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TREX QMC Codes

CHAMP (Claudia Filippi)

Wave function optimization:
Jastrow, CI, MOs
Ground/Excited states
Geometry optimization

TurboRVB (Sandro Sorella +
Michele Casula)

Molecular and Periodic
systems
JAGP, Pfaffian, . . .
LRDMC

QMC=Chem (Michel Caffarel + Me!)

DMC as “Post-Full-CI” energy calculations (CIPSI)
Very large CI expansions (millions of determinants)
Designed with HPC in mind
Highly optimized with W. Jalby’s group (UVSQ) in 2011-2013
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The TREX CoE

TREX CoE: Targeting REal chemical accuracy at the eXascale
Started in Oct. 2020
Objective: Make codes ready for exascale systems

How: Instead of re-writing codes, provide libraries
One library for high-performance (QMCkl)
One library for exchanging information between codes (TREXIO)
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The QMC kernel library (QMCkl)



Programming for the exascale

Progress in quantum chemistry requires codes with new ideas/algorithms
New ideas/algorithms are implemented by physicists/chemists
Different scientists have different programming language knowledge/preference
Exascale machines are horribly complex to program

Question
Is it reasonable to ask physicists/chemists to write codes for exascale machines?
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No: Proof

Zn+1 = Zn + aXn + Yn

1 do i=1,n
2 Z(i) = Z(i) + A * X(i) + Y(i)
3 end do

(from https://github.com/jeffhammond/dpcpp-tutorial)

https://github.com/jeffhammond/dpcpp-tutorial


No



The dream

A compiler1 that can read an average researcher’s code and transform it into highly
efficient code on an exascale machine.

1Wikipedia: A compiler is a computer program that translates computer code written in one
programming language (the source language) into another language (the target language)



Reality

Artificial Intelligence was not ready in 2021 when we started the project . . .



Reality

. . . so we decided to use Natural Intelligence, and add a human layer between the
machine and the researchers : a biological compiler



Strategy

Identify the common computational kernels of QMC
Implement these kernels in a human-readable library (QMC experts)
Bio-compile the human-readable library in a HPC-library (HPC experts)
Scientists can link either library with their codes



Benefits of this model

For scientists
The choice of the programming language is not imposed to the scientist
The code can stay easy to understand by the physicists/chemists
Performance-related aspects are delegated to the library
Codes will not die with a change in hardware
Scientific code development does not break the performance
Scientists don’t lose control on their codes

Separation of concerns
Scientists will never have to manipulate low-level HPC code
HPC experts will not be required to be experts in theoretical physics
Better re-use of the optimization effort among the community
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The QMCkl Documentation
library



QMCkl documentation library

The API is C-compatible: QMCkl appears to scientists like a C library =⇒ can be
used in all other languages
System functions in programmed C (memory allocation, thread safety, etc)
Computational kernels programmed in simple Fortran for readability
A lot of documentation (remember: the HPC compiler is a human!)



Literate programming

Literate programming is a programming paradigm introduced by Donald Knuth
in which a computer program is given an explanation of its logic in a natural
language, such as English, interspersed with snippets of macros and traditional
source code, from which compilable source code can be generated. (Wikipedia)



Documentation library

Literate programming with org-mode:
Here, comments are more important than code
Can add graphics, LATEXformulas, tables, etc
Documentation always synchronized with the code
Some functions can be generated by embedded scripts
Web site auto-generated when code is pushed

Instead of writing comments documenting code, we write code illustrating
documentation.



