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Enhancing Exoskeleton Transparency with Motion
Prediction: An Experimental Study

Alexandre Oliveira Souza' 2, Jordane Grenier?, Francois Charpilletl, Serena Ivaldi!, Pauline Maurice

Abstract—Controlling active exoskeletons for occupational
assistance is a challenge. Unlike for rehabilitation exoskeletons,
Electromyography (EMG) sensors can hardly be used for
control in an industrial environment. The control of assistive
exoskeletons needs to rely on onboard sensors to follow the
human and assist when needed. This study explores the use
of motion prediction, to enhance exoskeleton control in the
absence of payloads. When no payloads are involved, the
exoskeleton should be transparent meaning that the interaction
forces between the exoskeleton and the user should be minimal.
We conducted an experiment using a 3D-printed active elbow
exoskeleton and compared exoskeleton control methodologies
based on dynamic modeling and human motion prediction.
Fifteen participants performed a repetitive pointing task under
a baseline, two non-predictive controllers and two predictive
controllers. The results demonstrated a significant reduction
in interaction forces—up to 45%—with predictive controllers
compared to non-predictive controllers. While motion prediction
enhanced exoskeleton transparency, the force magnitude in this
study was small, so users could hardly discern the improvement.
Future research will investigate motion prediction for exoskele-
ton control in the context of load-handling assistance.

I. INTRODUCTION

Occupational exoskeletons are a promising solution to help
reduce work-related musculoskeletal disorders, owing to their
potential to assist or augment the human user by providing ad-
ditional torque when needed [1], [2]. They can be categorized
into passive and active devices. Passive exoskeletons rely on
springs or mechanical actuation to provide assistive torque to
the user. They are designed for specific tasks (e.g., shoulder
support in overhead work [3], lumbar support in forward bent
postures [4]). However they lack versatility: they have been
shown more useful for static work [5], and their high task-
specificity is an obstacle to their long-term acceptance [6].
Conversely, active exoskeletons rely on controllable actuators,
which allow for more versatility since assistive torques can
be adapted to the context and the user’s needs. However,
providing appropriate and timely assistance remains a chal-
lenge [7]: when assistance is not needed, exoskeletons must be
transparent for the user and the assistive torque must be given
at the right time, when payloads must be carried, for example.

Lower-limb exoskeleton controllers generally leverage the
cyclicity of locomotion (e.g., walking, running, stairs climb-
ing) to generate phase-dependent torque profiles [8], [9].
Conversely, upper-limb movements are rarely cyclical, hence
similar techniques cannot apply to upper-limb exoskeletons.
A popular line of research uses electromyography (EMG),
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Fig. 1: Experimental setup: A participant performing the
pointing task with the exoskeleton (the red arrows show
the joint rotation directions, only the elbow is actuated, the
other joints are passive). The movement of the cursor on the
screen was controlled with the exoskeleton elbow flexion.
Both predictive and non-predictive controllers were tested, in
order to assess the effect of motion prediction on exoskeleton
transparency.

or even Electroencephalography (EEG), signals to detect the
human’s motion intention and adapt the upper-limb assistive
torque accordingly [10]-[12] . But such approaches are largely
limited to lab studies, due to the difficulty in using EMG data
in real-life settings.

An alternative approach is to perform motion prediction
based on kinematic data, ideally using only sensors embedded
on the exoskeleton to limit invasiveness. Human motion pre-
diction is an active field of research in various areas, such as
pedestrian intention prediction [13] or human-robot collabora-
tion [14]. Generative models [15], Recurrent Neural Networks
[16] or Transformer-based diffusion models [17] have been



used to predict human intention. Simpler architectures such
as Multi-Layer Perceptrons (MLP) have also shown compa-
rable or better results with easier-to-train algorithms [18].
However, few studies have proposed to use kinematic-based
motion prediction for upper-limb exoskeleton control. Jamsek
et al. combined Probabilistic Movement Primitives with a
flow controller for repetitive task assistance [19]. Lanotte et
al. used adaptive Dynamic Motion Primitives to predict the
user’s hip motion in discrete movements with a hip assistance
exoskeleton for load-carrying [20]. In a previous work, we
introduced an LSTM-based motion prediction architecture for
upper-limb exoskeleton control [21].

