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Experimental measurements of nonlinear dielectric response in glassformers like supercooled glyc-
erol or propylene carbonate have been interpreted as providing evidence for a growing thermody-
namic length scale when lowering temperature. A heuristic picture based on coherently flipping
‘superdipoles’ with disordered internal structure has been argued to capture the essence of the ex-
perimentally reported behavior, pointing to the key role of effectively disordered interactions in
structural glasses. We test these ideas by devising an explicit one-dimensional model of interact-
ing spins incorporating both the spin-glass spirit of the superdipole argument, and the necessary
long-time decorrelation of structural disorder, encoded here in a slow dynamics of the coupling
constants. The frequency-dependent third-order response of the model qualitatively reproduces the
typical humped shape reported in experiments. The temperature dependence of the maximum value
is also qualitatively reproduced. In contrast, the humped shape of the third-order response is not
reproduced by a simple kinetically constrained spin model with non-interacting spins. To rationalize
these results, we propose a two-length-scale scenario by distinguishing between the characteristic
length of dynamical heterogeneities, and a rigidity length that accounts for the local tendency of
spins to flip coherently as a block, in the presence of interactions. We show that both length
scales are identical in the kinetically constrained spin model, while they have significantly different
dynamics in the model of interacting spins.

I. INTRODUCTION

Understanding the origin of the very fast increase of
the relaxation time τα of molecular glass formers over a
moderate temperature range remains a challenging task
for condensed matter physics [1, 2]. As a consequence
the glass transition temperature Tg is merely defined by
τα(Tg) = 100s. Experimentally, the glass transition has
been studied by a vast range of techniques [3], ranging
from Nuclear Magnetic Resonance [4] to dielectric spec-
troscopy [5], neutron diffraction [6, 7], optical techniques
[8–11] and even Atomic Force Microscopy [12]. As each
technique specifically probes some degrees of freedom,
comparing the experimental results is of great interest –
see e.g. [13]. This comparison reveals that all of them are
well coupled –apart from one exception which is physi-
cally understood [13, 14]. Indeed, upon cooling, they ex-
hibit a similar characteristic time scale –called the α re-
laxation time–, which governs, e.g., both dielectric spec-
tra –probing rotation of molecules– and viscosity behav-
ior –probing the mechanical response of molecules. Fur-
thermore, it has been gradually established [1, 2] that, in
supercooled liquids, relaxation happens through groups
of molecules whose dynamics is correlated: at a given in-
stant, some of these groups are much faster than others,
hence their name of “Dynamical Heterogeneities” (DH).
Yet, despite the impressive number of experimental stud-
ies characterizing the glass transition, the origin of this
extremely fast viscous slow down and of DH’s remains
debated [1, 2] and opposite theories –either static or dy-
namic– claim to account for the phenomenology of glass-
formers.

According to static theories [15, 16] formation of
glasses is primarily driven by the emergence of growing
static correlations, capturing the idea of “amorphous or-
der”, namely non-periodic molecular configurations with
low free energy. In this view, the material gradually so-
lidifies as these low energy local molecular packings be-
come harder to relax or to perturb when temperature de-
creases. In dynamic theories instead [17, 18], structural
information plays little role, and emphasis is placed on
the existence of local mobile defects that can relax the
entire configuration. This view is captured by simple Ki-
netically Constrained Models (KCM) [19], where the rar-
efaction of diffusive localized defects at low temperature
is introduced as a minimal ingredient. In this approach,
DH emerge because a single defect has to relax many
molecules as it moves, thus building spatial correlations
between relaxation events.

Given the ability of KCM to account for the main ob-
served dynamical features of real glass formers [20], do
we really need the complex notion of amorphous order-
ing, which is imported from the field of spin glasses in
high dimensions, to get a realistic theory of the molecular
glass transition [21]? Despite the considerable number of
numerical works highlighting the presence of amorphous
ordering in model glassformers (see, e.g., [22, 23]), the
question remains vividly debated, as shown by the recent
works [24] and [25] whose titles express opposed views on
this central question. This controversy comes from the
fact that we do not have a single experimental observable
whose behavior is unanimously ascribed to the growth of
amorphous order upon cooling. Nearly two decades ago,
it was argued [26] that, on general grounds, the jump of
the specific heat around Tg was not consistent with KCM
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models; but this was contested, a few months later, by
elaborating a refined KCM [27] showing a behavior rea-
sonably consistent with experiments. This paper is de-
voted to another observable, namely the non-linear di-
electric susceptibility, which, in the last decade, has been
argued to provide evidence for amorphous ordering, as
we now explain.

Experimental measurements of nonlinear dielectric re-
sponse in glassformers like supercooled glycerol or propy-
lene carbonate have been consistently reported by sev-
eral groups since 2010 [28–32]. The experimental be-
havior was found consistent with a theoretical prediction
[33, 34] inspired by the amorphous ordering occurring in
spin-glasses, and adapted to the realm of molecular glass-
formers (where the configurational entropy is non zero).
Because in spin-glasses, the presence of amorphous order
is evidenced by the divergence of the nonlinear (mag-
netic) susceptibility at the critical temperature TSG, the
idea guiding the prediction of Refs. [33, 34] was to use the
non-linear (dielectric) susceptibility as a probe of amor-
phous order in molecular liquids.

The main experimental outcomes were twofold: first,
it was found that non-linear responses of third order, χ3

[28–31], and of fifth order, χ5 [35], have a characteristic
humped shape when plotted as a function of frequency,
and second that their maximum value grows when tem-
perature is lowered –or pressure increased [31]. Because
this anomalous increase upon cooling is reminiscent of
the spin-glass behavior, it was interpreted as a measure
of a dynamical length scale ℓNonLin directly revealing
the growth of amorphous order in the glassformer upon
cooling. This interpretation was reinforced by showing
that one accounts for the dramatic increase of relaxation
time provided the free energy barrier grows typically as
a power law of ℓNonLin [28–31]. From these measure-
ments, a heuristic picture inspired by spin-glass physics
has emerged [36, 37], namely the idea that global relax-
ation results from the coherent relaxation of ‘rigid su-
perdipoles’ having a size approximately equal to ℓNonLin.
Quite importantly, these superdipoles have a disordered
and essentially frozen internal structure in terms of the
microscopic dipoles, and their relaxation as rigid blocks
is key to rationalize the experimentally observed behav-
ior of the non-linear response as a function of frequency
and temperature [32, 38] –including works done previ-
ously in another perspective [39–41]. This is why, it was
finally argued [35, 42] that such a coherent relaxation of
superdipoles of increasing size (when temperature is low-
ered) implies that thermodynamic aspects play an im-
portant role in the relaxation of glassformers. As a con-
sequence of this line of thought, KCM are not expected
to be sufficient to account for the nonlinear responses of
supercooled liquids, despite their ability to account for
DH at zero applied field. However, no consensus has
been reached yet in the glass community regarding this
issue [43, 44], and, furthermore, recent extensive numer-
ical simulations of low temperature model glassformers
indicate that dynamic facilitation could still play a ma-

jor role close to Tg [45, 46].

This lack of consensus is partly due to the fact that
nonlinear responses are notoriously difficult to evaluate,
up to the point that explicit calculations are possible
only in oversimplified frameworks, such as phenomeno-
logical models [36, 37], or simplified models where the
mechanism leading to a supercooled state plays no direct
role [47–50]. Moving to the theories accounting for the
glass transition in itself, whatever the viewpoint adopted
about the importance of thermodynamics aspects, the
proposed theoretical reasonings mostly rely on general
and plausible arguments [38, 42, 44] and not on fully ex-
plicit calculations. Although quite successful in terms of
comparison with the experimental data [28, 35, 44], these
general arguments leave a number of important questions
open, such as: Which type of interactions between micro-
scopic dipoles could generate an emerging phenomenol-
ogy in terms of superdipoles with disordered but rigid
internal structure? Can a notion of ‘amorphous order’ be
consistently characterized in an explicit model out of the
superdipole picture? How can these superdipoles melt in
the long-time regime to recover a trivial non-linear re-
sponse at very low frequency, and thereby reproduce the
humped shape of non-linear responses (in particular the
third order one)?

