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A B S T R A C T

Botnets pose a significant threat in network security, exacerbated by the massive adoption of vulnerable
Internet-of-Things (IoT) devices. In response to that, great research effort has taken place to propose intrusion
detection solutions to the botnet menace. As most techniques focus on either packet or flow granularity,
port-based analysis can help detecting newly developed botnets, especially during their early propagation
phase. In this paper, we introduce a line rate distributed anomaly detection system that employs NetFPGA
Smart-Network Interface Cards (SmartNIC) as programmable switches. Per-port feature extraction modules are
deployed directly on the data plane, enabling a centralized controller to periodically retrieve collected metrics,
and feed them to a botnet detection algorithm we refine from the state of the art. We evaluate our system using
real world traces spanning several months from 2016 and 2023. We show how our solutions allow keeping low
the number of anomalies detected, retaining only the most relevant ones, thanks to the distributed monitoring
approach that helps discriminating systemic changes from local phenomena. Furthermore, we provide an
analysis of the most significant alerts, accounting for the limited ground-truth on the dataset.
1. Introduction

The advent of Software-Defined Networking (SDN) and program-
mable switching hardware has brought up the interest to delegate
security tasks to the data plane. Consequently, multiple solutions have
been proposed in this domain, focusing on knowledge-based [1–4]
and anomaly-detection-based techniques [5–7]. SmartNIC devices can
offer several advantages by enabling packet processing at line rate.
These benefits encompass a decrease in network and memory resource
usage, as there is no need for collecting packets for offline analysis.
Additionally, they facilitate a quicker response to abrupt malicious
activities.

However, these works show limited effort into detecting spreading
distributed attacks as botnets, as well as zero-day vulnerability exploits.
Besides, they often revolve around per-flow analyses, which is intrinsi-
cally tied to very small time scales. As argued in [8], in order to catch
spreading botnets, an Intrusion Detection System (IDS) should (i) adopt
a port-based analysis, as it is identified as an effective way to qualify
scans perpetrated during the spreading phase; (ii) profile port usage
on the long-term to detect major changes in traffic patterns; (iii) have
a wide view over the network to distinguish systemic anomalies from
local traffic fluctuations.

Leveraging on this, we propose a system where multiple pro-
grammable switches, implemented through NetFPGA (Network Field
Programmable Gate Arrays) boards, are employed to extract per-port
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features at line rate. These features are periodically transmitted to
an external controller running a refined version of a botnet detection
state of the art algorithm [8], based on statistical learning, to profile
port usage over the long term. This approach enables real-time traffic
analysis without the necessity to sample packets for offline processing.
It conserves both bandwidth and precious server computing resources.

In particular, we design P4→NetFPGA switches integrating port-
based metric extraction logic, extending the open-source project with
multiple external functions (‘externs’), i.e., P4’s abstraction to access
the functionalities of the underlying hardware. Namely, our contribu-
tions to the state of the art include:

(i) the design of a compact 16/32-bit-input and 4-kbit-bucket ex-
tern module for line rate TCP/IP header field value cardinality
computation based on HyperLogLog [9] data sketch;

(ii) a lightweight approach for embedding the Welford algorithm
[10,11] in FPGA for line rate statistical features computation,
trading accuracy with lower computational complexity, lever-
aging on the forgiving nature of the use case, where the aim
is to catch overarching pattern shifts rather than taking exact
measurements;

(iii) a Southbound Interface (SBI) subsystem to collect metrics at the
controller level and to enforce routing rules, including attack
mitigation instructions.
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We open-source the code, including an ad-hoc python controller
used for the detection module, at [12]. In the analysis applied to
real IP traffic traces from 2016 [13], we show how the system can
detect attacks that were detected by the MAWILab algorithm [14],
as well as some zero-day unknown anomalies. Moreover, we provide
a detailed analysis, accounting for the limited ground-truth on the
attacks, describing the evolution of features, as well as the similarities
and differences in the detection performance with respect to the offline
approach.