Motion prediction therefore seems a promising avenue
to improve active exoskeleton control. For torque-controlled
exoskeletons, it could help compensate for dynamic effects
or uncertainties in the exoskeleton dynamic model, thereby
enhancing the interaction with the user.

A crucial concept in human-exoskeleton interaction is
transparency [22], defined as the ability to not apply any
undesired force: when no assistance is needed, the human-
exoskeleton interaction force should be minimal to avoid
perturbing the human motion [23]. When working with a
robotic manipulator, Jarrasse et al. showed that motion pre-
diction could increase transparency [24]. But to the best of
our knowledge, no study has evaluated the benefit of motion
prediction on exoskeleton transparency.

This work investigates whether adding motion prediction
in the control of an upper-limb exoskeleton affects trans-
parency. We propose an MLP architecture to predict the arm
motion of the user and exploit this prediction to compute the
assistive torque of an elbow exoskeleton (Section II). In a
pointing task user-study, we compare prediction-based con-
trollers with standard gravity-compensation and dynamics-
compensation controllers (Section III). Results show that
prediction reduces human-exoskeleton interaction force, i.e.
improves transparency, but does not noticeably improve the
user’s perception of the exoskeleton (Section IV).

II. EXOSKELETON
A. Hardware Description

The exoskeleton used in this work is a 3D printed pro-
totype upper-limb exoskeleton, with a 3 degrees of freedom
(DoFs) passive shoulder joint and a 1 DoF actuated elbow
joint (Fig.1). It is attached to the user’s arm and forearm
with straps, but fixed to a supporting structure above the
shoulder joint. The lengths of the exoskeleton arm and forearm
are adjustable to fit different users. The exoskeleton weighs
1.01 kg, and the mass of the forearm part is 0.293 kg. Inertial
parameters of the exoskeleton structure are calculated with the
Solidworks CAD model, using the measured mass of each part
and assuming a uniform mass distribution within each part.

The exoskeleton elbow is actuated with a direct-drive brush-
less motor of 200 W (rated torque of 1 N.m), controlled by
an STM32-G431-Discovery ESC microcontroller!. An AS56

I'This prototype has been designed specifically for a transparency study,
and not for load manipulation, hence the limited actuation power.

positional encoder measures the motor angular position (genc),
from which the motor angular velocity (gen.) and accelera-
tion (gen.) are estimated with low-pass filtering and numer-
ical derivation. Two LPMS-CU2 Inertial Measurement Units
(IMUs) are placed on the arm and forearm of the exoskeleton.
In addition to providing linear acceleration (&;,,, ) and angular
velocity (gimq), the IMUs’ orientation (q;n,,) is estimated
using an embedded Kalman filter. A strain gauge is mounted
between the exoskeleton forearm and the forearm cuff, and
calibrated to measure interaction forces (Fj,). All sensors
and the microcontroller are connected to a USB hub that
communicates with a remote computer.

The microcontroller (low-level control) uses Field-Oriented
Control (FOC) to drive the motor in torque mode, according to
the torque reference (7.,,4) provided by the remote computer
(high-level control, see Section II-C). FOC is done using the
SimpleFOC Arduino library [25]. The torque-to-current cal-
ibration is done statically, and additional damping is applied
in the control loop to increase stability. The low-level control
loop runs at 1kHz and communicates with the computer at
110 Hz through Serial. The overall control architecture of the
exoskeleton is displayed in Fig. 2.

B. Motion Prediction

When motion prediction is used in the exoskeleton control,
the computation of the reference elbow torque 7.,,4 in the
high-level control is based on the predicted angular position
q;lb of the exoskeleton elbow joint. In this work, given that
we focus on a 1 DoF movement, we use a light-weight
MLP network for the prediction [18]. The MLP is trained
to approximate the function f, predicting the future value of
the exoskeleton elbow position ¢/ at a prediction horizon
t, based on the time-series history t; of ¢°* (Seq to one
paradigm):

f(‘hel—bthat) = ‘Iteﬁ)tp = qzlb' (D

We use a simple MLP architecture containing 2 layers of
32 neurons (the parameters of the network architecture were
hand-tuned to minimize its size for a sufficient prediction
performance). In this work, we empirically selected a past
window t;, of 500 ms and a prediction horizon ¢, of 120 ms.
The MLP is trained using supervised learning on data from a
pilot experiment (see Section III-C).

