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Abstract

We consider a generalized SCIS model where individuals are divided into the three compartments

S (healthy and susceptible), C (infected but not just infectious) and I (infectious). Finite waiting

times in the compartments yield a system of delay-differential or memory equations and may

exhibit oscillatory (Hopf) instabilities of the otherwise stationary endemic state, leading normally

to regular oscillations in the form of an attractive limit cycle in the phase space spanned by the

compartment rates.

In the present paper our aim is to demonstrate that in the dynamics of delayed SCIS models

persistent chaotic attractors can bifurcate from these limit cycles and become accessible if the

nonlinear interaction terms fulfill certain basic requirements. Computing the largest Lyapunov

exponent we show that chaotic behavior exists in a wide parameter range.

Finally, we discuss a more general system and show that a sudden falloff of the infection rate

with respect to increasing infection number may be responsible for the emergence of chaotic time

evolution. Such a falloff can describe mitigation measures like wearing masques, individual isolation

or vaccination. The model may have a wide range of interdisciplinary applications beyond epidemic

spreading for instance in the kinetics of certain chemical reactions.

Keywords: Epidemic spreading, memory effects, generalized SIR models, chaotic attractors
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I. INTRODUCTION

Beginning with the book of Thomas Robert Malthus in 1798 [1], the modeling of popu-

lation dynamics has a long tradition. The nowadays called ’Malthusian growth model’ was

later generalized by F. J. Richards [2] and others. Predator-Prey systems where studied

from 1925 by Lotka and Volterra [3, 4]. The seminal work of Kermack and McKendrick [5]

in 1927 where the nowadays called ’SIR model’ was introduced can be seen as the initia-

tion of epidemic models. Being a specialization of a predator-prey system, the original SIR

equations have obtained many extensions and modifications. A huge number of publications

exists based on this model which is built on a low-dimensional system of ordinary differential

equations, for a review see [6].

SIR models refer to the class of compartmental models’‘ since they divide the individuals

into several compartments depending on their state of health. In this way, SIR stands for

an acronym from (S = susceptible, I = infected, R = recovered). It turned out that the

features of infectious diseases such as measles, mumps, and rubella could to a certain extent

be captured by such simple models.

On the other hand, all these diseases come in waves with a more or less regular periodicity.

The waves can be triggered by external reasons like seasons, but also by some internal

mechanisms. Such an intrinsic behavior was already speculated in 1929 by Soper in a model

for the time evolution of measles cases [7].

In the standard SIR models, the interplay between infected and susceptible individuals

is inspired by an interaction of the predator-prey kind where the infection rate is expressed

in the form of a simple bilinear term β0 j(t) s(t). Here, j(t) and s(t) are the relative number

of infected (I) and susceptible (S) individuals and β0 is related to the constant probability

of infection at each contact (infection rate). The predator (infected) ’catches’ the prey

(susceptible) by infection. Predator-prey models of the classical SIR type are not able to

describe sustained oscillations that originate from the instability of a fixed point, here the

endemic equilibrium, but rather account for single outbreaks if the healthy state becomes

unstable. In the long time limit, herd immunity and the endemic equilibrium as a stable

fixed point is reached where the fractions of the population in the different compartments

attain constant values. However, it turns out that there is a further class of predator-

prey models with modified infection rates A(s(t), j(t)) and delayed transitions exhibiting
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oscillatory instabilities and routes to chaos.

Other work [8] considered a nonlinear infection rate according to

A(s, j) = β(j) j(t) s(t) =
β0 j

m(t) s(t)

1 + αjn(t)
, (1)

and obtain limit cycle solutions for certain parameters m = n ≥ 2, α > 0. Tang et al.

[9] studied the case m = n = 2 and found a weak focus and the existence of two limit

cycles. For m = n = 1 the dynamics is qualitatively the same than for the standard SIR

model and sustained oscillations cannot be observed. The denominator 1+αjn accounts for

mitigation measures against the epidemics that naturally increase with increasing j. Note

that for the case n > m the interaction A has a maximum at a certain infection number.

For such non-monotonic behavior it was shown in [10] that the dynamics in the long time

limit approaches a stable fixed point as for the original SIR models.

In earlier work we showed that a finite (long) immunity life-time [11] as well as delayed

mitigation measures [12] lead to a system of delay-differential or memory equations and may

show oscillatory instabilities of the otherwise endemic state, leading to normally regular

oscillations of the compartment rates. Memory terms were introduced in epidemiological

models by many other researchers, for an overview see [13]. From the mathematical point

of view, the presence of a delay term in an ordinary differential equation makes a low-

dimensional system infinitely dimensional and may allow for the occurrence of periodic,

quasi-periodic or even chaotic behavior, rendering the dynamics much more complex [14–

16].