The remainder of the paper is organized as follows. Section 2
surveys the related work and describes our positioning with respect to
the state of the art. Section 3 provides an overview of the proposed
P4 match-action pipeline. Section 4 describes the traffic monitoring
logic, while Section 5 describes the forwarding logic embedded onto
the FPGA, as well as the SBI used in the proposed SDN environment. In
Section 6 we present the results of the experimental evaluation using
real-world traffic traces, comparing the anomaly detection performance
of the proposed system with the reference state-of-the-art work and
proposing an interpretation of the anomalies spotted. Finally, Section 7
concludes the paper.

2. Related work

In this section we discuss different intrusion detection approaches,
with a focus on solutions deployed in programmable hardware. Finally,
we position our contribution with respect to the related work.

2.1. Intrusion detection

Several works appear in literature to address intrusion and botnet
detection [15–17]. Intrusion detection techniques can be classified as
(i) knowledge-based and (ii) knowledge-agnostic approaches.

Knowledge-based solutions such as Snort [18] first analyse packets
with DPI techniques, then detect malicious activity based on known
patterns and signatures, which may be discovered through the use of
honeypot analysis. These solutions are seldom effective in detecting
zero-day threats and botnets that spread through social engineering or
unknown vulnerabilities.

Knowledge-agnostic techniques aim at catching attacks regardless
of them being known or unknown. The idea is to model the traffic
through statistical or ML techniques and identify anomalies as signif-
icant deviations from the model. For this reason, they are hereon
referred as anomaly detection techniques.

For example, HIDE [19] is an hybrid IDS based on statistical pre-
processing and ML classification. BotSniffer [20] focuses on spotting
spatial–temporal correlation in network traffic to identify Command-
and-Control (C&C) servers and infected hosts. BotMark [21] uses k-
means clustering on traffic features to determine the similarity among
flows, performs a stability-based analysis to establish whether a cluster
is generated by bots or not and finally considers communication graph
features to identify C&C servers.

MAWILab [14] algorithm uses a graph-based method to combine the
result of four detectors working at different granularities to label the
MAWI Archive traffic with one out of four anomaly levels. ANTE [22]
is an IDS able to automatically select which ML pipeline is best suited
to detect botnets and use it to anticipate attacks. Some works [23–
25] use Convolutional Neural Networks by mapping basic flow metrics
to gray-scale images and extract their convolutional version to train

classification models. a

2 
2.2. Hardware IDS

In the context of knowledge-based detection, several works pro-
pose hardware designs that offload Regular Expression (RE) matching
(i.e., the main operation involved in DPI) to FPGA boards. Snort
Offloader [1] and Pigasus [2] are two hybrid architectures where
a hardware pre-filter is used to coarsely identify benign traffic and
make sure that only suspicious packets are transmitted to the CPU for
thorough software analysis. Authors of [3] use Non-deterministic Finite
Automata approximation techniques to implement a multi-staged RE
matching engine suitable for traffic beyond 100 Gbps entirely on the
FPGA. Authors of [4] showcase an application of the P4→NetFPGA
framework tailored to 5G multi-tenant scenarios, where TCAMS are
used to implement a firewall.

Efforts in research have also targeted offloading anomaly detection
tasks to the data plane. Authors of [5] propose a DDoS detection system
based on Shannon entropy estimation, where several traffic metrics
are extracted on a NetFPGA Sume, transmitted to the host computer
and fed to a Long Short-Term Memory (LSTM) network trained to
detect DDoS attacks. The same authors propose two architectures [6]
where the ML-aided DDoS detection is integrated on the NetFPGA as
well. FlowLens [7] leverages a novel data structure called Flow Marker
Accumulator to collect per-flow packet length or inter packet timing
distributions within Tofino switches. These markers are then used by a
software ML algorithm running on the switch CPU to classify flows.

DPX [26] is an OpenFlow compatible data plane architecture, de-
veloped for the NetFPGA Sume board, that integrates simple security
function such as payload pattern matching, detection of sudden changes
in bandwidth and vertical/horizontal port scanning.

The related work is summarized in Table 1. Each contribution is
characterized by: (i) the type (knowledge-based or anomaly detection);
(ii) the technique used to perform intrusion detection; (iii) the granu-
larity, i.e., the level of traffic aggregation used in the approach; (iv)
whether the solution performs per-packet operations directly on the
hardware – at line rate – or not.