C. Exoskeleton Control

This study aims to evaluate the effect of motion prediction
on transparency. Hence, we compare the performance of pre-
dictive controllers (7.,,q is computed using the exoskeleton
predicted angular position q;”’) with standard (non-predictive)
controllers. Since we focus on transparency, the goal of the
exoskeleton motor torque is only to compensate for the effects
due to the exoskeleton structure (there is no external load
compensation, nor does the exoskeleton support part of the
user’s arm weight). We compare a baseline condition where
the exoskeleton motor is turned off, two standard controllers
from the literature [26] [27], and a predictive version of
these two controllers. The different controllers are described
hereafter and summarized in Fig. 2:
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Fig. 2: Control scheme of the exoskeleton. ¢ is the vector of generalized coordinates of the exoskeleton and ¢ and ¢ are the

corresponding velocity and acceleration

1) Exoskeleton off (O): The motor is turned off. Thanks to
the direct-drive actuation, the exoskeleton is backdrivable and
can easily be moved even when unpowered.

2) Gravity compensation (G): The exoskeleton torque
compensates for the gravity effects of the exoskeleton struc-
ture according to*:

Temd = G(Q) 2

with ¢ the generalized coordinates of the exoskeleton (elbow
angular position and upper-arm Cartesian orientation), and G
the vector of gravity effects.

3) Dynamic compensation (D): The exoskeleton torque
compensates for the full dynamics of the exoskeleton structure
according to dynamic model equation:

Temd = M(q)§ + C(q, ) + G(q) 3)

with ¢ and ¢ the exoskeleton velocity and acceleration respec-
tively, estimated from numerical derivation (Section II-A), M
the inertia matrix, and C' the vector of Coriolis and centrifugal
effects.

4) Gravity compensation with Prediction (GP): This con-
troller expands the gravity compensation controller by adding
a predictive correction, in order to help compensate for ill-
modeled effects. The correction is defined as a proportional
control between the predicted position q;”’ and the current
position ¢¢* of the elbow joint:

Tema = G(q) + K (2" — ¢°*) 4)

with K the gain of the correction.

5) Dynamic compensation with Prediction (DP): This
controller expands the dynamic compensation controller by
adding the same predictive correction as in GP:

Tema = M(q)§ + C(q, Q)i+ G(q) + K(¢"* — ¢°™*). (5)

2In the remaining of the paper, 7.,,,q actually corresponds only to the
elbow component of the gravity (resp. dynamic) model equation. We omit
the component notation in the equations for the sake of simplicity.

The online computation of the exoskeleton dynamic model
is done with the Pinocchio library [28]. The value of K in the
predictive controllers is experimentally tuned to 0.3 N.m.

III. EXPERIMENT

We conducted a user study to compare the effect on trans-
parency of the 4 controllers and the baseline described in
the previous section. Participants performed a virtual pointing
task, common in exoskeleton studies [29], and both objective
and subjective metrics for transparency were assessed. The
experiment is described hereafter.

A. Participants

15 volunteers participated in the experiment (9 men and 6
female; 13 right-handed and 2 left-handed; age: 26.7 + 2.4 yo;
height: 1.7140.10 m; mass: 68.1413.7kg). Participants were
recruited from a convenience sample of lab members with no
exoskeleton experience. They declared no musculoskeletal or
neurological disorder in the upper limb in the past months.
All participants signed an informed consent form before par-
ticipating in the experiment. The experiment was approved by
the Ethics Committee of Inria (COERLE) and was conducted
in accordance with the Declaration of Helsinki.