In this paper, we evaluate for the first time the non-
linear response in explicit model glassformers with many
microscopic degrees of freedom, where glassiness emerges
directly from the collective dynamics. We consider here
minimal models retaining only polarization degrees of
freedom, and not translational degrees of freedom. Our
focus is thus specifically on the analysis of the nonlinear
response to an external field coupled to the polarization
degrees of freedom, and not on the mechanical properties
of glassformers. For the sake of simplicity, we restrict
ourselves to one-dimensional models where polarization
degrees of freedom are described as Ising spins. This
minimal setting is aimed to determine robust qualitative
features of the nonlinear response that could be shared
by more realistic glassy models. Our goal is in particular
to investigate the role of a putative amorphous order in
the humped shape of the nonlinear response.

More in details, we propose two explicit one-
dimensional models, which both cannot have any long-
range thermodynamic order at finite temperature. Our
two models differ only about the importance of interac-
tions between effective degrees of freedom, and we com-
pare their nonlinear responses in frequency and temper-
ature. On one side we devise an explicit one-dimensional
model of interacting spins incorporating both the spin-
glass spirit of the superdipole argument, and the neces-
sary long-time decorrelation of structural disorder, en-
coded here in a slow dynamics of the coupling constants
between neighboring spins. We find that the frequency-
dependent third-order response of the model qualita-
tively reproduces the typical humped shape reported in
experiments, and that the static third-order response is
that of non-interacting spins. The temperature depen-
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dence of the maximum value is also qualitatively repro-
duced. We compare step by step these results with those
obtained with our second model, which is a simple kineti-
cally constrained spin model inspired by the Fredrickson-
Andersen model. We find that the cubic response of the
kinetically constrained model monotonically decreases as
a function of frequency. These results are rationalized
through a two-length scale scenario, which distinguishes
between the characteristic length of dynamical hetero-
geneities and a rigidity length –defined in section V– that
monitors the effect of interactions. Our results indicate
that both length scales are identical in the kinetically
constrained spin model, while they have significantly dif-
ferent dynamics in the model of interacting spins. These
results provide some quantitative evidence in favor of the
important role played by the growth of amorphous order
in glassformers upon cooling.

II. STOCHASTIC SPIN MODELS

A. Disordered spin model with slowly evolving
couplings

1. Spin dynamics

We consider a one-dimensional spin model with N
spins Si = ±1 (i = 1, . . . , N), with periodic boundary
conditions (SN+1 ≡ S1). An external field E(t), play-
ing the role of the electric field in the experiment, is
applied. Neighboring spins Si and Si+1 on the lattice
interact via a link-dependent coupling constant Ji,i+1.
The time-dependent Hamiltonian of the model reads

H(t) = −
N∑
i=1

Ji,i+1SiSi+1 − E(t)

N∑
i=1

Si. (1)

The stochastic dynamics is constrained by the detailed
balance property, valid for a static field E(t) = E0. More
specifically, spins are assumed to obey a stochastic rever-
sal dynamics satisfying detailed balance with respect to
the equilibrium distribution associated with the Hamilto-
nian H (corresponding to a static field E0), Peq ∝ e−βH ,
where β = 1/kBT is the inverse temperature. The prob-
ability per unit time to flip a spin is chosen according to
the Glauber rate

W (−Si|Si) =
ν0

1 + eβ∆HS
i

(2)

where ∆HS
i is the energy change induced by the reversal

of the spin Si, and where ν0 is the characteristic attempt
frequency of the spin dynamics. We further assume that
the definition (2) of the transition rates remains valid for
a time-dependent field E(t), leading to time-dependent
transition rates: this is well justified –see e.g. Chap. 14
of Ref. [51]– in our case where the frequency of the field
is much smaller than ν0.

2. Coupling dynamics

In the form (1), the Hamiltonian is very similar to that
of a spin-glass model. This spin-glass-like form of the
Hamiltonian is motivated by the standard heuristic ar-
gument describing a dielectric glassformer as a set of su-
perdipoles, each one being made of frozen and disordered
arrangement of electric dipoles [36] (see also Sec. VA).
This phenomenological argument, deeply rooted in the
spin-glass physics, predicts a divergence of the non-linear
dielectric responses when a rigidity length, characteriz-
ing the size of superdipoles, increases. The argument also
correctly predicts the absence of divergence for the linear
dielectric response.
In spite of this qualitative success, one of the difficul-

ties with the above heuristic argument is that it does not
describe how the nonlinear dielectric response becomes
small again at very low frequencies. Intuitively, this is
the regime where the disorder inside the superdipoles un-
freezes due to, e.g., the fact that molecules are anisotropic
objects which mutual interaction depends onto their rel-
ative orientation –for example the dipole-dipole interac-
tion changes its sign depending on the angle between two
molecular dipoles. Therefore as the system relaxes, the
mutual orientations of molecules changes and their inter-
actions are modified and may even change sign. Assum-
ing that couplings Ji,i+1 in our model play a role similar
to the interactions between molecules –which is implicit
in Eq. (1)– and are thus key to the glass transition, the
couplings Ji,i+1 would also be expected to change their
sign in the long run. To include this effect explicitly in
the model, we assume that the coupling constants Ji,i+1

are not completely frozen but have a slow dynamics, on
a time scale much longer than the time scale of the spin
dynamics (see also [52] for a closely related model in the
context of neural networks). For simplicity, we choose
bivalued coupling constants Ji,i+1 = ±J0, and assume
a stochastic reversal dynamics Ji,i+1 → −Ji,i+1 with a
transition rate satisfying detailed balance with respect
to the equilibrium distribution Peq. The probability per
unit time to reverse the sign of the coupling constant
Ji,i+1 is assumed to be

W (−Ji,i+1|Ji,i+1) =
ν1

1 + eβ∆HJ
i,i+1

(3)

where ∆HJ
i,i+1 is the energy change induced by the re-

versal of the coupling constant Ji,i+1, and where ν1 is the
characteristic attempt frequency of the dynamics. As we
expect coupling constants to evolve on much larger time
scales than the spins, we assume that ν1 ≪ ν0, so that
the coupling constants appear as essentially frozen on the
time scale of the spin dynamics.
In the following, we assume that the characteristic fre-

quency ν1 depends on temperature according to an Ar-
rhenius law,

ν1(T ) = ν0 e
−B/T , (4)
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where B is a typical energy barrier for rearrangements.
This choice takes into account, at a qualitative level, the
thermally activated nature of rearrangements, thereby
inducing at low temperature T a time-scale separation
between the fast spin dynamics and the slow coupling
dynamics.

It is important to note that the slowdown of the re-
laxation time of the spin dynamics does not result from
the Arrhenius form of the time scale τ1 = 1/ν1 defined
in Eq. (4), but rather from the spin dynamics itself that
slows down when lowering temperature, due to interac-
tions between spins. If one would freeze the disordered
couplings (i.e., ν1 = 0) and thus consider a spin-glass
model, the relaxation time would also increase when low-
ering temperature, and eventually diverge when T → 0.
Hence the role of the phenomenological activated fre-
quency ν1 introduced in Eq.(4) is to provide a mechanism
for the unfreezing of the disorder on long time scale, to re-
cover effectively non-interacting spins at equilibrium (i.e.,
in the infinite time limit), consistently with experimental
results. In the following, we use in numerical simulations
the value B = 3J0, which ensures that rearrangements
are slow enough to let the glassy dynamics unfold, but
fast enough to see a decorrelation at low frequency in the
non-linear response (see Sec. IV).