A crucial element of our extended model studied in the present paper is the introduction

of a class of infection rate functions exhibiting a sudden falloff with respect to the infection

numbers, according to (1) for large enough n. We demonstrate that the complex interplay

of these kinds of infection rates and delayed transitions between the compartments is the

actual source of the chaotic dynamics. The well known Mackey-Glass equations [17] refers

to our model class and we show in section IV that the Mackey-Glass eqs. can be derived

systematically from our model for the approximation of a constant susceptibility rate. How-

ever, our model generalizes the Mackey-Glass system in two respects. Firstly it highlights

the interpretation as a compartmental model and considers continuously distributed com-

partmental waiting time distributions for the delayed transitions, and secondly it admits

a wide range of infection rate functions (beyond the one used in the Mackey-Glass model)
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with the above mentioned falloff feature. To the best of our knowledge there is so far no

such approach in epidemic modeling.

Our aim is to develop a model as close as possible to the non-delayed standard models.

For further sake of simplicity, we consider first only two compartments, namely S and I, and

assume that recovered individuals transfer directly back to the S compartment, leading to

an SIS model. The crucial point is that the infection S to I is assumed to take a certain finite

time. This can be modeled by introducing a new compartment C where the individuals are

already infected but not yet infectious (incubation phase). Thus we shall consider here a

SCIS model with finite delay times for the transitions C → I and I → S, respectively.

The paper is organized as follows: In sect. 2 we introduce the SCIS model for general

distributions of the waiting times in the different compartments. Equilibrium points and

their stability are given and examined in more detail for δ-shaped kernel functions, leading

to a set of two coupled delay differential equations for the fractions of S and I. The critical

conditions for a Hopf bifurcation are determined analytically. In sect. 3, numerical solutions

of delay system are computed and the emergence of a chaotic attractor is demonstrated, its

largest Lyapunov exponent is found to be positive for large regions of the basic reproduction

number. In sect. 4 the analogy to the Mackey-Glass system is shown for the approximation

of a constant susceptible population. A mechanism for the occurrence of chaotic attractors

is proposed.

II. THE MODEL

A. Generalized SIRS model with memory

In the present paper we shall consider a generalized SCIS model without birth or death

processes, leading to a constant total population of N individuals. According to their state of

health, the individuals are divided into the three compartments S (healthy and susceptible),

C (infected but not just infectious) and I (infectious), see Fig. 1, with the total population

number N = S + C + I.

We define the fractions

s(t) = S(t)/N, c(t) = C(t)/N, j(t) = I(t)/N
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R(j) j
susceptible (s) incubated (c) infectious (j)τ

C

τ
I

FIG. 1: The SCIS model with a j-dependent basic reproduction number R(j) and finite (random)

delay times τC , τI between compartments C, I and I, S, respectively.

with s+ c+ j = 1. The model reads

ds

dt
= −A(t) + 〈A(t− τC − τI)〉 (2a)

dc

dt
= A(t)− 〈A(t− τC)〉 (2b)

dj

dt
= 〈A(t− τC)〉 − 〈A(t− τC − τI)〉 (2c)

where A(t) indicates the infection rate which describes the nonlinear interaction at time t.

The delay time τC between the instant of infection (transition S → C) and transition C

→ I has the interpretation of an incubation time. The incubation time is followed by the

sojourn time τI in compartment I where the individual is infected and infectious (ill). After

spending the time τI in compartment I, the individual recovers, undergoing a transition I

→ S.

Considering the transitions occurring at time instant t gives an evocative interpretation of

eqs. (2): A(t) indicates the infections (transitions S → C) at instant t. The term A(t− τC)

accounts for the past infections at t − τC for which at instant t the incubation time has

elapsed and which undergo a transition C → I at instant t, see (2b,2c). Further, the term

A(t− τC − τI) comes from the infections that happened in the past at instant t− τC − τI for

which at time t both, the incubation time τC and the illness time τI have elapsed and hence

are recovering at instant t with transition I → S, see (2c,2a). In eqs. (2), 〈. . .〉 stands for the

means with respect to the independent random times τC and τI drawn from the normalized
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PDFs (memory functions) KC , KI and are computed from

〈A(t− τC)〉 =

∫ t

0

KC(t− τ)A(τ)dτ

〈A(t− τC − τI)〉 =

∫ t

0

∫ τ

0

KI(t− τ)KC(τ − τ ′)A(τ ′)dτ ′dτ

We note that the system (2) is included in the more general case of a SCIRS cycle, examined

in detail in a recent paper [16].