B. Experimental Setup

1) Experimental Task: Participants were instructed to per-
form a virtual pointing task with their left arm, consisting in
moving a cursor on a screen placed in front of them (Fig. 1).
The vertical position of the cursor was controlled by the angu-
lar position of the exoskeleton elbow joint. One trial consisted
in moving the cursor (displayed as a blue circle) from a
fixed initial position at the bottom of the screen to a target
position (displayed as a red circle), keeping the cursor on the
target during 100 ms with a tolerance of 1deg, then moving
the cursor back to the initial position (second target). The
initial position corresponded to a position where the elbow



was fully extended. The heights of the targets were scaled for
each participant, depending on their maximum (comfortable)
voluntary elbow flexion when wearing the exoskeleton. The
average range of motion from initial position to target across
participants was 65 deg for the lowest target, and 115 deg for
the highest target.

2) Experimental design: One condition (i.e. one con-
troller) consisted of 25 successive trials (no break between
trials), with 5 different target heights (5 trials for each height)
performed in random order. Each condition started with a
familiarization phase of 3 trials (in addition to the 25 test
trials). The 5 conditions were performed in random order, with
a 2 min break (approximately) between each condition.

C. Motion Predictor Training

A dataset was collected to train the MLP model on the
pointing task. Four participants (different from the participants
in the main experiment) performed a pilot experiment without
the predictive controllers. They performed 49 trials (7 trials
for 7 target heights) with each of the 3 non-predictive con-
ditions (exoskeleton off, gravity compensation and dynamics
compensation). This dataset of 588 trials was separated into
a training set (70 %), a validation set (15 %) and a testing
set (15 %). For both the training and the online prediction,
angular position data were downsampled to 25 Hz in order
to reduce the size of the input data (deemed sufficient given
the dynamics of the considered human motions). The Mean
Squared Error (MSE) loss was used for training.

D. Performance Metrics

1) Task Performance: Task performance was assessed in
each trial with two metrics: the duration of the trial (from ap-
pearance of the target to stabilized return to the start position),
and the maximum size of the overshoot.

2) Interaction Force: In this experiment, the goal of the
exoskeleton was not to provide a specific assistance to the
user, but to be as transparent as possible, i.e. minimize the
interaction force. Hence we quantified transparency using
the measured human-exoskeleton interaction force, with two
metrics: the root mean square (RMS) value of the interaction
force over a trial, and the maximum absolute value of the
interaction force within a trial. To facilitate between-subject
comparison and because different participants exhibited dif-
ferent baseline force, the RMS force value was normalized
according to its minimum and maximum values across all
trials of all conditions of a participant.

3) Movement Smoothness: Natural human movements are
known to be smooth. Therefore the smoothness of a motion
is a relevant feature to evaluate if the interaction with an
exoskeleton perturbs the human motion [30]. We used the
Spectral Arc length (SPARC) metrics [31] to quantify move-
ment smoothness of each trial in a way that is robust to
variations in trial duration.

4) Subjective Evaluation: After each condition, partici-
pants were asked to rank how they liked this condition (con-
troller) with respect to the previous ones. This ended up in a
final ranking, with possible ex-aequo between conditions.

5) Prediction Performance: In addition to the previous
metrics that focus on the human interaction with the ex-
oskeleton, we also evaluated the prediction performance of
the trained MLP model. Prediction performance was assessed
using the RMSE value and the maximum error value between
the predicted elbow angular position and the ground truth
recorded with the encoder. We evaluated both the offline
performance after training (i.e. using the testing dataset of the
pilot experiment), and the online performance (i.e. using the
data from the actual participants). For the offline performance,
we computed one single RMSE over the whole training set
(corresponding to the loss function used when training the
model). For the online performance, we computed an RMSE
(resp. maximum error) for each trial and both predictive con-
trollers. We compared the performance of our MLP predictor
with two baselines from the literature: a constant predictor

(i.e. qf_lftp = ¢¢'*) [18], and a constant velocity predictor (i.e.

aithy, = ai'" + @i""ty) [321.
E. Data Analysis

For each objective metrics, we computed its average value
across all trials of a participant in a given condition in order
to obtain one single value per participant and condition. The
following analyses were conducted on these average values.
Numerical data (task duration, RMS and maximum value
of interaction force, and spectral arc length) were tested for
normality using the Shapiro-Wilk test. All data were normally
distributed. A one-way repeated measures ANOVA was then
performed on each numerical metrics, with participant as a
random factor and condition as a fixed factor. When a signif-
icant effect of condition was detected by the ANOVA, post-
hoc multiple comparisons with Bonferroni correction were
conducted. The ranking of the different controllers (subjec-
tive evaluation) was considered as categorical data, and was
analyzed with a non-parametric Friedman test. A significance
level of 5 % was adopted for all statistical tests, and analyses
were performed in Python.