B. Kinetically constrained model

We wish to compare the above model of interact-
ing spins with stochastic couplings to a simple kineti-
cally constrained model (KCM). As a minimal KCM, we
consider a simple extension of the Fredrickson-Andersen
(FA) model [19], that includes spin variables on top of
the usual mobility excitations. KCM with two local vari-
ables have been previously considered in other contexts,
like ion mobility in glasses [53]. In the usual FA model,
mobility excitations are the only degrees of freedom (so
that kinetic constraints only affect mobility excitations
themselves), while in our model mobility excitations may
couple to other physical degrees of freedom. More explic-
itly, we introduce local facilitation variables ni = 0 or 1
on each site i, where ni = 1 corresponds to the presence
of a mobility excitation on site i. As in the FA model,
mobility excitations are assumed to be non-interacting,
and thus to contribute to the Hamiltonian through a term
proportional to

∑
i ni. The generalized Hamiltonian then

reads

H̃ = −E(t)

N∑
i=1

Si +K

N∑
i=1

ni , (5)

with the external field E(t) and a characteristic energy
K of mobility excitations. A spin Si can be flipped only
when ni = 1, which leads to a slowdown of the dynamics
at low temperature, because mobility excitations become
rare due to their energetic cost. The transition rate for

spin reversal reads:

W (−Si|Si) =
ν0 ni

1 + eβ∆H̃S
i

(6)

where ∆H̃S
i = 2ESi is the variation of the Hamilto-

nian H̃ defined in Eq. (5) associated with the transition
Si → −Si. Here again, we assume the transition rates
to be slowly time-dependent due to the field E(t). As
for the dynamics of mobility excitations, we follow the
standard rules of the FA model. The local variable ni

can only change its value if at least one of the neighbor-
ing variables ni−1 or ni+1 is equal to 1. On a coarse-
grained scale, this kinetic constraint on the dynamics of
the variables ni leads to an effective diffusion of mobility
excitations [19]. To fulfill detailed balance with respect
to the Hamiltonian (5), and to take into account kinetic
constraints on the dynamics of mobility excitations, we
choose the following form for the transition rate from ni

to n′
i = 1− ni,

W (1− ni|ni) =
ν0

1 + eβ∆H̃n
i

θ(ni−1 + ni+1) , (7)

where θ(x) is the Heaviside function, θ(x) = 1 if x > 0

and θ(x) = 0 otherwise; ∆H̃n
i = K(1− 2ni) is the varia-

tion of the Hamiltonian H̃ defined in Eq. (5) associated
with the transition ni → 1− ni.

III. STATIC THIRD-ORDER RESPONSE

A. General expression of cubic responses

We first consider a generic spin model at equilibrium,
with a Hamiltonian H, which is a function of N spin
variables {Si} and possibly of other variables present in
the system. Spins are coupled to a static external field
E0, so that the Hamiltonian takes the form

H = H0 − E0

∑
i

Si (8)

where H0 is the Hamiltonian in the absence of external
field (E0 = 0). We assume that H0 is invariant by global
spin reversal {Si} → {−Si}. The free energy density is
defined by

f = − 1

βN
lnZ (9)

where Z =
∑

C e−βH(C) is the partition function; C is a
short-hand notation for the list of all microscopic vari-
ables, including the N spins Si. The average magnetiza-

tion ⟨m⟩, where m = 1
N

∑N
i=1 Si, is given by

⟨m⟩ = − ∂f

∂E0
. (10)
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Static linear and non-linear responses are obtained by
expanding ⟨m⟩ for small E0,

⟨m⟩ = χs
1E0 + χs

3E
3
0 + . . . (11)

where we have kept terms only up to third order, and
used the spin-reversal symmetry to eliminate even terms
in E0 in the expansion. This leads in particular to a
definition of a static cubic response as

χs
3 =

1

6

∂3⟨m⟩
∂E3

0

. (12)

An alternative expression of the cubic response is ob-
tained by considering a field E0 + ε and evaluating the
linear response to the tiny contribution ε ≪ E0, in the
presence of the small field E0. Here, one considers the
linear response

χs
lin(E0) =

∂⟨m⟩
∂E0

(13)

and expands it to quadratic order in E0,

χs
lin(E0) = χs

1 + χs
21E

2
0 + . . . , (14)

which defines the cubic response χs
21. Using Eqs. (11)

and (13), we obtain

χs
lin = χs

1 + 3χs
3E

2
0 + . . . (15)

One thus has the simple relation between the cubic re-
sponses χs

3 and χs
21:

χs
21 = 3χs

3 . (16)

As we will see below in Sec. IV, the static response χs
21

corresponds to the zero-frequency limit of the dynamic
cubic response considered in this paper, and we thus fo-
cus on χs

21 rather than on χs
3 in the following.

From Eqs. (12) and (16) we have

χs
21 =

1

2

∂3⟨m⟩
∂E3

0

. (17)

Using Eq. (10), we eventually end up with

χs
21 = −1

2

∂4f

∂E4
0

. (18)

This general expression of the static third-order response
χs
21 can now be applied to the two spin models introduced

in Sec. II.

B. Spin model with stochastic couplings

We consider the spin model with stochastic couplings
defined in Sec. IIA, with a static external field E(t) =

E0. Using the expression (1) of the Hamiltonian H, the
partition function reads

Z =
∑

{Si},{Ji,i+1}

eβ
∑N

i=1 Ji,i+1SiSi+1+βE0
∑N

i=1 Si (19)

and it can be determined for instance using a standard
transfer matrix technique. However, a simpler calcula-
tion can be performed using a change of summation vari-
able. Defining σi = Ji,i+1SiSi+1/J0, the partition func-
tion takes the simpler form

Z =
∑

{Si},{σi}

eβJ0
∑N

i=1 σi+βE0
∑N

i=1 Si (20)

which now effectively involves only non-interacting de-
grees of freedom (the sum is performed over all values
Si = ±1 and σi = ±1 for i = 1, . . . , N). One thus finds

Z =
[
4(coshβJ0) cosh(βE0)

]N
. (21)

The free energy density defined in Eq. (9) then reads

f(β,E0) = fint(β) + fid(β,E0) , (22)

where

fint(β) = − 1

β
ln[2 cosh(βJ0)] (23)

is the contribution to the free energy density resulting
from (annealed) random interactions between spins, and

fid(β,E0) = − 1

β
ln[2 cosh(βE0)] (24)

is the free energy density of the ideal spin gas. Hence
at static level, interactions between spins are decoupled
from the external field, in the sense that their respec-
tive contribution to the free energy density are additive.
Eqs. (10), (11) and (18) then lead to simple expressions
for the static linear and third-order responses respec-
tively,

χs
1 = β, χs

21 = −β3 (25)

which are nothing but the linear and third order re-
sponses of an ideal spin gas, i.e., a paramagnetic system
of noninteracting spins. The linear response exhibits a
moderate increase, ∝ 1/T , when lowering temperature,
in qualitative agreement with experiments. Note that
only fid(β,E0) contributes to the response χs

21, because
only this contribution to the free energy density depends
on the field E0.