Literate programming with org-mode



Generated code



Generated web site



Identified kernels

At each QMC step, we need to evaluate Eloc(r1, . . . , rN) = ĤΨ(r1,...,rN)
Ψ(r1,...,rN) :

Ψ(r1, . . . , rN)

∆iΨ(r1, . . . , ri , . . . , rN): kinetic energy
~∇iΨ(r1, . . . , ri , . . . , rN): drift in the stochastic process

Kernels implemented and well tested today

AOs: χ(r), ~∇χ(r),∆χ(r)
MOs: φ(r), ~∇φ(r),∆φ(r)
Jastrow correlation factor (eN, ee, eeN)
Inverses of small matrices

Work in progress
Everything else required to compute Ψ, ∇Ψ and ∆Ψ.
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Dependencies between kernels

Eloc(R) = Epot(R) + Ekin(R)

Epot(R) = Vee(R) + VeN(R) +

VNN(R) + VECP(R)

Ekin(R) = −1
2

∆Ψ(R)

Ψ(R)

Ψ(R) = Φ(R)J(R)

. . .

All the graph is invalidated updated when the electron coordinates are changed.



Algorithms



Set up

Before computing anything, QMCkl needs to be given a trial wave function.

Setting wave function parameters
Wave function exchange between codes is a major difficulty
Our solution:

Define a standard format for wavefunction parameters
TREXIO: TREX Input/Output library (see Evgeny Posenitskiy’s presentation)

Initialization of QMCkl
Two ways:

1 Control : Each array can be set by hand
2 Simplicity : Read all the wave function parameters from a TREXIO file



Atomic Orbitals (AOs)

Atomic Orbitals

Rs(r) = Ns |r − RA|ns
Nprim∑
k=1

aks fks exp (−γks |r − RA|p) .

Flexible
Software like GAMESS use different normalization factors for d orbitals
Implementing Slater-type orbitals is a minor modification (in the very long to-do
list)
Contribution from the FHI-AIMS group for the evaluation of numerical AOs
Separation of the radial and angular components packed in shells
Efficient computation of powers of x , y , z to maximize data re-use



Atomic Orbitals: Linear scaling

Definition of an atomic radius for each nucleus
beyond which all AOs are zero (VGLa).
Primitives are sorted in ascending order of the
exponents.
Only non-zero elements are computed

aVGL: value, gradients, Laplacian



Molecular Orbitals (MOs)

Molecular Orbitals

φi (rj) =
∑
k

Aikχk(rj) B1 = A · C1

∇xφi (rj) =
∑
k

Aik∇xχk(rj) B2 = A · C2

∇yφi (rj) =
∑
k

Aik∇yχk(rj) B3 = A · C3

∇zφi (rj) =
∑
k

Aik∇zχk(rj) B4 = A · C4

∆φi (rj) =
∑
k

Aik∆χk(rj) B5 = A · C5



Sparse / dense matrix multiplication

QMC=Chem (2013): https://doi.org/10.1002/jcc.23216
Exploits the common sparse character of the AO matrices:

When χ(r) = 0 because r is too far, all the derivatives are also zero
Quadratic scaling

Can be fully vectorized
>60% of peak performance on Sandy-Bridge CPUs

https://doi.org/10.1002/jcc.23216


Sparse / dense matrix multiplication

1 do j=1,point_num
2 mo_vgl(:,:,j) = 0.d0
3 do k=1,ao_num
4 if (ao_vgl(k,1,j) /= 0.d0) then
5 c1 = ao_vgl(k,1,j)
6 c2 = ao_vgl(k,2,j)
7 c3 = ao_vgl(k,3,j)
8 c4 = ao_vgl(k,4,j)
9 c5 = ao_vgl(k,5,j)

10 do i=1,mo_num
11 mo_vgl(i,1,j) = mo_vgl(i,1,j) + coefficient_t(i,k) * c1
12 mo_vgl(i,2,j) = mo_vgl(i,2,j) + coefficient_t(i,k) * c2
13 mo_vgl(i,3,j) = mo_vgl(i,3,j) + coefficient_t(i,k) * c3
14 mo_vgl(i,4,j) = mo_vgl(i,4,j) + coefficient_t(i,k) * c4
15 mo_vgl(i,5,j) = mo_vgl(i,5,j) + coefficient_t(i,k) * c5
16 end do
17 end if
18 end do
19 end do