IV. RESULTS

A. Task Performance

The ANOVA did not reveal any significant effect of the
controller factor on either the trial duration (F'(4,56) = 1.7,
p = .16) or the overshoot (F'(4,56) = 1.9, p = .12). The
average duration of a trial across all targets, all conditions and
all participants was 3.53 = 0.83 s. The average overshoot of a
trial across all targets, all conditions and all participants was
1.45 £ 0.62 deg.

B. Interaction Force

Fig. 3 depicts the time-evolution of the interaction force of a
representative subject for the 5 different controllers. When the
exoskeleton is off (O), the interaction force is always positive
(i.e. in the direction of elbow extension, due to the exoskeleton
weight), and significantly larger than in any of the 4 other
conditions. In the 4 compensatory conditions (G, D, GP, DP),
the interaction force oscillates around zero, with smaller peaks
when the controller relies on motion prediction (GP, DP).
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Fig. 4 displays the distribution of the normalized RMS force
value (4a) and of the peak interaction force (4b), for the 5
controllers. The ANOVA revealed a significant effect of the
controller on both the normalized RMS force (F'(4,56) =
1293.9, p < .0001)), and the peak force (F'(4,56) = 326.6,
p < .0001). Post-hoc pairwise comparisons revealed that both
the RMS force and the peak force in the Exoskeleton Off (O)
condition differed significantly from the 4 other conditions
(p < .0001). The two predictive controllers (GP and DP)
differed significantly from the two non-predictive controllers
(G and D) for both metrics (RMS force: G-GP: p = .0002,
D-DP: p = .0004, G-DP: p = .015, D-GP: p = .0003; Peak

force: G-GP: p < .0001, D-DP: p = .0001, G-DP: p = .0004,
D-GP: p < .0001). Adding prediction to the controller lead
to an average reduction in RMS force (resp. peak force) of
39% (resp. 26 %) for gravity compensation, and of 45 %
(resp. 27 %) for dynamics compensation. However there was
no significant difference between gravity compensation and
dynamics compensation for any of the two force metrics,
whether prediction was used or not (p = 1.0 for both metrics
and both G-D and GP-DP comparisons).

C. Movement Smoothness

Fig. 5 depicts the time-evolution of the elbow angular veloc-
ity of a representative subject for the 5 different controllers.



The velocity profiles are overall similar for all controllers,
though the velocity peak seems slightly different for the
non-predictive controllers in the downward movement. The
ANOVA did not reveal any significant effect of the controllers
on the SPARC metrics (F'(4,56) = 2.0, p = .11). The average
value of the SPARC metrics in a trial across all targets, all
conditions and all participants was —1.68 £ 0.32.

Angular velocity [rad/s]

GP
DP

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Time

Fig. 5: Normalized time-evolution of the elbow angular
velocity of a representative participant for the 5 controllers
(O: Exoskeleton off, G: Gravity compensation, D: Dynamics
compensation, GP: Gravity compensation with prediction,
DP: Dynamics compensation with prediction). Only one
target among the five target heights experienced by the par-
ticipant is displayed. The graph shows both the upward and
consecutive downward movement. For each controller, bold
line (resp. shaded area) represents the mean (resp. standard
deviation) over the 5 trials performed by the participant.

D. Subjective Evaluation

Fig. 6 displays the ranking of the 5 controllers across all par-
ticipants. While the Exoskeleton Off (O) condition was ranked
least preferred more times than any of the 4 other conditions,
the Friedman ANOVA did not reveal any significant effect of
the controller factor on the ranking (x2(4) = 6.47, p = .17).