C. Kinetically constrained spin model

For the kinetically constrained spin model introduced
in Sec. II B, considered here with a static field E(t) =
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E0, the partition function defined by the Hamiltonian H̃
given in Eq. (5) reads as

Zkc =
∑

{Si},{ni}

eβE0
∑N

i=1 Si−βK
∑N

i=1 ni . (26)

The spins Si and mobility excitations ni are non-
interacting variables in the Hamiltonian H̃, so that the
partition function simply factorizes as

Zkc =
[
4(coshβK) cosh(βE0)

]N
. (27)

The free energy density again takes an additive form

fkc(β,E0) = fmob(β) + fid(β,E0) , (28)

where

fmob(β) = − 1

β
ln[2 cosh(βK)] (29)

is the free energy contribution of mobility excitations,
and where the ideal spin gas contribution fid(β,E0) has
the same expression as in Eq. (24). Hence, one also finds
for the kinetically constrained model that the linear and
third-order static responses are given by the ideal spin
gas responses χs

1 = β and χs
21 = −β3 respectively, as in

Eq. (25). Note that this result was expected since spins
are non-interacting in the present model.

IV. DYNAMIC THIRD-ORDER RESPONSE

Our goal is to evaluate the third-order (dielectric) re-
sponse of the polarization (i.e., magnetization in the spin
language) to a time-dependent external field E(t) oscil-
lating at (angular) frequency ω. Here again, there are
several ways to define a third-order response. For in-
stance, one may consider either the response to the field
at frequency ω or at frequency 3ω. The response at
frequency ω can itself be divided into two distinct re-
sponse functions. As in the static case, we focus here on
the simplest third-order response function, called χ21(ω),
which consists in looking at the third-order response at
frequency ω when applying a field E(t) = E0+ ε cos(ωt),
in the limit where both the static component E0 and
the amplitude ε are small, with the further assumption
that ε ≪ E0. The third-order response χ21(ω), which
has been measured experimentally [54], is linear in ε and
quadratic in E0, yielding an overall third-order response
in the field amplitude. It has been shown that all types
of third-order responses behave in a similar way [38, 54],
and it is thus legitimate to focus on a specific type of
response.

A. Fluctuation-dissipation relation

The advantage of the third-order response function
χ21(ω) is that it consists in a linear response to the oscil-
lating contribution of the field. In other words, it is the

correction at order E2
0 to the linear response χ(ω,E0) of

the polarization at frequency ω,

χ21(ω) =
1

2

∂2χ

∂E2
0

(ω,E0 = 0) . (30)

Interestingly, the linear response χ(ω,E0) in the presence
of a static field E0 can be expressed in terms of the equi-
librium correlation function of the magnetization using
the fluctuation-dissipation theorem (FDT) since we are
dealing with a close-to-equilibrium situation. We first
formulate the FDT in the time domain before moving
to the frequency domain. Let us define the (normalized)
equilibrium two-time correlation function of the magne-

tization, m(t) = N−1
∑N

i=1 Si(t) as

C(t, E0) = N
(
⟨m(t)m(0)⟩E0

− ⟨m⟩2E0

)
, (31)

where the notation ⟨. . .⟩E0
indicates an average over the

equilibrium dynamics under a static field E0. The FDT
then reads

χ(t, E0) = −βθ(t)
∂C

∂t
(t, E0) (32)

where χ(t, E0) is the impulse response [i.e., the linear
response of ⟨m(t)⟩E0 to a Dirac delta in ε(t) for a field
E(t) = E0+ε(t)], and θ(t) is the Heaviside function which
accounts for the causality condition.
In practice, we may thus use the following proce-

dure to determine numerically the third-order response
χ21(ω). One first determines the equilibrium spin cor-
relation function C(t, E0) in the time domain for differ-
ent small values of the static field E0, and then take its
Fourier-Laplace transform Ĉ(ω,E0), defined as

Ĉ(ω,E0) =

∫ ∞

0

dt eiωt C(t, E0) . (33)

In Fourier space, the FDT (32) reads

χ(ω,E0) = βC(t = 0, E0) + βiω Ĉ(ω,E0) . (34)

Note that we consider here both the real and imagi-
nary parts of the Fourier transform of the fluctuation-
dissipation relation (32), while standard forms of the
fluctuation-dissipation relation in Fourier space usually
include only the imaginary part of Eq. (34), correspond-
ing to the loss modulus.
Setting E0 = 0 in Eq. (34), one gets the linear response

function χ1(ω),

χ1(ω) = βC(0, 0) + βiω Ĉ(ω, 0) . (35)

The third-order response function χ21(ω) is obtained by
applying the definition (30) to the fluctuation-dissipation
relation (34), yielding

χ21(ω) =
β

2

∂2C

∂E2
0

(0, 0) +
1

2
βiω

∂2Ĉ

∂E2
0

(ω, 0) . (36)
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FIG. 1. Modulus of the linear response χ1(ω) as a function
of the angular frequency ω, for different values of tempera-
ture (same color code on both panels). (a) Spin model with
stochastic couplings for T = 0.40, 0.42, 0.45, 0.50, from top
to bottom at low ω (J0 = 1, B = 3). Inset: relaxation time
τα = 2π/ωα vs. temperature T , where ωα is the angular fre-
quency at which the imaginary part χ′′

1 (ω) is maximum. (b)
Kinetically constrained spin model for T = 0.35, 0.40, 0.45,
0.50, from top to bottom at low ω (K = 1). Inset: τα vs. T . In
both cases, the response function decays monotonously with
frequency. System size: N = 103 for (a) and (b).

Note that in practice, one needs to determine numerically
the correlation function with high accuracy in order to
evaluate the second derivative of the correlation function
with respect to E0. An advantage of the method de-
scribed here is that only static fields are applied in the
simulations.

B. Spin model with stochastic couplings

We have determined numerically both the linear and
the third-order response functions χ1(ω) and χ21(ω) us-
ing kinetic Monte-Carlo simulations of the spin model de-
fined by Eqs. (1), (2) and (3). To obtain the frequency-
dependent response functions χ1(ω) and χ21(ω) over a
broad range of frequencies, we first perform accurate fits
of the time-dependent correlation function C(t, E0) for
E0 = 0 and for a small, non-zero value E0. Fits of
C(t, E0) are constrained to take the known equilibrium
value

C(0, E0) = N
(
⟨m2⟩E0

− ⟨m⟩2E0

)
, (37)

which is computed from the second derivative of the free
energy (22) with respect to the field. The linear response
function is evaluated from C(t, 0) using Eq. (35). The
third-order response is obtained from Eq. (36), using the
approximation

∂2C

∂E2
0

(t, 0) ≈ 2

E2
0

[C(t, E0)− C(t, 0)] , (38)

which holds since C(t, E0) is an even function of E0.
The modulus |χ1(ω)| of the linear response is plotted on
Fig. 1(a) for several temperature values. The modulus
|χ21(ω)| of the third-order response is plotted on Fig. 2
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FIG. 2. Modulus of the third-order response χ21(ω) for dif-
ferent values of temperature (T = 0.40, 0.42, 0.45, 0.50, from
top to bottom) in the spin model with stochastic couplings,
exhibiting a pronounced peak whose height increases when
decreasing temperature, while peak frequency decreases with
temperature. Parameters: J0 = 1, B = 3, N = 103. The
third-order response is obtained from the time correlation
C(t, E0)− C(t, 0) evaluated for E0 = 0.04.

for different values of the temperature T (we set kB = 1).
At a qualitative level, the response function is seen to
have the typical humped shape reported in experiments.

Simulations have been performed using a moderate
system size N = 103, and averaging over 105 indepen-
dent runs, to get accurate data. This procedure has been
found to yield cleaner data than simulations of a larger
system averaged over a lower number of runs. We checked
that the system size considered remains much larger than
the rigidity length (see Sec. V).

