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Abstract

Propulsion based on circular trajectory acceleration may, in the fu-
ture, be feasible only for the transport of materials due to the stringent
time limits on human tolerance to high accelerations. In addition to
acceleration, the projectile is subjected to significant tensile and bend-
ing forces during circular motion before launch, which greatly restricts
the types of materials that can be transported. However, once viscous
drag due to the atmosphere becomes negligible, it may be possible to
stabilize the orbit using a specially designed accelerator, potentially
located at the apogee of the trajectory.

1 Introduction and the challenge

The Merriam-Webster dictionary defines projectile [1] as “a body projected
by external force and continuing in motion by its own inertia”, thus it is
as an object propelled initially by an external force and subsequently main-
taining its motion through its own inertia, gravitational force, friction with
its surrounding medium and other interactions. Unlike propelled objects, a
projectile lacks its own means of propulsion and instead moves solely by the
inertia imparted at the start of its trajectory.

Over the years, numerous solutions to the “Non-rocket spacelaunch” prob-
lem have been proposed [2, 3] and, in particular, [4]. This kind of problem
attempts to propose alternative solutions to the limits imposed by the rocket
equation. Since the rocket equation sets limits on the maximum velocity
change for a rocket that must also carry its own fuel to operate, these solu-
tions aim to both develop increasingly efficient propulsion systems and find
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alternative equations that can lead to new propulsion techniques. Among
these techniques, some involve the rocket not carrying any type of fuel and
having the energy imparted during launch. In this article, we demonstrate
the physics of such launches, where the rockets are effectively projectiles
without internal propulsion.

For simplicity, we shall consider the non-relativistic case of projectile mo-
tion [5], especially given the focus on the practical realization of the appara-
tus. It’s evident that velocities where relativistic effects play a significant role
won’t be reached. For this reason, we’ll assume familiarity with the basics of
Newtonian mechanics and their mathematical treatment. To be comprehen-
sive, we’ll endeavor not to neglect any effects arising from interactions with
gravitational fields and the medium through which the motion occurs.

Currently, the most widely used propulsion strategy is thermal propulsion
through chemical reactions [6], which leads to the release of large quantities
of volatile and polluting substances into the atmosphere, similar to most
combustion processes used in the propulsion of cars, trucks, and airplanes.
Specifically, a rocket launched via thermal propulsion has its maximum mass
at the moment of liftoff and gradually becomes lighter as mass is lost due
to the combustion of fuel. This process of mass loss forms the basis of the
physics underlying the rocket equation [7, 8].

This issue has already become significant today, prompting several at-
tempts to mitigate both the environmental impact and the limitations im-
posed by the physics of the rocket equation. Notable among these are the
SpinLaunch [9, 10], as well as [11, 12]. However, we will demonstrate that
propulsion based on circular trajectory acceleration may, in the future, be
feasible only for the transport of materials, while proving entirely unsuitable
for human transport due to the strict time limits on human tolerance to high
accelerations. In this paper, we aim to initiate a study of potential alterna-
tives to the rocket equation by evaluating the validity of existing proposals
and introducing new alternatives [13].

We shall denote the angular momentum vector of a particle relative to
the origin L = Iω = I r×v

||r||2 where [14]

• I is the moment of inertia

• ω is the orbital angular velocity

• r is the position vector
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• v is the linear velocity and v = ||v||.

Let denote the torque vector by the symbol τ = r × F = d
dt
L = L̇ where

• F is the force vector

• L is the angular momentum vector

• L̇ is the dot derivative (derivative with respect of time t)

We will also use the symbols indicated in Table 1 for the corresponding
quantities.

2 Launching a projectile via a centrifuge

A centrifuge is a device that harnesses circular motion to accumulate kinetic
energy in a body, which is subsequently disconnected from the centrifuge
and continues moving due to inertia until the complete dissipation of energy,
typically through friction. The rotational energy Erot of a rotating body
with moment of inertia I and orbital angular velocity ω is Erot =

1
2
Iω2 (we

want to point out the resemblance between the formula for kinetic energy
Ekin = 1

2
mv2.

2.1 ω and angular acceleration in centrifuge with drag

Let P be the power delivered by a centrifuge required to set a body with
inertia I into rotation. Power is defined as the rate of change of work. Hence
power is work per unit time, given by P = τ · ω where τ = d

dt
(Iω) =

Iω̇ + İω = Iα and α = ω̇. Assuming İ = 0.
Let the drag equation FD = 1

2
ρv2CDA. CD = CD (Re) is a function of

the shape of the object and another dimensionless parameter Re =
ρvD
µ
.