For the interaction A that models the infection rate we consider the class

A(t) = A(s(t), j(t)) = R0 s(t) j(t) f(j(t)) (3)

with a monotonically decreasing function

f(j) =
1

1 + αnjn

with some positive α and integer n > 1, according to (1). This leads to a decrease of the

effective basic reproduction number if j is increasing and vice versa, modeling mitigation

measures like containment, masques, etc. Note that A has a maximum at

jm =
(n− 1)1/n

α
≈

1

α
for n ≫ 1 .

Instead of studying the full system (2) we assume an exponential distribution for KI accord-

ing to

KI(τ) = γ exp(−γτ) (4)

that has the mean value 〈τI〉 = 1/γ. It can be easily seen by differentiation that for such a

PDF the relation

〈A(t− τC − τI)〉 = γ (j(t)− j(0))

holds. Since c is not occurring explicitly, it is sufficient to consider eqs. (2a,2c). Scaling time

with t = t′/γ and substituting (4) with j(0) = 0 yields the two coupled memory equations

ds

dt′
= −R′

0

sj

1 + αnjn
+ j (5a)

dj

dt′
= R′

0

∫ t

0

dτ ′ KC(t− τ ′)
s(τ ′)j(τ ′)

1 + αnjn(τ ′)
− j (5b)

with R′

0 = R0/γ, τ
′ = τγ. In the following, we shall leave all primes and time is measured

in units of the time of recovery. The standard SIS model is recovered for α = 0 and

KC(τ) = δ(τ). For KC(τ) = δ(τ − τC) one has a sharp delay time τC for the incubation

period. This is a special case that will be treated in sect. II C in more detail.
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B. Equilibrium points and their stability

There are two equilibrium solutions or fixed points of (5). The first one is the state before

the epidemic breaks out (healthy state) and reads

sh = 1, jh = 0 . (6)

The other one is the endemic equilibrium found from

A = je, se = 1− je (1 + 〈τC〉) (7)

or

αnjne + jeR0 (1 + 〈τC〉) + 1−R0 = 0 , (8)

where we used je + se + ce = 1 and ce = A 〈τC〉.

We compute the stability of both equilibrium points applying linear stability analysis.

Inserting

s(t) = s0 + u eλt, j(t) = j0 + v eλt

where s0, j0 stands for the equilibrium point in (5) yields a linear system that has the

transcendental equation

λ2 + λ
(

a− b K̂C(λ) + 1
)

+ a
(

1− K̂C(λ)
)

= 0 (9)

as solvability condition. Here,

a =
∂A

∂s

∣

∣

∣

∣

s0,j0

=
R0j0

1 + αnjn0
(10a)

b =
∂A

∂j

∣

∣

∣

∣

s0,j0

=
R0s0

1 + αnjn0
−

R0ns0α
njn0

(1 + αnjn0 )
2

(10b)

and K̂C as Laplace transform of KC :

K̂C(λ) =

∫

∞

0

dtKC(t) e
−λt . (11)

Note that R0 is retrieved from R0 =
∂A

∂j

∣

∣

∣

∣

s=1,j=0

. The state (6) yields a = 0, b = R0 and

from (9)

λ = R0 K̂C(λ)− 1 .
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The critical point is λ = 0. Expanding (11) yields

K̂C =

∫

∞

0

dtKC(t) (1− λt) +O(λ2) = 1− λ〈τC〉+O(λ2)

and in linear order

λ =
R0 − 1

1 +R0〈τC〉
.

Thus, the healthy state is is stable for R0 < 1 and becomes an unstable saddle node for

R0 > 1.

C. Delay equations

For the special case of a δ-shaped kernel, one has

K̂C(λ) = e−λτC

and (5) turns into a system of delay differential equations:

ds

dt
= −R0

sj

1 + αnjn
+ j (12a)

dj

dt
= R0

s(t− τC)j(t− τC)

1 + αnjn(t− τC)
− j . (12b)

For τC = 0, K̂C = 1 and the endemic equilibrium has the two eigenvalues

λ = 0, λ = b− a− 1 .

The first one belongs to a marginal (Goldstone) mode that describes a shift between je

and se, since for τC = 0 the sum of the two equations (12) yields dt(s + j) = 0. The

second eigenvalue is always negative and the stability of the endemic state is proven without

restrictions.