To investigate the effect of temperature, we define a
rescaled third-order response X21(ω) = T 3χ21(ω) that
normalizes the response χ21(ω) by the static third-order
response of non-interacting dipoles, which is equal to
1/T 3 in the present model [see Eq. (25)] –or proportional
to 1/T 3 in experiments. Any temperature dependence of
the curve X21(ω) is thus expected to be due to interac-
tions. We have plotted X21(ω) in Fig. 3 as a function
of the rescaled frequency ω/ωα(T ), where ωα(T ) is the
value of ω for which the loss modulus χ′′

1(ω), that is the
imaginary part of the linear response function, is max-
imal (τα = 2π/ωα is the relaxation time). We observe
that in this rescaled representation, the peak value still
increases when decreasing temperature, in qualitative
agreement with experimental results [28]. Note that to
obtain these results, one needs to take into account an in-
creased time scale separation between spin and coupling
dynamics when temperature is lowered, as accounted for
by the Arrhenius law in Eq. (4).
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FIG. 3. Modulus |X21(ω)| of the rescaled third-order response
in the spin model with stochastic couplings, as a function of
the rescaled frequency ω/ωα(T ), for different values of tem-
perature (T = 0.40, 0.42, 0.45, 0.50, from top to bottom;
same data as Fig. 2). The peak value increases when decreas-
ing temperature.

C. Kinetically constrained spin model

We have also evaluated the dynamic linear and cu-
bic responses χ1(ω) and χ21(ω) in the kinetically con-
strained spin model defined in Sec. II B. The same fit-
ting protocol as the one described in Sec. IVB is used.
The modulus |χ1(ω)| of the linear response is plotted in
Fig. 1(b), and is observed to monotonously decrease with
frequency as expected. The modulus |χ21(ω)| of the cu-
bic response is plotted in Fig. 4. We see that contrary to
the model of interacting spins, no peak is observed and
|χ21(ω)| decreases monotonically as function of the fre-
quency ω. The curves approximately collapse to a mas-
ter curve when rescaled by 1/T 3, up to a simultaneous
rescaling of frequency into ω/ωα(T ). The correspond-
ing plot of the rescaled response |X21(ω)| = T 3|χ21(ω)|
versus ω/ωα(T ) is displayed in the inset of Fig. 4.

Summarizing Sec. IV, we have found that the two mod-
els studied have the same behavior for the linear response
|χ1(ω)|, but differ considerably in the shape of |χ21(ω)|,
although they have the same trivial static responses χ1(0)
and χ21(0). At a qualitative level, only the model with
slowly rearranging, spin-glass like couplings is consistent
with the experimental behavior reported in supercooled
liquids. This shows in particular that a model with local
facilitation as the only physical ingredient fails to repro-
duce the peaked shape of the third-order response. In
the next section we look for a scenario capturing more
in depth the source of this difference between the two
models.
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FIG. 4. Modulus |χ21(ω)| of the third-order response for
different values of temperature (T = 0.35, 0.40, 0.45, 0.50,
from top to bottom) in the kinetically constrained spin
model. No peak is observed, and |χ21(ω)| decreases mono-
tonically with frequency. Inset: corresponding rescaled re-
sponse |X21(ω)| versus rescaled frequency ω/ωα(T ). Param-
eters: K = 1, N = 103. The third-order response is obtained
from C(t, E0) − C(t, 0) evaluated for E0 = 0.13, 0.15, 0.18,
0.20 at temperature T = 0.35, 0.40, 0.45, 0.50, respectively.

V. A TWO-LENGTH-SCALE SCENARIO

As explained in the Introduction, non-linear dielectric
responses are mostly used as experimental tools to probe
the presence of a dynamic length ℓNonLin in glassformers.
Numerically, more direct measures of dynamical length
can be performed. We argue below in favor of a two-
length scale scenario in the dynamics of the glassy spin
model with stochastic couplings. This scenario allows us
to evidence the key role played by interactions to gener-
ate a dynamic rigidity length that becomes significantly
larger than the dynamic length scale characterizing dy-
namical heterogeneities. We start by recalling the heuris-
tic ‘superdipole’ argument, that is useful to grasp the
physical picture behind the humped shape of the cubic
response.

A. Superdipole picture

1. Physical motivation

Obtaining the humped shape of the cubic response is
non trivial in the sense that it requires two important
ingredients of the model, namely the presence of inter-
actions between spins and the time scale separation be-
tween the dynamics of the spins and that of the couplings.
In the absence of interactions (J0 = 0), the model reduces
to a paramagnetic spin model (or ideal spin gas) also in
the dynamical regime, and |χ21(ω)| is expected to be a
decreasing function of ω, with a low-frequency plateau
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value equal to 1/T 3, in agreement with the static results
of Sec. III [see Eq. (25)]. Including interactions with
nonzero quenched couplings Ji,i+1 leads to the emergence
of a rigidity length, that grows when decreasing temper-
ature, as discussed below.

Heuristically, and as long as the frequency is not too
low, the system may be thought of as an ideal gas of
superdipoles, as mentioned above, where superdipoles are
composed of typically Ncorr(T ) neighboring spins with an
essentially frozen disordered structure. Hence χ21(ω) is
expected to remain a decreasing function of ω, but now
with a higher low-frequency plateau value (see below).
To get the humped shape, one thus needs to take into
account the slow dynamics of the coupling constants, on a
time scale much larger than the one of the spin dynamics.
In this low frequency regime, the third order response
thus goes from the high plateau value ∝ Ncorr(T )/T

3

down to the ideal gas non-linear response equal to 1/T 3.
In its simplest version, the superdipole argument as-

sumes that the N spins can be divided into groups of
Ncorr neighboring spins that flip simultaneously, and thus
constitute a superdipole (or ‘superspin’). Interactions be-
tween superdipoles are neglected. To formulate the ar-
gument in a quantitative way, it is thus useful to first
evaluate the dynamic response of noninteracting spins.

2. Dynamic response of noninteracting spins

For later generalization to the superdipole case, it is
convenient to assume that the spins take values Si = ±µ,
where µ is the dipolar moment. The transition rate for
spin reversal is given by

W (−Si|Si) =
ν0

1 + e2βµESi
. (39)

For noninteracting spins, the dynamic response can be
evaluated from the study of a single spin S (where S is
any of the spins Si). Due to the absence of (both static
and dynamic) correlations between different spins, the
equilibrium magnetization correlation C(t, E) defined in
Eq. (31) boils down to the single-spin two-time correla-
tion

CS(t, E0) = ⟨S(t)S(0)⟩E0
− ⟨S⟩2E0

. (40)

For the two-state stochastic process defined by the transi-
tion rate (39), the time-dependent solution of the master
equation can be written down explicitly. The correlation
CS(t, E) is obtained as

CS(t, E) = µ2
(
1− tanh2(βµE)

)
e−ν0t. (41)

One then obtains from Eqs. (33) and (34)

χ(ω,E) =
µ2β

1− iωτ

(
1− tanh2(βµE)

)
, (42)

with τ = ν−1
0 . This respectively leads for the linear and

cubic responses to

χ1(ω) =
µ2β

1− iωτ
, χ21(ω) = − µ4β3

1− iωτ
. (43)

Static results of Sec. III are recovered in the limit ω → 0,
for µ = 1. The moduli of the linear and cubic responses
are decreasing functions of the frequency,

|χ1(ω)| =
µ2β√

1 + (ωτ)2
, |χ21(ω)| =

µ4β3√
1 + (ωτ)2

.

(44)
Expanding more generally χ(ω,E) in powers of E,

χ(ω,E) =

∞∑
n=0

χ2n,1(ω)E
2n (45)

with χ0,1 ≡ χ1, one finds in the same way that

|χ2n,1(ω)| ∝
µ2+2nβ1+2n√
1 + (ωτ)2

(46)

is a decreasing function of ω.