Consider the system illustrated in figure 1, where a body consists of two
rods of lengths rm and rM respectively, connecting two masses m and M to
the central pivot undergoing rotation.

For a circular motion of radius r, ω = v
r
. In circular motion, the drag force

is not constant at every position vector. Intuitively, FD depends on the linear
velocity v, which in turn depends on r because, as an object moves further
from the center (increasing radius), it has to cover a greater distance in the
same amount of time to complete one revolution. Therefore, to maintain
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Symbol Quantity Unit of measure

m, M mass [kg]

v speed
[
m
s

]
ρ density

[
kg
m3

]
CD dimensionless coefficient called drag coefficient [−]

A specific area of the object [m2]

D specific linear dimension of the moving object [m]

µ dynamic viscosity of the medium
[
kg
ms

]
α angular acceleration vector

[
rad
s2

]
Re Reynolds number [−]

δ elastic deflection [m]

FD, τD, PD drag force, torque and power respectively [N ], [Nm], [W ]

E modulus of elasticity
[

N
m2

]
IA area moment of inertia [m4]

ζ standard gravitational parameter [m3/s2]

h specific relative angular momentum
[
m2

s

]
ϵ specific orbital energy [J ]

a semi-major axis [m]

b semi-minor axis [m]

c linear eccentricity [m]

e eccentricity [−]

R⊕ radius of the Earth [m]

η reduced mass [kg]

Table 1: Symbols used in this paper. Same quantities in different contexts
use the same symbol with an added superscript, subscript or both.
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Figure 1: The basic setup of the centrifuge involves rotating the projectile of
mass m and length l at distance rm. A counterweight of mass M is placed
in opposition to the projectile at distance rM to balance the centrifuge.

the same angular velocity, the object must increase its linear velocity as
the radius increases. Hence, we can either assume that all the drag force
is applied at outermost end of the rotating body ||r|| and consider FD =
1
2
ρω2r2CDA, or integrate FD for each element and derive a more general

formula. We notice that for our purposes, the shape of the two rotating
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bodies m and M (as long as they are chosen to minimize drag) is not crucial
for the study of motion. Therefore, we shall consider the simplest case where
FD = 1

2
ρω2r2CDA, τD = rFD = 1

2
ρω2r3CDA and PD = ωτD = 1

2
ρω3r3CDA.

PD opposes P delivered by the centrifuge. Then, we have Iαω = P −PD

or P = Iω̇ω + 1
2
ρω3r3CDA which is a nonlinear differential equation in ω (t)

where we assume that the motion start from rest ω̇ (0) = 0 and at the starting
position ω (0) = 0. For a spherical object, D is its diameter and A = πD2

4
.

Then, FD = 6πωrDµ, τD = 6πωr2Dµ and PD = 6πω2r2Dµ. And the pre-
vious differential equation reduces to P = ω (Iω̇ + 6πωr2Dµ), from which we

obtain ω (t) = 1
r

√
P

(
1−e−

12πDµr2t
I

)
6πDµ

and α (t) = rP
I
e−

12πDµr2t
I

√
6πDµ

P

(
1−e−

12πDµr2t
I

) =

P
Iω(t)

e−
12πDµr2t

I . The terminal angular velocity is ω∞ = limt→∞ ω (t) = 1
r

√
P

6πDµ
,

while the terminal angular acceleration is α∞ = 0.
The moment of inertia is given by the sum of the individual moments

of inertia: I = IM + Im + IrM + Irm where IM = Mr2M , Im = mr2m,
IrM = 1

3
mrM r2M = 1

3
ρLrM r3M where ρLrM is the linear density of the rod.

Irm = 1
3
mrmr

2
m = 1

3
ρLrmr

3
m. ρLrM = ρLrm = ρLr and M serves to counterbal-

ance the motion of m. Then, MrM = mrm and the total moment of inertia
is I = mrm (rM + rm) +

1
3
ρLr (r

3
m + r3M). This is valid for an infinitely thin

but rigid rotating rod.

