed
Expensive conversion from ASCII to binary representation
=⇒ Poor I/O performance, bad for HPC

File formats

In Unix philosophy, text files are recommended:
portability (architecture independent)
can be read as a stream
readable in any language
no conversion required

If the common format is text, the programs can be composed with all unix tools
(grep, cut, head, tail, text editors, . . .)

Problems with text files
Large storage size (archiving), but can be compressed
Expensive conversion from ASCII to binary representation
=⇒ Poor I/O performance, bad for HPC

Proposed compromise

TREXIO: Domain-specific I/O Library

Very permissive license (BSD-3-clause)
Domain-specific: Do one thing and do it well −→ wave functions
Portable (C API): usable with any language
Single front-end, multiple back-ends

Text back-end: multiple text files
HDF5 back-end: single binary file

Advantages
Binary files if wanted (performance, small files)
Text files if wanted (unix tools, git repositories, etc)
HDF5 binary files are portable (endianness)
If HDF5 is de-activated at compile time: zero dependency (pure C code)

Data stored with TREXIO

No external knowledge is needed to compute Ψ(r1, ..., rN):

Ψ is just a mathematical function defined by parameters.
We define a general form for Ψ, and we want to be able to read/write its
parameters.
All the needed numbers are stored in the file: no external database or integral
computation required.

Disambiguation

“cc-pVDZ” is not enough information:

Disambiguation

Example: Different AO conventions
Ordering of the AOs:

d−2, d−1, d0, . . . or d0, d+1, d−1, . . .?
dx2 , dy2 , dz2 , . . . ?

=⇒ The order is fixed and given in the documentation.

Are the AOs assumed normalized?
Should dxy have the same normalization coefficient as dz2?∫∫∫

(x y G (x , y , z))2 dx dy dz 6=
∫∫∫ (

z2 G (x , y , z)
)2

dx dy dz

=⇒ All the normalization coefficients are stored in the file.

Disambiguation

Example: Different AO conventions
Ordering of the AOs:

d−2, d−1, d0, . . . or d0, d+1, d−1, . . .?
dx2 , dy2 , dz2 , . . . ?

=⇒ The order is fixed and given in the documentation.
Are the AOs assumed normalized?
Should dxy have the same normalization coefficient as dz2?∫∫∫

(x y G (x , y , z))2 dx dy dz 6=
∫∫∫ (

z2 G (x , y , z)
)2

dx dy dz

=⇒ All the normalization coefficients are stored in the file.

Data stored with TREXIO
Hierarchical data layout:

Groups
Metadata Electron Nucleus ECP Basis QMC
AO MO Determinant State Cell PBC
AO_1e_int MO_1e_int RDM AO_2e_int MO_2e_int grid
CSF Amplitude Jastrow

Inside each group, multiple values

Example: Nucleus group

Variable Type Dimensions Description
num dim Number of nuclei
charge float (nucleus.num) Charges of the nuclei
coord float (3,nucleus.num) Coordinates of the atoms
label str (nucleus.num) Atom labels
point_group str Symmetry point group
repulsion float Nuclear repulsion energy

Data stored with TREXIO
Hierarchical data layout:

Groups
Metadata Electron Nucleus ECP Basis QMC
AO MO Determinant State Cell PBC
AO_1e_int MO_1e_int RDM AO_2e_int MO_2e_int grid
CSF Amplitude Jastrow

Inside each group, multiple values

Example: Nucleus group

Variable Type Dimensions Description
num dim Number of nuclei
charge float (nucleus.num) Charges of the nuclei
coord float (3,nucleus.num) Coordinates of the atoms
label str (nucleus.num) Atom labels
point_group str Symmetry point group
repulsion float Nuclear repulsion energy

API

Computable function names (32- or 64-bit variants):
trexio_<read|write|has>[_safe]_<group>_<data>[_32|_64]
(trexio_file, data[, size])

Safe API: Takes max dimension as arguments for memory safety

Returns an error code for error handling

1 #define MAX_SIZE 10
2 double charge_array[MAX_SIZE];
3 trexio_exit_code rc;
4

5 rc = trexio_read_nucleus_charge(trexio_file, charge_array);
6 rc = trexio_read_safe_nucleus_charge_64(trexio_file, charge_array, MAX_SIZE);

Usable in C, C++, Fortran, Python, Julia, OCaml

Auto-generated

Literate programming with Org-mode: easy to extend

API

Computable function names (32- or 64-bit variants):
trexio_<read|write|has>[_safe]_<group>_<data>[_32|_64]
(trexio_file, data[, size])

Safe API: Takes max dimension as arguments for memory safety

Returns an error code for error handling

1 #define MAX_SIZE 10
2 double charge_array[MAX_SIZE];
3 trexio_exit_code rc;
4

5 rc = trexio_read_nucleus_charge(trexio_file, charge_array);
6 rc = trexio_read_safe_nucleus_charge_64(trexio_file, charge_array, MAX_SIZE);