3. Dynamic response of noninteracting superdipoles

In the superdipole picture, one assumes that interac-
tions make spins move coherently as blocks of Ncorr spins.
Yet, each block of spin has a disordered internal struc-
ture due to the glassy nature of the system. One is thus
led to consider superdipoles with a dielectric moment

µ ≈ N
1/2
corr µ0, with µ0 the individual dielectric moment.

Since the dynamic response is evaluated as a density with
respect to the number of spins (and not of superdipoles),
it has to be further normalized by Ncorr. One ends up
with

|χsd
2n,1(ω)| ∝

(
√
Ncorr µ0)

2+2nβ1+2n

Ncorr

√
1 + (ωτ)2

∝ Nn
corr√

1 + (ωτ)2
.

(47)
where the superscript ‘sd’ stands for “superdipoles”. The
experimentally observed humped shape of the third and
fifth order non-linear responses suggests that at very low
frequency, Ncorr should actually be an increasing function
of ω, that saturates to a finite value at higher frequen-
cies. This is consistent with the fact that correlations
are weak or even absent at equilibrium. Assuming a slow
enough increase of Ncorr(ω), the above calculation still
approximately applies, and one finds

|χsd
2n,1(ω)| ∝

Ncorr(ω)
n√

1 + (ωτ)2
(48)

which reproduces the typical humped shape of non-linear
responses. Consistently with experiments, one finds that
the linear response is independent of Ncorr, and that for
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large Ncorr, the nonlinear responses become larger when
their order 2n+ 1 is increased.
The spin models considered in this work offer an in-

teresting opportunity to assess and substantiate the su-
perdipole picture. The latter assumes that blocks of spins
move coherently, which can be interpreted as a local rigid-
ity of the spin dynamics. We introduce below a tool to
characterize the local rigidity of the spin dynamics, and
we apply it to both the interacting spin model with slowly
rearranging couplings introduced in Sec. II A, and to the
KCM defined in Sec. II B.

B. Dynamical rigidity length

In order to assess the validity of the superdipole pic-
ture, we need to test whether spins effectively move as
rigid blocks, whose size needs to be determined. This
task is complicated by the fact that the spin structure
is disordered, and no spatial order is visible. To test the
superdipole hypothesis whereby spins flip as rigid blocks,
we need to check whether, in a given time window, spins
separated by a distance r have flipped the same number
of times. However, note that the superdipole assumption
may be too stringent. In practice, spins in our model
move one by one, but may tend on a coarse-grained time
scale to behave as spin blocks, or superdipoles. In partic-
ular, spins may at some point flip randomly, and swiftly
flip back to the block configuration (which we interpret
below as the presence of restoring forces, see Sec. VIA 2).
Such short excursions out of the block behavior change
the number of flips with respect to the pure superdipole
behavior, but mostly do not change the parity of the
number of flips. With this aim in mind, we introduce
the local overlap variable qi(t) = Si(t)Si(0) between the
values of spin Si at t = 0 and t. The local overlap qi(t)
measures the parity of the number of flips in the time
interval [0, t]. Hence, in spite of the presence of a disor-
dered spin structure, the overlaps qi(t) and qi+r(t) have
the same value if spins Si and Si+r flip simultaneously,
as in the superdipole picture where blocks of spins simul-
taneously flip. They keep the same parity if only short
excursions occur, as discussed above. In contrast, if the
flips of spins Si and Si+r are not strongly correlated, the
values of the overlaps qi(t) and qi+r(t) tend to decorrelate
after the first flips. The spatial correlation of the local
overlap variables qi(t) and qi+r(t) is thus a way to de-
termine the size of spin domains which effectively move
as a block, which is equivalent to the superdipole size
Ncorr in the present one-dimensional setting. Therefore,
we define the four-point correlation gq4(r, t) as the spatial
correlation of the two-time local overlap variable qi(t):

gq4(r, t) =
〈
⟨qi(t)qi+r(t)⟩i − ⟨qi(t)⟩i⟨qi+r(t)⟩i

〉
tr

(49)

where ⟨. . .⟩i denotes a spatial average over site i, and
⟨. . .⟩tr stands for an ensemble average over stochastic tra-
jectories and initial conditions. The associated four-point

susceptibility χq
4(t) then reads

χq
4(t) =

∑
r

gq4(r, t) . (50)

In the present one-dimensional context, we define a rigid-
ity length ξrig by normalizing χq

4(t) by gq4(0, t) as

ξrig(t) =
χq
4(t)

gq4(0, t)
. (51)

As discussed above, the length ξrig(t) characterizes how,
on a time scale t, spins effectively move as blocks of size
ξrig(t). We call it the ‘dynamical rigidity length’ ξrig(t)
rather than Ncorr first to emphasize that it is a length,
but also to outline its interpretation in terms of a local
rigidity of the dynamics, an idea which is less clearly
conveyed by the term ‘correlated volume’ associated with
Ncorr.

C. Dynamical heterogeneities

We now aim at determining a correlation length ξdh
of dynamical heterogeneities that can be quantitatively
compared to the rigidity length ξrig. Here, we do not
want to characterize the potential rigidity of the spin dy-
namics, but rather the fact that over a given time win-
dow [0, t], some spatial domains have relaxed while others
have not moved. The characteristic size of these domains
is the dynamical heterogeneity length ξdh. Dynamical
heterogeneities in spin models can be characterized by
introducing a local persistence variable ϕi(t) that satis-
fies ϕi(0) = 1 and keeps the value ϕi(t) = 1 as long as the
spin Si does not flip. A standard choice is then to assign
the value 0 to the persistence variable after the first spin
flip, whatever the later spin value (see, e.g., [55, 56]).
Here, to remain as close as possible to the overlap vari-
able qi(t) defined in Sec. VB, we instead assume that at
each flip of spin Si, ϕi(t) is randomly assigned a value
±1, with equal probability. In this way, ϕi(t) takes val-
ues ±1 similarly to qi(t), but correlations with the value
Si(0) are lost after the first spin flip. The randomization
of the sign of ϕi(t) after the first flip precisely gets rid of
the information on the rigidity or not of the dynamics,
so as to focus on the spatially heterogeneous character of
the relaxation dynamics.

We define the four-point correlation function gϕ4 (r, t) as
the spatial correlation function of the two-time variables
ϕi(t),

gϕ4 (r, t) =
〈
⟨ϕi(t)ϕi+r(t)⟩i − ⟨ϕi(t)⟩i⟨ϕi+r(t)⟩i

〉
tr

(52)

with the same notations for averages as in Eq. (49). The

corresponding four-point susceptibility χϕ
4 (t) reads as

χϕ
4 (t) =

∑
r

gϕ4 (r, t) . (53)
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FIG. 5. Dynamic lengths ξdh characterizing dynamical het-
erogeneities (dashed line) and ξrig characterizing cooperative
effects (full line) as a function of time t in the spin model
with stochastic couplings, for different values of temperature
T . Note that the Y -axis scale changes from one panel to
the other to enhance readability. At low temperature, ξrig(t)
becomes much larger than ξdh(t) for t ≳ τα, showing that in-
teractions play the role of a restoring force -see VIA2- when
couplings change very slowly. Parameters: J0 = 1, B = 3,
N = 103.

The correlation length ξdh characterizing dynamical het-

erogeneities is then defined by normalizing χϕ
4 (t) by

gϕ4 (0, t) as

ξdh(t) =
χϕ
4 (t)

gϕ4 (0, t)
. (54)

D. Numerical results

1. Spin model with stochastic couplings

We have evaluated numerically the correlation lengths
ξrig(t) and ξdh(t) in the spin model with random cou-
plings defined in Sec. IIA. These two length scales are
plotted in Fig. 5 for different values of temperature T .