2.2 Tendency of a projectile to deflect before being
launched

A projectile subjected to a high angular velocity on a circular orbit expe-
riences a centrifugal force outward from the system. The projectile is an
extended body with a length l (see figure 1), so its ends are farther from
the center of rotation than the anchoring point with the rotating rod. In

particular Rm =
√

r2m + l2

4
> rm. Therefore, the centrifugal force exerted on

the upper and lower ends is greater than the centrifugal force at its anchoring
point. The difference f between this two forces causes stress in the structure
of the projectile, resulting in its deflection.

To simplify the calculations (and provide an acceptable upper limit) of the
deflection, we shall assume thatm is evenly distributed between its lower end,
at the anchoring point and at the upper end (respectively m

3
, m

3
and m

3
). The
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angular velocity of m is the same for each element of mass m
3
, but the upper

and lower ends move on a trajectory with a radius Rm > rm. Let ωRm =
vRm

Rm

and ωrm = vrm
rm

respectively the angular velocity of the lower (or upper) end

and the anchoring point. ωRm = ωrm . Then, vRm = Rm

rm
vrm . Let f be the

difference between the centrifugal force exerted by the mass at the lower (or
upper) end and the centrifugal force exerted by the mass at the anchoring

point. Therefore, f = ||f || = m
3
(aRm − arm) =

m
3

(
v2Rm

Rm
− v2rm

rm

)
. But vRm =

Rm

rm
vrm from the equality of angular velocities. Then, f = m

3
arm

(
Rm

rm
− 1

)
=

l
3
ρLmarm

(√
1 + l2

4r2m
− 1

)
where ρLm is the linear density of m, l its length and

arm the centrifugal acceleration at the anchoring point.
Basically, the deflection of the projectile subjected by f = ||f || can be

approximated to the elastic deflection δ = fl3

24EIA
of an end-loaded can-

tilever beams with length l
2
, area moment of inertia IA and modulus of

elasticity E. The longitudinal section of the projectile can be considered
a filled rectangle (if we consider the projectile a cylinder). The area mo-
ment of inertia (or second moment of inertia) along the x-axis of a filled
rectangular area with base width 2rm and height l is IA = 2rml3

12
. Then,

δ = l
12
ρLmarm

(√
1 + l2

4r2m
− 1

)
1

Erm
= l

12E
ρLmω

2
(√

1 + l2

4r2m
− 1

)
.

3 Motion of a projectile in a gravitational

field

A projectile is, by definition, a body devoid of internal propulsion: its motion
is solely due to the imparted motion at the moment of launch. Let’s briefly
analyze the thought experiment attributed to Isaac Newton, from which it
takes its name, “Newton’s cannonball”. It involves a cannon placed at a great
height above the Earth’s surface (sufficiently high to avoid colliding with
other natural or artificial obstacles). In Newton’s experiment, air friction
is neglected, so the projectile is fired from the cannon and, depending on
its initial velocity, traces different orbits. If the initial velocity is low (less
than the orbital velocity at the height where the cannon is placed), then the
projectile will fall to Earth after a short path. If the initial velocity is equal
to the orbital velocity, the projectile will return to the starting point after
tracing a circular orbit around the Earth. If the velocity is greater than the
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orbital velocity but less than the escape velocity, the projectile will follow
an elliptical orbit according to Kepler’s laws. If the velocity is equal to or
greater than the escape velocity, the projectile will leave Earth’s orbit.

Consider the planetary system in figure 2, where the red circle represents
the projectile with linear velocity v orbiting around the planet (gray circle).
According to Kepler’s laws, the planet is approximately located at one of the
two foci of the ellipse traced by the projectile itself. Specific orbital energy
ϵ is a constant quantity for a system consisting of two orbiting bodies. ϵ =(

v2

2
− ζ

d

)
η where ζ = G (m+M) is the sum of the standard gravitational

parameters of m and M and η = mM
m+M

is the reduced mass. As usual,

a is the semi-major axis, b is the semi-minor axis, c =
√
a2 − b2 = ea is

the linear eccentricity where e = c
a
=

√
1− b2

a2
is the eccentricity. It is

demonstrated that ϵ = −η
2
ζ2

h2 (1− e2) = − ζη
2a

where h is the specific relative
angular momentum. Than, given d and v. It is straightforward to prove that

a =
ζd

2ζ − v2d

e =
v2d

ζ
− 1

b =
vd

2ζ − v2d

√
d (2ζ − v2d)

(1)

Example. Consider the case of a circular orbit (e = 0) of radius d. Then,
v2d = ζ. Substituting into formula for the semi-major axis yields a = d,
and substituting into the formula for the semi-minor axis yields b = d. As
expected, the semi-major and semi-minor axes are equal to the radius of the
circular orbit.