Usable in C, C++, Fortran, Python, Julia, OCaml

Auto-generated

Literate programming with Org-mode: easy to extend

API

Computable function names (32- or 64-bit variants):
trexio_<read|write|has>[_safe]_<group>_<data>[_32|_64]
(trexio_file, data[, size])

Safe API: Takes max dimension as arguments for memory safety

Returns an error code for error handling

1 #define MAX_SIZE 10
2 double charge_array[MAX_SIZE];
3 trexio_exit_code rc;
4

5 rc = trexio_read_nucleus_charge(trexio_file, charge_array);
6 rc = trexio_read_safe_nucleus_charge_64(trexio_file, charge_array, MAX_SIZE);

Usable in C, C++, Fortran, Python, Julia, OCaml

Auto-generated

Literate programming with Org-mode: easy to extend

API

Computable function names (32- or 64-bit variants):
trexio_<read|write|has>[_safe]_<group>_<data>[_32|_64]
(trexio_file, data[, size])

Safe API: Takes max dimension as arguments for memory safety

Returns an error code for error handling

1 #define MAX_SIZE 10
2 double charge_array[MAX_SIZE];
3 trexio_exit_code rc;
4

5 rc = trexio_read_nucleus_charge(trexio_file, charge_array);
6 rc = trexio_read_safe_nucleus_charge_64(trexio_file, charge_array, MAX_SIZE);

Usable in C, C++, Fortran, Python, Julia, OCaml

Auto-generated

Literate programming with Org-mode: easy to extend

API

Computable function names (32- or 64-bit variants):
trexio_<read|write|has>[_safe]_<group>_<data>[_32|_64]
(trexio_file, data[, size])

Safe API: Takes max dimension as arguments for memory safety

Returns an error code for error handling

1 #define MAX_SIZE 10
2 double charge_array[MAX_SIZE];
3 trexio_exit_code rc;
4

5 rc = trexio_read_nucleus_charge(trexio_file, charge_array);
6 rc = trexio_read_safe_nucleus_charge_64(trexio_file, charge_array, MAX_SIZE);

Usable in C, C++, Fortran, Python, Julia, OCaml

Auto-generated

Literate programming with Org-mode: easy to extend

API

Computable function names (32- or 64-bit variants):
trexio_<read|write|has>[_safe]_<group>_<data>[_32|_64]
(trexio_file, data[, size])

Safe API: Takes max dimension as arguments for memory safety

Returns an error code for error handling

1 #define MAX_SIZE 10
2 double charge_array[MAX_SIZE];
3 trexio_exit_code rc;
4

5 rc = trexio_read_nucleus_charge(trexio_file, charge_array);
6 rc = trexio_read_safe_nucleus_charge_64(trexio_file, charge_array, MAX_SIZE);

Usable in C, C++, Fortran, Python, Julia, OCaml

Auto-generated

Literate programming with Org-mode: easy to extend

org-mode

Example (Fortran)

1 use trexio ! ISO-C-binding module to be included with your code
2 double precision :: charge(3)
3 integer :: n
4 integer(trexio_t) :: f ! File handle
5 integer(trexio_exit_code) :: rc ! Return code
6

7 ! Write
8 f = trexio_open('water.h5', 'w', TREXIO_HDF5, rc) ! rc -> TREXIO_SUCCESS
9 charge = (/ 8., 1., 1. /)

10 rc = trexio_write_nucleus_num(f, 3)
11 rc = trexio_write_nucleus_charge(f, charge)
12 rc = trexio_close(f)
13

14 ! Read
15 f = trexio_open('water.h5', 'r', TREXIO_HDF5, rc) ! rc -> TREXIO_SUCCESS
16 rc = trexio_read_nucleus_num(f, n) ! n = 3
17 charge(:) = 0.
18 rc = trexio_read_nucleus_charge(f, charge) ! charge = (/ 1., 2., 3./)
19 rc = trexio_close(f)

Example (Python)

1 import trexio
2

3 # Write
4 with trexio.File('water.h5', mode='w', back_end=trexio.TREXIO_HDF5) as f:
5 charge = [8., 1., 1.]
6 trexio.write_nucleus_num(f,3)
7 trexio.write_nucleus_charge(f,charge)
8

9 # Read
10 with trexio.File('water.h5', mode='r', back_end=trexio.TREXIO_HDF5) as f:
11 n = trexio.read_nucleus_num(f) # n = 3
12 charge = trexio.read_nucleus_charge(f) # charge = [1., 2., 3.]