Sparse / dense matrix multiplication



Electron-Nucleus Cusp fitting

φcusp i (r) = φi (r)− φsAi (r) +
3∑

k=0

fk |r − RA|k , where |r − RA| < rcusp,A

φsAi : contributions of the s AOs centered at A
to MO φi .
3 conditions:

Electron-nucleus cusp at |r − RA| = 0
Continuity of the MO: φcusp i = φi when
|r − RA| = rcusp,A
Continuity of the gradient:
∇φcusp i (r) = ∇φi (r) when |r − RA| = rcusp,A



3-body component of the Jastrow factor

Jastrow factor

Jeen(r,R) =

Nnucl∑
α=1

Nelec∑
i=1

i−1∑
j=1

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

clkpα (rij)
k
[
(Riα)l + (Rjα)l

]
(Ri α Rjα)(p−k−l)/2

can be rewritten as

Jeen(r,R) =

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

Nnucl∑
α=1

clkpα

Nelec∑
i=1

R̄i ,α,(p−k−l)/2 P̄i ,k,α,(p−k+l)/2 (↓ complexity)

with

P̄i ,k,α,l =

Nelec∑
j=1

r̄i ,k,j R̄j ,α,l . (GEMM)



3-body component of the Jastrow factor

∇imJeen(r,R) =

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

Nnucl∑
α=1

clkpα

Nelec∑
i=1

Ḡi ,m,α,(p−k−l)/2 P̄i ,α,k,(p−k+l)/2 +

Ḡi ,m,α,(p−k+l)/2 P̄i ,α,k,(p−k−l)/2 + R̄i ,α,(p−k−l)/2 Q̄i ,m,α,k,(p−k+l)/2 +

R̄i ,α,(p−k+l)/2 Q̄i ,m,α,k,(p−k−l)/2 + δm,4
(

Ḡi ,1,α,(p−k+l)/2 Q̄i ,1,α,k,(p−k−l)/2 + Ḡi ,2,α,(p−k+l)/2 Q̄i ,2,α,k,(p−k−l)/2 +

Ḡi ,3,α,(p−k+l)/2 Q̄i ,3,α,k,(p−k−l)/2 + Ḡi ,1,α,(p−k−l)/2 Q̄i ,1,α,k,(p−k+l)/2 +

Ḡi ,2,α,(p−k−l)/2 Q̄i ,2,α,k,(p−k+l)/2 + Ḡi ,3,α,(p−k−l)/2 Q̄i ,3,α,k,(p−k+l)/2
)

with

Ḡi ,m,α,l =
∂ (Riα)l

∂ri
, ḡi ,m,j ,k =

∂ (rij)
k

∂ri
, and Q̄i ,m,α,k,l =

Nelec∑
j=1

ḡi ,m,j ,k R̄j ,α,l



Speedup



HPC implementations



CPU

MAQAO, developed by the UVSQ team, is used to help us optimize the CPU code
Loop-level diagnostics
Vectorization ratio
Hints to improve efficiency

Algorithms rewritten in C:
C compilers are usually more mature than Fortran on new hardware
Access to more low-level features than Fortran (pinned memory, alignment, inline
assembly, etc)

Precision can be changed on-the-fly: switch to single-precision if possible
Specialization:

Specialization for s, p and d AOs
Inverse of small matrices hard-coded for 2× 2 to 5× 5
Small matrix multiplication
. . .



Cofactor 4× 4



GPU

GPU library has the same functions, suffixed with _device

Two different flavours: OpenMP or OpenACC
Possibility to use CPU and GPU library together in the same code
In early development, not fully integrated to our codes yet (work in progress)
Although the kernels are fast on Nvidia GPUs, GPU acceleration is not clear
because of data transfer

Maybe efficient on next generation of hardware

On GPU, brute-force CuBLAS DGEMM is faster than sparse AO-MO
transformation. Energy efficiency?