If τC > 0, a Hopf instability becomes possible and (9) can be solved with λ = iω, leading

to

ω2 = b2 − a2 − 1 (13)

and

τH =
1

ω
arccos

[

ω2(b− a+ ba) + a2

a2 + b2ω2

]

. (14)

Thus, the endemic equilibrium becomes unstable if τC exceeds τH with the critical frequency

(13). Eq. (14) has to be solved iteratively because a, b depend on τ . Fig. 2 shows τH and

the period T = 2π/ω over R0.
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R 0

T

τH

FIG. 2: Critical delay time necessary for an oscillatory instability of the endemic equilibrium and

period of Hopf frequency (red).

III. RESULTS

A. Numerical solutions of the delay-differential system

We solved the nonlinear delay system by a standard 4th order Runge-Kutta method with

fixed time step δt = 10−4, for details see [18].

For large values of n, je becomes an unstable focus if τC exceeds a critical value. For even

larger delay times, a chaotic attractor emerges. Fig. 3 shows a time series for the periodic

case with

R0 = 2.5, α = 100, τC = 1, n = 10

and for the chaotic case with τC = 2.

Fig. 4, left frame, shows the chaotic attractor at τC = 2 where j(t) is plotted versus

j(t− τC). In Fig. 4, right frame, the same attractor is plotted in the s-j phase plane.

Contrary to the standard SCIS model it is remarkable that the variation of s is very
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t

s(t)
j(t) j(t)

s(t)

t

FIG. 3: j(t) (black) and s(t) (red) in the periodic (left frame) and in the chaotic (right frame)

regime.

small. This agrees well with real world data for instance for COVID, where herd immunity

was always far from being reached during or between the wave outbursts, see also [19].

FIG. 4: Chaotic attractor for τC = 2, left: j(t) over j(t− τC), right: j(t) over s(t).

B. Lyapunov exponent

To demonstrate that the attractors found are really chaotic, we compute the largest

Lyapunov exponent for two different values of τC . First, a main trajectory s0(t), j0(t) is
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computed iterating (5) by a Runge-Kutta method, then the system is linearized with respect

to the main trajectory

s(t) = s0(t) + u(t), j(t) = j0(t) + v(t)

From t0 = 4000, the linear delay system

du

dt
= −a(t) u(t) + (1− b(t)) v(t) (15a)

dv

dt
= a(t− τC) u(t− τC) + b(t− τC) v(t− τC)− v(t) (15b)

is solved numerically by the same Runge-Kutta scheme. The chaotic time dependent func-

tions a, b are obtained from (10) by replacing j0, s0 by s0(t), j0(t). Starting with a normalized

random initial condition

u(t) = ξt, v(t) = ηt,

∫ 0

−τC

dt (u2 + v2) = 1, t = [−τC , 0]

where ξt ηt are independent equally distributed random variables in [-0.5,0.5], the L2 norm

Rk =

[
∫ kτC

(k−1)τC

dt (u2 + v2)

]1/2

, k = 1, 2, ....

is computed each time after t reaches kτC and (u, v) is normalized again, see e.g. [18]. This

process is repeated until te = 8000 and the largest Lyapunov exponent is found according to

Λ =
1

te − t0

∑

k

ln(Rk) .

The result is shown in Fig. 5.

C. Memory equations

Next we study the system (5) with a kernel function of certain finite width. To this end

we take the Erlang function defined as

KC(τ) =
ξβ

Γ(β)
τβ−1e−ξτ , β = ξ 〈τ〉 = ξ τ0 (16)

having a width ∼ 1/ξ and which approaches the δ-function δ(τ − τ0) for ξ → ∞, see Fig. 6.

Fig. 7 shows some numerical solutions for different ξ. Chaotic attractors are only obtained

if ξ exceeds a certain value that depends also on τ and R0.
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R0

Λ

τ  =3

τ  =2

C

C

FIG. 5: Largest Lyapunov exponents for τC = 2 (blue) and τC = 3 (red), over R0. Periodic

windows can be clearly seen.

To demonstrate this more clearly we computed the largest Lyapunov exponent also for

this case. Now, Eqs. (15) turn into the linear memory system

du

dt
= −a(t) u(t) + (1− b(t)) v(t) (17a)

dv

dt
=

∫ t

0

dτ KC(t− τ)

[

a(τ) u(τ) + b(τ) v(τ)

]

− v(t) . (17b)

The rest of the procedure remains the same as described in sect. III B. The result for different

ξ is shown in Fig. 8.
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τ

ξ=50

ξ=5

ξ=20

FIG. 6: Erlang functions (16) for τ0 = 2 and different ξ.

ξ=10
ξ=20 ξ=50ξ=30s

j

FIG. 7: Phase plots in the sj-plane for different ξ and τ0 = 2, R0 = 2.5.