2.3. Port based detection

Hardware-based network security solutions typically focus either
on DPI or anomaly detection , confining themselves to packet-level
or flow-level granularity. Nevertheless, they are intrinsically unable to
detect overarching changes in port behaviour associated with botnet
spreading and novel vulnerability exploits.

Split-and-Merge [8] technique suggests an interesting approach,
leveraging on a Collaborative IDS (CIDS) scheme in conjunction with a
port-based unsupervised anomaly detection algorithm to detect botnets
during their spreading phase, before potential attacks take place.

To accomplish this, several detection units are deployed over the
network with the purpose of modelling the long-term usage of TCP
ports. The port usage is represented by the features shown in Table 2,
which are periodically sampled and represented as time series. Note
that a port is only considered if it is interested by at least 𝑁𝑚𝑖𝑛 packets
within a time slot. Anomalies are detected in two steps.

First, local anomalies are identified with a change-detection algo-
rithm based on the modified Z-score:

𝑀𝑝
𝑖,𝑊 +1 =

0.6745 ⋅ (𝑥𝑝𝑖,𝑊 +1 − 𝑓 𝑝
𝑖,𝑊 )

𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑝𝑖,𝑊 +1 − 𝑓 𝑝
𝑖,𝑊 |)

(1)

Where 𝑥𝑝𝑖,𝑊 +1 is the data point related to the latest observation
or feature 𝑖 on port 𝑝, 𝑓 𝑝

𝑖,𝑊 is the median of the last 𝑊 values, and
the denominator is the median absolute deviation (MAD). Using the
modified Z-score, a new data point is considered anomalous if 𝑀
exceeds a given threshold 𝑇𝑖, which is set to 3.5 as recommended
in [27]. In addition, an anomaly is also identified when the pktCnt
eature becomes greater than a given threshold 𝑁𝑚𝑖𝑛 for the first time in

t least 𝑊 observations. This allows to detect emerging ports for which
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Table 1
Prior work on intrusion detection.

Reference Type Technique Granularity Hardware
offload

Snort [18] Knowledge-based RE matching, Rule-based
detection

Hybrid No

HIDE [19] Anomaly detection Statistical user profiling +
ML model

Host, Network No

BotSniffer [20] Anomaly detection Activity/message response
detection +
spatial–temporal
correlation analysis

Flow, Host No

BotMark [21] Anomaly detection Flow-similarity +
packet-length-stability
analyses, graph-based C&C
detection

Flow No

MAWILab [14] Anomaly detection Aggregation of any kind of
anomaly detector

Hybrid No

ANTE [22] Anomaly detection Autonomous ML Flow No

Snort Offloader [1] Knowledge-based RE matching Packet Partial

Pigasus [2] Knowledge-based RE matching Packet Partial

[3] Knowledge-based RE matching Packet Yes

[4] Knowledge-based Stateless Firewall Packet Yes

[5,6] Anomaly detection Shannon entropy
estimation + LSTM model

Whole traffic Yes

FlowLens [7] Anomaly detection Packet length and inter
packet timing analysis +
ML model

Flow Yes

DPX [26] Hybrid Pattern matching,
bandwidth change
detection and port
scanning detection

Hybrid Yes

Split-and-Merge [8] Anomaly detection Statistical port profiling +
Modified Z-score based
anomaly detection

Port No

This contribution Anomaly detection Statistical port profiling +
Modified Z-score based
anomaly detection

Port Yes
Table 2
Split-and-Merge Features.

Feature Usage

Number of received packets (pktCnt) Observe if a port is suddenly massively used

Percentage of unique src IP addresses (srcIp%) A rise could signify a potential botnet attack, whereas a decline might
suggest a sudden surge in traffic from a restricted number of hosts.

Percentage of unique dst IP addresses (dstIp%) An increase could indicate a significant number of victims, such as in the
case of a scan attack.

Percentage of unique src ports (srcPort%) A diminution may be associated with port spoofing

Mean packet size (meanSize) A sudden change may suggest the inception of any large scale activity

Standard deviation of packet size (stdSize) An increase can detect the inception of an attack, while a reduction
reflects a lower variety in packet size, which may be due to legitimate
processes being killed on newly infected machines.