GPU: major difficulties with OpenMP

Tensor core instructions are not generated in OpenMP kernels =⇒≤ 50% peak DP
Conflict between OpenMP runtime of the code and of QMCkl-GPU =⇒

Need to compile the code with GPU compiler (Nvfortran)
May not compile, or with low CPU efficiency
Our solution: decouple QMCkl-CPU and QMCkl-GPU and recover CPU performance
with QMCkl-CPU

RocBLAS ∼ CuBLAS, but some OpenMP kernels have 10× lower performance on
AMD GPUs than Nvidia (under investigation. . . )
Unreliable software stack: =⇒ Compared to CPU, very inefficient in human
resources
Open Question:

Should we have opted instead for vendor-specific implementations? (Cuda, HIP)



Technical aspects

1 $ tar -zxvf qmckl.tar.gz
2 $ cd qmckl
3 $ ./configure --enable-hpc
4 $ make -j 32
5 $ make check
6 $ make install

QMCkl has been
used in

C / C++
Fortran
Python
Julia
Rust

Very few dependencies:
BLAS/Lapack (CPU)
TREXIO (optional) with HDF5 (optional)

BSD license: very permissive. You can
distribute the tar.gz with your code
Hosted on GitHub:
https://github.com/trex-coe/qmckl

https://github.com/trex-coe/qmckl


Integration into TREX codes



QMC=Chem

Single-core benchmark: C60, Hartree-Fock/cc-pVQZ/ECP(BFD)
Time for a single MC step (all-electrons)
4140 AOs, 120 MOs, 240 electrons

CPU Compiler QMCkl milliseconds Speedup
Intel(R) Core(TM) i7 ifort/mkl - 24.58
(8-core Laptop, 2.8GHz) ifort/mkl gcc12 24.06 1.02x

ifort/mkl icx 23.85 1.03x

gfortran/openblas - 30.58
gfortran/openblas gcc12 26.04 1.17x

ARM Neoverse V1 gfortran/armpl - 41.24
(80 cores, 3GHz) gfortran/armpl gcc12 31.91 1.29x



CHAMP

Single-core benchmark: C60, Hartree-Fock/cc-pVXZ/ECP(BFD)
Short VMC run
4140 AOs, 120 MOs, 240 electrons

Basis # AOs Compiler QMCkl seconds Speedup
cc-pVDZ 840 ifort/mkl - 315.45

gcc12 218.29 1.45x
icx 212.35 1.49x

cc-pVTZ 2040 ifort/mkl - 565.67
gcc12 287.32 1.97x
icx 271.68 2.08x

cc-pVQZ 4140 ifort/mkl - 993.42
gcc12 462.74 2.15x
icx 441.32 2.25x



Other possible applications beyond accelerating QMC

Reproducibility of QMC calculations (Jastrow factors)
3D visualization software:

AO or MO visualization
Interpretative methods like AIM or ELF

Numerical integration
Computation of density grids for DFT with gradients
Jastrow factor in transcorrelated methods (Quantum Package)

Teaching QMC algorithms in Jupyter notebooks
Implementation of QMC methods in traditional quantum chemistry software



Example : Evaluate MOs on a grid

1 import qmckl
2 import numpy as np
3

4 def main(trexio_filename):
5 context = qmckl.context_create() # Create a QMCkl context
6 qmckl.trexio_read(context, trexio_filename) # Read the TREXIO file into the context
7

8 nucl_num = qmckl.get_nucleus_num(context) # Get the number of nuclei
9 nucl_coord = qmckl.get_nucleus_coord(context, 'N', nucl_num*3) # Get the nuclear coordinates

10 nucl_coord = np.reshape(nucl_coord, (3, nucl_num))
11 mo_num = qmckl.get_mo_basis_mo_num(context) # Get the number of MOs
12

13 point = setup_grid_points(nucl_coord)
14 point_num = len(point)
15

16 qmckl.set_point(context, 'N', point_num, np.reshape(point, (point_num*3))) # Give points to QMCkl
17

18 mo_value = qmckl.get_mo_basis_mo_value(context, point_num*mo_num) # Get the values of the MOs
19

20 qmckl.context_destroy(context) # Free QMCkl resources
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