IV. MACKEY-GLASS EQUATION

Introducing the new variable x(t) = αj(t), eq. (5a) turns into

ds

dt
=

1

α

[

−R0
sx

1 + xn
+ x

]

.

To have an effective feedback, αj should be of order one and since j is rather small, α ≫ 1.

As a first approximation we may then put

ds

dt
≈ 0, s = s0 = const.

where s0 is the initial value and therefore close to one. Then from (5b) we find immediately

dx

dt̃
=

∫ t̃

0

dτ KC(t̃− τ)
x(τ)

1 + xn(τ)
− µx (18)
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R0

Λ

ξ=40

ξ=50

ξ=30

FIG. 8: Largest Lyapunov exponents for τ0 = 2 and the Erlang kernel (16) with ξ = 50 (gray),

ξ = 40 (blue), ξ = 30 (red).

where time is scaled again with t = t̃/R0s0 and µ = 1/R0s0 < 1.

Eq. (18) can be considered as a Mackey-Glass equation with memory. It turns into the

original Mackey-Glass equation for a δ-kernel KC = δ(τ − τ0) and has the form (tildes

removed)
dx

dt
=

x(t− τ0)

1 + xn(t− τ0)
− µx . (19)

It is well-known since the remarkable paper of Mackey and Glass [17] who derived it as a

model for the control of blood cell concentration that this equation has a chaotic attractor

for rather large n and if τ0 exceeds a certain critical value. The attractor is born after

an oscillatory instability of the non-trivial fixed point followed by period doubling. The

bifurcation scenario and the resulting trajectories have much in common with our solutions

shown in Fig. 4, left frame.
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Instead of (19) let us examine the more general delay equation

dx

dt
= x(t− τ) f(x(t− τ))−

x

2
(20)

where f is a monotonically decreasing function with

f(0) = 1, f(x → ∞) = 0

and a certain more or less steep decrease close to x = 1. As a test function fulfilling all

requirements we may choose

f(x) =
1

2
(1 + tanh β(1− x)) (21)

where 1/β denotes the width of the step. Then, (20) has an unconditionally unstable fixed

point at x = 0 and a second one at x = 1 that is stable for τ < τc and becomes an unstable

focus at τ = τc. A linear analysis yields

τc =
1

ωc

arccos

(

1

1− β

)

, ωc =
1

2

√

(1− β)2 − 1 (22)

with the Hopf frequency ωc, fig. 9. A limit cycle occurs if τ exceeds τc, followed by several

period doublings until eventually a chaotic attractor may emerge, see fig. 10. Thereby, the

steepness β of (21) plays a crucial role. The threshold (22) only exists if β > 2. Moreover,

if f(x) is too flat, chaos never occurs or only for large delay times τ . The value x = 1 could

be interpreted as a kind of separatrix. For x > 1 the delay term in (20) has no or only

little effect and x decreases exponentially until the trajectory is back in the ’delay region’

x < 1. Then the delay term determines again the dynamics and may throw x across the

separatrix. This back and forth motion is sensible with respect to small perturbations and

may be finally responsible for the chaotic nature of the trajectory.

V. CONCLUSIONS

Contrary to the standard SIR model and its various extensions, time-periodic trajectories

occur in a natural way if the ordinary differential equations are not local in time but contain

memory terms where the history of the evolution is included. We have shown that if these

terms have a special form, chaotic solutions may exist that are not caused by fluctuations

and thereby still deterministic. Starting from the most simple epidemic system containing
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T

τc

β

FIG. 9: Critical delay time necessary for an oscillatory instability according to (22) and period of

Hopf frequency (red). Note the similarity to fig. 2.

only the two compartments for susceptible and infected individuals, we derived a minimal

model by introducing a finite delay for the infection mechanism to become effective. Such a

delay could be justified by an intermediate incubation state with finite waiting time where

the individuals are infected but not yet infectious. We demonstrated that if the incubation

time, the recovery time and the basic reproduction number have the appropriate relations,

chaotic attractors emerge and persist around the endemic equilibrium.

The present model has a rather large potential of generalizations. One direction of in-

terest may be the extension to multiple compartments in order to explore whether or under

which conditions chaos still emerges. On the other hand, the exploration of infection rates

exhibiting sudden falloffs with noisy slopes and other parameters may be of interest as well.

In this way the effect of natural fluctuations in the implementation of mitigation measures
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FIG. 10: Numerical solutions of (20) for several values of β and τ , x(t) over x(t− τ). Chaos occurs

earlier for larger values of β. For β < 2 the limit cycle ceases to exist and the fixed point x = 1

remains stable for arbitrary τ .

could be captured.
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