Based on these formulas, we have completely characterized the ellipse
traced by the projectile in its orbit, knowing only the initial values of m, d
and v. When the projectile starts from the surface of the Earth, d = R⊕.
Regardless of the initial velocity (and obviously neglecting initial friction with
the atmosphere), the orbit will be unstable in the sense that after one orbit
around the Earth, the projectile will fall back to Earth because the ellipse
it traces necessarily intersects the Earth’s surface (at a position generally
different from the starting point) as in figure 3.

The polar equation from a focus of the ellipse is d (β) =
a(1−e2)
1+e cos(β)

where

β ≤ 0 < 2π. Using x = d (β) cos (β) and y = d (β) sin (β) and differentia-
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v

a

b

c

d

R⊕

Figure 2: The stable elliptical orbit for d > R⊕.

tion with respect to β we get dx
dβ

= −d (β) sin (β) and dy
dβ

= d (β) cos (β) +

d′ (β) sin (β) and dy
dx

=
( dy
dβ )
( dx
dβ )

= d(β) cos(β)+d′(β) sin(β)
d′(β) cos(β)−d(β) sin(β)

. To compute the tangent to

ellipse at point we use the ellipse polar equation and we get dy
dx

= e cos(γ)+cos(β)
e sin(γ)−sin(β)

.

At angle β = θ the tangent is equal to tan (ξ). Then, the rotation of the

ellipse is the angle γ such that e cos(γ)+cos(θ)
e sin(γ)−sin(θ)

= tan (ξ). The problem can
be further generalized by considering both elevation φ and azimuth of the
projectile.

By intersecting the orbit with the Earth (supposed to be perfectly circu-
lar) therefore an ellipse with a circumference it is possible to calculate the
latitude of the impact point.

3.1 Drag force during launch

Regardless of the launch mode, the projectile will be subject to two non-
negligible forces opposing its motion away from Earth: the gravitational
force and the frictional force. From Newton’s second law, mẍ = −mg −
6πµDẋ where x = x (t), x (0) = 0 and ẋ (0) = v0. The analytic so-

lution is x =
m

(
−e−

6πDµt
m (6πDµv0+gm)−6πDgµt+6πDµv0+gm

)
36π2D2µ2 . We report ẋ =
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R⊕

d
θ

φ

ξ
x

yv

γ

Figure 3: Unstable elliptical orbit for d = R⊕. The figure shows the x− and
y− axes of the reference frame. The latitude angle θ of the launch point,
the elevation φ above the horizon of the projectile at the launch point, the
rotation angle of the ellipse γ and the convenience angle ξ = θ + π

2
− φ. v

is tangent to the ellipse at the launch point. The blue cross represents the
point where the elliptical orbit intercepts the earth (point of impact of the
projectile).

e−
6πDµt

m

(
6πDµv0−gm

(
e
6πDµt

m −1

))
6πDµ

and ẍ = − e−
6πDµt

m (6πDµv0+gm)
m

. Let tA be the

ascent time, then ẋ (tA) = 0 which is the time required for the projectile
to exhaust the energy imparted at the start. It is found that the tA =
m(log( 6πDµv0

gm
+1))

6πDµ
, and substituting this into x (tA) yields the maximum height

xA =
m(6πDµv0−gm log( 6πDµv0

gm
+1))

36π2D2µ2 . The Taylor series of xA at µ = 0 (low vis-

cosity) is xA =
v20
2g

− 2πDµv30
g2m

+
9π2D2µ2v40

g3m2 + O (µ3). Specific orbital energy D
will evidently be the remaining energy with respect to the specific orbital
energy ϵ > ϵD at the time of launch. Given that the work is given by the
integral of the force, ϵD = ϵ−m

∫ X

0
ẍ (t (x)) dx where X is the height of the

projectile for which the effects of drag are negligible (µ ≈ 0).

For simplicity, let’s assume a vertical launch ϵD = ϵ − g2m3

72π2D2µ2w (p1, p2)

where w (p1, p2) = (W (p1)−W (p2)) (W (p2) +W (p1) + 2) as a function

of the Lambert W function [15]. p1 = − e
− 6πDµv0

gm −1
(6πDµv0+gm)
gm

and p2 =
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− (6πDµv0+gm)e

6πDµ(6πDµX−mv0)

gm2 −1

gm
. The Taylor series of ϵD at µ = 0 (low viscos-

ity) is ϵD = ϵ−gmX+
2πDµv30

g
− 2πDµv20

√
v20−2gX

g
+4πDµX

√
v20 − 2gX+O (µ2).