Lowering temperature, the time scale separation be-
tween spin dynamics and coupling dynamics is increased,
i.e., ν1(T )/ν0 ≪ 1. In this regime, the rigidity length
ξrig(t) becomes much larger than the characteristic length
ξdh(t) of dynamical heterogeneities for times t ≳ τα, and
its maximum shifts to larger times with respect to that
of ξdh(t). We note in particular that ξrig(t) still takes
appreciable values in a time regime when ξdh(t) has al-
ready relaxed to a value close to unity. These results
indicate that after their first flip, spins continue to effec-
tively move as spin blocks of size ∼ ξrig over an apprecia-
ble time window, until these blocks eventually melt, and
rigidity is lost. This transient rigidity precisely results
from the presence of interactions between spins, which
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FIG. 6. Dynamic lengths ξdh (dashed line) and ξrig (full line)
as a function of time t in the kinetically constrained spin
model, for different values of temperature T . Parameters:
K = 1, N = 103.

yield a preferred disordered configuration of the block (up
to a flip of the block). The rigidity length ξrig(t) origi-
nates from the spin-glass correlation length that would
develop under the effect of quenched disorder, but can
only partially unfold due to the slow rearrangements of
the coupling constants.

2. Kinetically constrained spin model

To compare these results with the basic facilitation pic-
ture, we plot on Fig. 6 the characteristic lengths ξrig(t)
and ξdh(t) for the KCM defined in Sec. II B, for differ-
ent temperature values. We observe that in this case ξrig
remains almost identical to ξdh, meaning that glassy re-
laxation is dominated here by dynamical heterogeneities.
This means that no dynamical rigidity is present in the
model, consistently with the fact that spins are non-
interacting. Even though spins might seemingly move
as blocks due to dynamical heterogeneities, rigidity is es-
sentially lost after a flip as no interactions are present to
select a preferred disordered configuration whose mem-
ory would be kept over several flips. The reason why the
rigidity length ξrig is bounded from below by the dynam-
ical heterogeneity length ξdh is that dynamical rigidity
can only be assessed once spins have moved (an immo-
bile block of spins is trivially rigid).
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VI. DISCUSSION

A. On our main results

1. Avoided spin-glass criticality

We have seen in Sec. VD that for the model of interact-
ing spins with slowly rearranging couplings, cooperative
effects resulting from interactions between spins domi-
nate over purely dynamical heterogeneities in a broad
time regime, potentially extending over one decade or
more after the relaxation time τα. Although coopera-
tive effects are also dynamical here, in the sense that
no static spatial correlations are present in the model as
discussed in Sec. III, this dynamical cooperativity keeps
track of the underlying critical spin-glass physics which
only partly unfolds due to the slow rearrangements of the
coupling constants. One might thus speak of an avoided
spin-glass transition due to slow rearrangements.

The dynamical rigidity length ξrig is indeed rooted in
the spin-glass transition that would occur in the system
for quenched random couplings. In the absence of rear-
rangements of the couplings, a static spin-glass correla-
tion length would develop. Slow coupling rearrangements
suppress static correlations, and turn this static correla-
tion length into the purely dynamic length ξrig.

2. Landscape picture and restoring forces

We can get a better understanding of this avoided spin-
glass-transition by using the so-called free energy land-
scape picture [21]. In our first model where spin inter-
actions play a significant role, there is a high probability
that the initial state corresponds to one of the lowest
energy states, since the system spans most of its time
in these preferred configurations. Imagine now that one
of the spins Si0 suddenly flips: this increases the to-
tal energy, as a result there is a high probability that
the spin Si0 flips back to its original value to recover
the initial low energy. Such a back and forth event is
due to the couplings to the neighboring spins which cor-
responds to restoring forces towards the lowest energy
states [42]. Let us consider the free energy landscape
[21] where the free energy is plotted as a function of an
index enumerating the 2N possible configurations of the
spins. According to thermodynamic theories [15, 16, 57],
in supercooled liquids, this landscape is extremely com-
plicated [21], with many low energy states separated by
high barriers. Starting ‘downhill’ (i.e., in a low energy
state), another metastable configuration can be reached
only by a thermal jump over the surrounding barriers:
such successfull jumps are extremely rare –their fraction
is as small as 1/(ν0τα) ≪ 1–. In other words, most of the
thermal attempts of the system to escape its low energy
state are unsuccessful, because the landscape drives the
system back to its original configuration: this amounts

to the restoring forces alluded to above. Eventually, the
memory of the initial configuration is lost when the slow
evolution of the couplings makes the original configu-
ration not so low in energy, favoring the transition to
a new low energy configuration. In our second model,
where interactions between spin are absent, such land-
scape driven restoring forces cannot exist, and therefore
we expect that ξrig only captures the characteristic length
scale ξdh of dynamical heterogeneities.

3. Multiple length scales at play

It is important to note that no static length is present
in the model of interacting spins considered here. Numer-
ically, one finds that both ξdh and ξrig go to 1 in the long-
time limit (i.e., the lattice spacing, analogous to a molec-
ular size). Analytically, one finds that at equilibrium, all
degrees of freedom (spins and couplings) are fully decor-
related, see Sec. III. Hence a point-to-set length evalu-
ated on the spin degrees of freedom would be equal to 1.
These results on the present simple model of interacting
spins are actually consistent with experimental results
on the cubic dielectric response, that recover the ideal
gas response in the limit of vanishing frequency. How-
ever, note that in more realistic glass models describing
interacting particles, the point-to-set length ξPTS charac-
terizing the nontrivial correlations of particle positions is
found to be larger than particle size [22]. This indicates
that the relation between the usual point-to-set length
based on particle positions and the peak of the nonlin-
ear response of the polarization is at best indirect, and
would deserve further investigations. Our results show in
particular that a peak in the frequency-dependent non-
linear response of the polarization, with a qualitatively
correct temperature dependence, can be obtained in a
model with no associated point-to-set length.

4. Purely dynamic nature of rigidity

Overall our work illustrates explicitly that the qualita-
tive behavior of nonlinear responses –in temperature and
frequency– changes drastically depending on the presence
or absence of interactions between effective degrees of
freedom for glass formation. In the framework of the sim-
ple spin models studied here, this effect has been traced
back to the fact that cubic responses are actually not sen-
sitive to dynamical correlation effects (characterized by
ξdh) but rather to dynamical rigidity effects (character-
ized by ξrig). One may expect that the same effect carries
over to nonlinear responses of higher order. Therefore we
interpret the experimental length ℓNonLin(T ) mentioned
in the Introduction as being identical to ξrig(T ), consis-
tently with empirical observations [28–31, 35]. Physi-
cally, such rigidity effects only exist if interaction terms
in the Hamiltonian explicitly make some spin configu-
rations being preferred with respect to other spin con-
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figurations, as long as coupling constants have not yet
rearranged –i.e., over a long but finite time scale. In
that case only, the system has some finite rigidity, i.e.,
when perturbed by the field, the system will react as a
whole (i.e., a superdipole), unless the field frequency is
too small, in which case the superdipoles melt. Inter-
estingly, recent extensive numerical simulations of glass
models at low temperature have shown that dynamic fa-
cilitation is at play in the late relaxation stage, for times
much larger than the characteristic relaxation time τα
[45, 46]. One may thus wonder whether the eventual
melting of superdipoles in our model may involve some
type of effective dynamic facilitation, whereby coherent
domains could progressively rearrange through, e.g., dif-
fusion of their boundaries. Whether dynamic facilitation
is involved or not in this late-stage relaxation, the mere
existence of superdipoles for a time window extending
significantly beyond τα is a clear sign of the key role
played by interactions.