E. Prediction Performance

The offline test RMSE (test loss) between predicted values
and ground truth was 6.0 deg for the constant position predic-
tor and 1.1 deg for our MLP. Table I shows the results of the
online evaluation of the predictions. There are few differences
between the GP and DP controllers. Both the constant velocity
and MLP predictors yield far superior results compared to the
constant position predictor. While the constant velocity and
MLP predictors have similar performance in terms of RMSE,
the maximum error is lower by 35% on average with the MLP
predictor.

V. DISCUSSION

This study introduced motion prediction based on kinematic
data from embedded sensors for the control of an active upper-
limb exoskeleton and investigated whether such predictive
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Fig. 6: Subjective ranking of the 5 controllers performed by
participants (O: Exoskeleton off, G: Gravity compensation,
D: Dynamics compensation, GP: Gravity compensation with
prediction, DP: Dynamics compensation with prediction).
The Y-axis displays the number of times a controller was
ranked at any position between 1 (most preferred, green) and
5 (least preferred, red).

TABLE I: Maximum error and RMSE between predicted and
measured elbow angular position in degrees average for every
trial and every participant for each predictive condition and
predictors.

GP DP
Constant Position Predictor ~ Max 11.7+3.27 12.03 £ 3.28
RMSE 5.73+1.37 5.75+1.46
Constant Velocity Predictor ~ Max 6.34 +2.1 6.34 £2.1
RMSE 1.734+0.47 1.7440.48
MLP Max 467 +1.69 4.78+1.83
RMSE 143+0.39 1.45+0.39

control is beneficial for transparency. The impact of prediction
was assessed both for gravity-compensation and for dynamics-
compensation. Results show that prediction reduced interac-
tion force without affecting the kinematics of the movement,
even though it was not perceived by users.

A. Gravity vs. Dynamics Compensation

We did not observe any difference between a gravity-
compensation control and a dynamics-compensation control
on either the kinematics of the movement, the interaction
force, or the user perception of transparency. This absence
of difference was present both without and with prediction.
Conversely to our results, Verdel et al. reported an increase in
movement duration of a pointing task when only gravity and
friction were compensated, as opposed to full dynamics com-
pensation [27]. However, the exoskeleton used in their study
was heavier than ours. The light weight of our exoskeleton
associated with the limited speed of motion likely result in
negligible inertial effects, explaining the similarity between
the gravity- and dynamics-compensation control.

B. Effect of Prediction on Transparency

The kinematics of the pointing motion (movement dura-
tion, smoothness, and overshoot) were not modified by the



predictive controllers, compared both to non-predictive con-
trollers and to the baseline condition where the exoskeleton
was turned off. While we cannot guarantee that the kine-
matic properties of the natural human movement (i.e. without
exoskeleton) were preserved with the exoskeleton, elements
from the literature suggest so. Actually, Verdel et al. showed
that in a similar pointing task, natural movement duration
was preserved with an exoskeleton if the full dynamics was
compensated [27]. Thus adding prediction in the controller did
not perturb the intrinsic features of the human motion.

Regarding human-exoskeleton interaction force, predic-
tive controllers lead to a force reduction compared to non-
predictive controllers, which suggests improved transparency.
According to the force profiles in Fig. 3, without prediction
the user is always pushing against the exoskeleton (positive
force in the flexion motion, and negative force in the extension
motion). This means that the user has to (slightly) force
against the exoskeleton to make it move. This effect might
explain why the velocity peak is slightly smaller with the non-
predictive controllers (Fig.5). Conversely, when prediction
is used, the force peaks are smaller and in the direction of
motion®, meaning that the exoskeleton facilitates the user’s
movement. From a physical standpoint, the magnitude of the
force reduction is limited (about 0.2N). However our ex-
oskeleton is mechanically very transparent, owing to its light
weight and direct-drive actuation without reduction, so forces
at play are always small. Actually, these results demonstrate
that even with an exoskeleton that is transparent by design,
motion prediction can further increase the transparency. Hence
we could expect prediction to be even more beneficial with a
heavier or less backdrivable exoskeleton.