Example (C)

1 #include <trexio.h>
2 #include <assert.h>
3

4 trexio_exit_code rc;
5

6 /* Write */
7 trexio_t* f = trexio_open("water.h5", 'w', TREXIO_HDF5, &rc);
8 double charge[] = { 8., 1., 1. };
9 rc = trexio_write_nucleus_num(f, 3); assert (rc == TREXIO_SUCCESS);

10 rc = trexio_write_nucleus_charge(f, charge); assert (rc == TREXIO_SUCCESS);
11 rc = trexio_close(f);
12

13 /* Read */
14 charge = { 0., 0., 0. };
15 f = trexio_open("water.h5", 'r', TREXIO_HDF5, &rc);
16 rc = trexio_read_nucleus_num(f, n); assert (rc == TREXIO_SUCCESS);
17 rc = trexio_read_nucleus_charge(f, charge); assert (rc == TREXIO_SUCCESS);
18 rc = trexio_close(f);

TREXIO tools

https://github.com/TREX-CoE/trexio_tools

Repository of tools to manipulate TREXIO files:
Spherical −→ Cartesian AO conversion
Numerical computation of AO overlap matrix compared with the one stored in the
file: =⇒ debugging
Compare numerical computation of MO overlap matrix with identity: =⇒
debugging when no integrals are available
Converters for GAMESS, Gaussian, PySCF, FCIDUMP, Molden
. . .
Contributions welcome! :-)

https://github.com/TREX-CoE/trexio_tools

First applications of TREXIO

Checking PySCF −→ TurboRVB interface:
PySCF −→ TREXIO −→ QP: check energy
TREXIO −→ TurboRVB: OK

QP −→ TREXIO −→ NECI: Compare CIPSI and FCIQMC estimates of FCI energy
QP −→ TREXIO −→ TurboRVB
QP −→ TREXIO −→ GammCor: SAPT with CIPSI density matrices
Introduction of TREXIO in FHI-AIMS: CIPSI and QMC with numerical atomic
basis sets
. . .

First applications of TREXIO

Checking PySCF −→ TurboRVB interface:
PySCF −→ TREXIO −→ QP: check energy
TREXIO −→ TurboRVB: OK

QP −→ TREXIO −→ NECI: Compare CIPSI and FCIQMC estimates of FCI energy

QP −→ TREXIO −→ TurboRVB
QP −→ TREXIO −→ GammCor: SAPT with CIPSI density matrices
Introduction of TREXIO in FHI-AIMS: CIPSI and QMC with numerical atomic
basis sets
. . .

First applications of TREXIO

Checking PySCF −→ TurboRVB interface:
PySCF −→ TREXIO −→ QP: check energy
TREXIO −→ TurboRVB: OK

QP −→ TREXIO −→ NECI: Compare CIPSI and FCIQMC estimates of FCI energy
QP −→ TREXIO −→ TurboRVB

QP −→ TREXIO −→ GammCor: SAPT with CIPSI density matrices
Introduction of TREXIO in FHI-AIMS: CIPSI and QMC with numerical atomic
basis sets
. . .

First applications of TREXIO

Checking PySCF −→ TurboRVB interface:
PySCF −→ TREXIO −→ QP: check energy
TREXIO −→ TurboRVB: OK

QP −→ TREXIO −→ NECI: Compare CIPSI and FCIQMC estimates of FCI energy
QP −→ TREXIO −→ TurboRVB
QP −→ TREXIO −→ GammCor: SAPT with CIPSI density matrices

Introduction of TREXIO in FHI-AIMS: CIPSI and QMC with numerical atomic
basis sets
. . .

First applications of TREXIO

Checking PySCF −→ TurboRVB interface:
PySCF −→ TREXIO −→ QP: check energy
TREXIO −→ TurboRVB: OK

QP −→ TREXIO −→ NECI: Compare CIPSI and FCIQMC estimates of FCI energy
QP −→ TREXIO −→ TurboRVB
QP −→ TREXIO −→ GammCor: SAPT with CIPSI density matrices
Introduction of TREXIO in FHI-AIMS: CIPSI and QMC with numerical atomic
basis sets
. . .

Conclusion

Monday (evening) in my office

1 Molden −→ TREXIO −→ Quantum Package
2 Compute the energy
3 Confirm that Molden file is OK
4 “You should now modify Molcas to Read/Write TREXIO files”
5 “You should also advise Molpro developers to Read/Write TREXIO files”

Summary

Summary

Conclusion

Quotation
“TREXIO will one day become the JPEG of quantum chemistry” (Anonymous)

TREXIO documentation: https://trex-coe.github.io/trexio/
TREXIO source code: https://github.com/trex-coe/trexio/
ArXiv preprint: https://arxiv.org/pdf/2302.14793.pdf to appear in JCP

https://trex-coe.github.io/trexio/
https://github.com/trex-coe/trexio/
https://arxiv.org/pdf/2302.14793.pdf