A more reasonable equation should also take into account other factors,
particularly the decrease in the gravitational field as the projectile moves
away from Earth g = g (x) and the reduction in air viscosity with increasing

altitude µ = µ (x). Therefore, mẍ = −mg
R2

⊕
(R⊕+x)2

− 6πDµ (x) ẋ but is no

longer analytically solvable. However, under certain assumptions, we can
assume that g does not vary during ascent (at least for x < R⊕

10
), while µ (x)

decreases exponentially in accordance with the barometric formula [16, 17]:
mẍ = −mg − 6πµ1e

−µ2xDẋ for some characteristics constants µ1 and µ2.

3.2 Stabilize the projectile in orbit

We have already proved that the orbit of a projectile launched from the
surface of the Earth is unstable (it will necessarily fall back to Earth after
completing an orbit around it). This holds true unless the projectile is ac-
celerated while in orbit. This will increase its kinetic energy, and thus the
trajectory will no longer intersect the surface of the Earth, stabilizing the
orbit. Figure 3 shows the intersection of the unstable orbit with the Earth’s
surface but in figure 4, we propose a solution based on an accelerator that
stabilizes the projectile by accelerating it to orbital velocity.

At the moment of launch on the surface of the Earth, the formula ϵ =(
v2

2
− ζ

R⊕

)
η holds (friction has not yet dissipated any energy) but during the

ascent phase, the projectile loses velocity (energy). Then, ϵD =
(

v2D
2
− ζ

X

)
η

where ϵD < ϵ, X > R⊕ and vD < v. The orbit traced taking into account the
energy lost during the ascent phase is significantly different from the orbit
traced in the absence of friction. Therefore, it is necessary to consider the
parameters ϵD, vD and X and describe the orbit again using equations 1 with
d = X, v = vD and ϵ = ϵD.

Replacing values into equation 1 gives aD, bD, cD and eD. Let dD (β) =
aD(1−e2D)
1+eD cos(β)

where β ≤ 0 < 2π be the polar equation from a focus of the dashed
ellipse in figure 4. The orbital velocity for the elliptical orbit as a function

of β is vellipticalD (β) =
√

2d(β)ϵD+ζη
dD(β)η

, while the orbital velocity for a circular

orbit is vcircularD (β) =
√

GM
r(β)

. Clearly, vcircluarD (β) > vellipticalD (β), but the
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v

vcircular
D

velliptical
D

X

d

Figure 4: The projectile on the Earth’s surface (red circle) and its motion
subjected to atmospheric friction (dotted line) until it reaches the altitude X
where friction can be considered negligible (µ (X) ≈ 0). Upon surpassing the
altitude X (yellow circle), the projectile traces an unstable elliptical orbit if
it weren’t for the presence of the accelerator that brings it to orbital velocity
v0.
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ratio between circular and elliptical velocities is minimum for β = π. Hence,

min
vcircluarD

vellipticalD

=
(2ζ−Xv2D)

√
GMη√

(4ζ−2Xv2D)(X2v2Dϵ+ζη(2ζ−Xv2D))

4 Conclusions and future work

In this paper, we have analyzed alternative possibilities for launching satel-
lites into orbit. Specifically, we have focused, and will continue to focus
in the future, on launch techniques that do not require the consumption of
large amounts of fuel, as is currently the case. The aim is to eventually en-
able space travel, or at least achieve stable orbits, without relying on fuel,
instead harnessing gravitational fields or other forms of propulsion distinct
from thermal propulsion.

From the studies conducted thus far on circular motion as a propulsion
method, several challenges have clearly emerged, particularly due to air re-
sistance during the initial phase of launch when velocity is highest. This
issue could potentially be mitigated by launching the rocket from the lower
atmosphere, which would partially reduce the impact of air resistance. How-
ever, this approach still necessitates the use of a support rocket propelled by
thermal propulsion, thus remaining subject to the physics of the rocket equa-
tion. Nonetheless, once the initial phase is overcome, we have demonstrated
that orbit stabilization is achievable through the use of an accelerator, which,
without significant complications, can impart the necessary velocity to the
projectile.
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