Despite the force reduction associated with prediction, users
did not rank the predictive controllers any differently from the
other conditions. This may be due to the low forces at play,
making it difficult for users to discriminate between the differ-
ent conditions due to sensory limitations (made even harder
by the motion and the fact that is was not a primary objective).
Moreover, the transparency concept was not trivial for many
participants who sometimes mixed perceived assistance and
transparency.

C. Prediction Performance

The MLP model used in this work was a light network, yet it
yielded better results than both constant position and constant
velocity predictor baselines. Specifically, the maximum error
was reduced with the MLP, which is advisable both for users’
safety and comfort. We evaluated both the online and offline
performance of our MLP predictor. Yet, online results should
be considered carefully as the predicted motion is used in
the exoskeleton control, which may affect the human motion,
possibly resulting in an actual motion continuation different
from the one planned by the user. However, the low interaction
forces at play and the similar movement kinematics with
vs. without prediction suggest that the exoskeleton did not

3Leaving aside the first force peak immediately following movement
initiation, which corresponds to when prediction is not yet useful, see Section
V-C

significantly perturb the motion. This is consistent with the
fact that online and offline prediction errors were similar.

Interestingly, predictive and non-predictive controllers ex-
hibited similar behaviors in the early stage of the motion, with
an increase in interaction force resisting the movement (Fig. 3,
0-10 % and 55-65% of movement time approximately). Then
the magnitude of the force rapidly decreases when prediction
is used. This suggests that prediction is not accurate in the
early moments following movement initiation. The model can
hardly predict future motion from an immobile state and needs
a sufficient history of actual movement to make an accurate
prediction.

A limitation of this study is that the experimental task
requires only simple pointing movements, hence the challenge
of motion prediction is limited. This explains why using a
simple MLP predictor was sufficient. While using motion
prediction in the exoskeleton control was shown beneficial
for transparency, this highly depends on the quality of the
prediction. More complex 3D arm motions may be harder to
accurately predict, and would probably require a more com-
plex neural network architecture, such as RNN or diffusion-
based architectures. In the future, we will extend our motion
prediction approach to such more complex movements, yet
trying to keep a relatively lightweight architecture for the
predictor. Indeed, we target industrial tasks that, while more
varied than simple pointing tasks, remain limited in their
diversity. In an industrial context, limiting the amount of data
required to train the predictor is a crucial point. Moreover,
these predictors should be embedded on microcontrollers with
limited computational power for online usage, making it even
more important to keep them as light as possible.

Finally, several parameters of the predictor were manually
tuned (e.g., gain K, prediction horizon t). In future work, we
plan to optimize their value to provide personalized assistance
—for instance, using Human in the Loop Optimization (HIL)
[33]-, or adapt them depending on the context or the predic-
tion uncertainty.

VI. CONCLUSION

This work introduced a motion prediction-based control
approach for an active upper-limb exoskeleton, using an MLP
model to predict the human arm motion from sensor data
embedded on the exoskeleton. We then investigated whether
such a predictive controller improves the exoskeleton trans-
parency. A user study was conducted in which participants
performed a pointing task with the exoskeleton, controlled ei-
ther with predictive controllers or with standard non-predictive
controllers. The predictive controllers reduced the human-
exoskeleton interaction force by about 40 % compared to non-
predictive controllers, without affecting the kinematics of the
human motion. However, the participants did not perceive a
noticeable difference in transparency between the different
conditions. This was probably due to the fact that the exoskele-
ton used in the study was mechanically very transparent, hence
the forces at play were small in all conditions. Nevertheless,
these results suggest that motion prediction-based control can



further improve transparency, even on an exoskeleton that is
already transparent by design.

In future work, we will test the effect of motion prediction-
based control on more complex motions, where prediction
will be further challenged. We will then transfer the predictive
control approach to an exoskeleton designed for assistance of
load handling (a few kg). Such assistance requires a more
powerful exoskeleton, hence heavier and less backdrivable
since reduction will be needed in the actuation. We expect
predictive controllers to be even more beneficial since the
exoskeleton will be mechanically less transparent and higher
interaction forces will then be at play.
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