B. More general KCM

1. Local kinetic constraints alone are not enough

We have only considered a specific KCM, with a spe-
cific way to introduce kinetic constraints for the spins,
based on a Kob-Andersen type of dynamics. Although
we cannot formally exclude the possibility that some
other KCM which include spin degrees of freedom cou-
pled to an external field might have a peak in the non-
linear response χ21, our specific kinetically-constrained
spin model precisely shows that the presence of local ki-
netic constraints alone is not in itself sufficient to repro-
duce the peaked shape of the non-linear response. Addi-
tional physical ingredients are needed, and we argue in
the manuscript that a key ingredient is the presence of
amorphous order, which we have characterized.

2. Plaquette model in an external field

The case of the plaquette model [17, 18, 58–60] is of
interest in this respect, as it suggests that the distinc-
tion between models with interactions and models with
kinetic constraints may be blurred. Indeed, the plaque-
tte model is a model of interacting spins, but it can be
mapped onto a model of non-interacting degrees of free-
dom through the introduction of effective plaquette vari-
ables. However, these two formulations are no longer
equivalent when it comes to coupling the spins to an ex-
ternal field. In the plaquette model, the physical vari-
ables are the interacting spins, and the plaquette vari-
ables correspond to an effective reformulation of the dy-
namics. The point is that the external field couples to the
original spins, and not directly to the plaquette effective
variables. While the dynamics of interacting spins can
be mapped to the dynamics of non-interacting plaquette

variables with kinetic constraints, the coupling of spins
with an external field does not translate into a similar
simple coupling term of plaquette variables with the ex-
ternal field. One rather has to express a given spin in
terms of plaquette variables, which is expected to yield a
complicated expression involving (potentially non-local)
interactions between plaquette variables. Hence, in the
presence of an external field, the plaquette formulation
also includes (complicated) interactions between plaque-
tte variables, and does not boil down to a simple model
of non-interacting degrees of freedom with kinetic con-
straints.

C. Connections with glass theories

1. Frustration-based scenario of the glass transition

It is of interest to briefly discuss our results in the
perspective of existing glass theories. Our finding of an
“avoided spin-glass criticality” bears some resemblance
with the so-called Frustration theory of the glass tran-
sition in which geometric frustration prevents criticality
to fully unfold [16]. In this scenario there is an avoided
critical point T ⋆ –with T ⋆ > Tg– around which the or-
der develops only to some finite range. This yields an
ever-flowing –though with highly non trivial correlations–
liquid state, and thus an ideal-gas response at zero fre-
quency for nonlinear cubic responses. Another possibil-
ity with which our findings are naturally compatible is
the unreachable critical point of Random First Order
Transition theory inspired from p-spin models [15, 57].
According to the RFOT scenario, the static correlation
length scale is the point-to-set length ξPTS (see Ref. [22]),
which diverges at the Kauzmann temperature TK –where
TK < Tg. This yields, as well, an ideal gas response
at zero frequency for nonlinear cubic response, as antic-
ipated in Ref. [33], because this length scale does not
couple directly to a spatially homogeneous external field,
as the one used in dielectric experiments [32, 42].

2. Key role of amorphous order

More generally, one may imagine other unknown sce-
narios that would be compatible both with experimental
measurements of nonlinear responses and, at a qualita-
tive level, with the results we obtained on simple spin
models. These scenarios should be such that: i) inter-
actions between degrees of freedom play a major role,
favoring some configurations which are not spatially pe-
riodic, and which are driven by a critical point which
cannot be crossed at equilibrium on human time scales;
ii) there is an ideal-gas response at any order in the ap-
plied field at zero frequency, while, at finite frequencies,
qualitative differences arise between linear and nonlinear
responses. Denoting by ‘molecular amorphous ordering’
any scenario fulfilling points i)-ii), one of the outcomes
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of this work is thus to better illustrate what the non-
linear experiments teach us: namely the fact that, upon
cooling, molecular amorphous order develops [32, 35, 42].
However, these experiments do not allow one to discrim-
inate between some already existing scenarios of molecu-
lar amorphous order, and it might be that they turn out
to be consistent with yet unexplored ones. Thus, we still
have to unveil the microscopic mechanism by which the
amorphous ordering –and the associated glass transition–
takes place so often in nature.

VII. CONCLUSION

We have performed for the first time a numerical de-
termination of the non-linear, third-order (dielectric) re-
sponse to an external field in model glassformers ex-
plicitly composed of a large number of degrees of free-
dom –in our case, spins and couplings or mobility ex-
citations. We have shown that a model of interacting
spins with slowly rearranging coupling constants was
able to reproduce, at a qualitative level, the peaked
shape of the non-linear response as a function of fre-
quency, as well as the temperature-dependence of the
non-linear response rescaled by the corresponding re-
sponse of non-interacting spins. In contrast, a simple
model of non-interacting spins with local kinetic con-
straints is not able to reproduce the peaked shape of the
non-linear response. Although we cannot exclude that
other types of KCM might lead to a peaked shape of
the non-linear response, this results indicates that local
facilitation alone, without interactions, is not able to gen-
erate the experimentally-reported humped shape of the
non-linear response, whereas local facilitation is enough
to generate dynamical heterogeneities. Following previ-
ous works [33, 34], we interpret the humped shape of
the non-linear response as resulting from a local rigidity
of the spin dynamics, which involves simultaneously re-
arranging regions. The heuristic superdipole argument
[36, 37] takes this physical picture literally and considers
rigid blocks of spins that flip coherently, while having a
disordered internal structure. In our model of interacting
spins, we identify a dynamical rigidity length which quan-
tifies the effective size of coherently flipping spin blocks
(i.e., spins that flip together over a relatively short time
window). Yet, at odds with the superdipole argument,
spin blocks melt at large time due to the slow rearrange-
ment of coupling constants, which may also be viewed as
a rearrangement of the local free-energy landscape. This

provides a useful characterization of the notion of amor-
phous order. An important point is that the rigidity of
spin blocks can be assessed only after spins have flipped
(possibly several times), which is hindered by dynamical
heterogeneities of the glassy dynamics. Hence the appar-
ent rigidity length is bounded from below by the length
scale of dynamical heterogeneities, meaning that rigid-
ity only becomes visible when it exceeds the length of
dynamical heterogeneities.
On the methodological side, a further interest of our

work is to propose a relatively simple method to measure
the frequency-dependence of cubic response in numerical
simulations without explicitly applying an ac field. This
is made possible by the use of a particular type of non-
linear response, χ21(ω), which considers a tiny ac field
on top of a small static field E0, assuming the ac field to
be much smaller than the static one. The non-linear re-
sponse χ21(ω) has been shown experimentally to behave
similarly to other cubic responses that had been consid-
ered, like the non-linear response at frequency 3ω [38, 54].
The advantage of the cubic response χ21(ω) is that it is
linear in the ac field, so that the fluctuation-dissipation
theorem can be used to express the ac response in terms
of a correlation function of magnetization. Hence the
non-linear response χ21(ω) is eventually expressed as the
E2

0 -correction to the correlation function of magnetiza-
tion. In practice, one thus only needs to (carefully) eval-
uate in numerical simulations the time-dependent corre-
lation function of the magnetization in the presence of a
static field. This is much simpler than explicitly applying
an ac field at angular frequency ω, measuring the non-
linear response, and repeating the simulations for many
different values of ω ranging over several decades. This
is an important methodological step in the modeling of
glasses, which may foster further studies of non-linear
response in more realistic model glass formers.

We focused here, for the sake of simplicity, on one-
dimensional models. Future work should try to char-
acterize the non-linear response and the corresponding
rigidity length in higher dimensions and in different types
of models, to try to confirm that the scenario put forward
in this work is robust. In the interacting spin model
studied here, the temperature-dependence of the charac-
teristic time scale of the rearrangement dynamics of the
couplings was put by hand [see Eq. (4)]. It would be
of interest to design more involved models in which the
slowdown of the coupling rearrangements would rather
emerge from the collective dynamics.
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