Percentage of SYN packets (Syn%) Detect SYN scan attacks
there may not be sufficient data to generate the modified Z-score, given
their prior inactivity.

Local anomaly reports are then aggregated, and only those found
in at least 𝑘 vantage points are retained. This helps selecting the most
relevant alerts, as random and local events, which are most likely not
related to scanning and botnet activity, are filtered out. Finally, the
Anomaly Score (AS) is computed as the total number of anomalies
generated for one port, providing a compact metric to identify ports
that are potentially under attack.
3 
2.4. Our contribution

Authors of [8] focus their efforts on designing the anomaly detection
algorithm, leaving its line rate implementation for future work. In this
paper, we fill that gap, deploying feature extraction logic on top of
programmable switching hardware.

In a real-world scenario, implementing a Split-and-Merge-like system
for anomaly detection requires either relaying the entire traffic sampled
at each vantage point towards one or more dedicated servers for offline
analysis, or offloading at least part of the analysis to the data plane. As
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Fig. 1. SDN system overview.

the first option would cause a very inefficient bandwidth utilization for
the transmission of collected packets, we focus on embedding per-port
metric extraction into the data plane forwarding system.

In order to obtain the features shown in Table 2, we need to collect
and store, for each packet: (i) its source and destination IP addresses
(32-bit values), (ii) its source port (16-bit value), (iii) its size (16-bit
value)

Additionally, we need to count the number of SYN packets and the
total amount of packets. Ignoring the impact of the counters, this sums
up to 64-bits per packet, which can hardly scale as the throughput
increases, even to monitor a single port.

For example, if we consider a 1 Gbps throughput with an average
packet size of 500 bytes, and we imagine to monitor a port responsible
for 0.5% of the traffic over a period of 15 min (as in [8]), storing 64-
bits per packet header would require 9 MiB of memory. On the other
hand, if the throughput is 40 Gbps (i.e., the maximum throughput of a
NetFPGA switch) and the port under analysis is responsible for 2% of
the traffic (which is not uncommon for a massively used port, especially
if under attack), we would need approximately 1.5 GiB of memory.
Note that this is not accounting for the fact that a port being scanned
would probably have a lower average packet size, resulting in more
packets per second.

We work around the memory bottleneck through the use of data
sketches, namely, HyperLogLog (HLL) [9] and Welford’s Algorithm [10,
11]. HLL is the de facto standard algorithm for cardinality estimation.
It is used, for example, in BigQuery, Google’s serverless data warehouse
system [28], as well as in several academic works [29,30]. As HLL
notably has poor accuracy at low cardinalities, we also employ the Lin-
earCounting [31] algorithm to compensate for that. Welford’s Algorithm
is a one-pass method for computing the mean and standard deviation
used in many data analysis applications [32–34].

In summary, our goal is to realize an SDN system, depicted in
Fig. 1, where programmable switching hardware is employed to extract
port-level features from multiple vantage points. Collected features are
periodically sent to the centralized SDN controller to perform anomaly
detection, allowing mitigation policies to be actuated, in the form of
new flow rules. Specifically, we use NetFPGA Sume boards as pro-
grammable switches, employing the P4→NetFPGA [35,36] framework
– and, in particular, the Simple Sume Switch P4 architecture it provides
– to capitalize on the convenience of P4 language for extracting packet
headers and the flexibility of FPGA fabric for implementing custom
logic. Consequently, we designed Verilog extern functions implement-
ing the aforementioned sketches to approximate per-port statistical
features required for the anomaly detection.

Additionally, we have designed an ad-hoc SBI protocol to transfer
collected features to the centralized controller. Here, anomalies re-
lated to each vantage point are derived, and consequently aggregated
into network-level alerts. Finally, we designed a remotely configurable
routing engine for the P4→NetFPGA architecture. Thanks to this, the
controller can use the SBI to insert flow rules in the routing tables,
including potential mitigation instruction. For example, traffic on a
suspicious port or host can be blocked or mirrored towards a Deep
Packet Inspection server for offline analysis.
4 
3. Programmable switch pipeline

Fig. 3 shows the proposed P4 pipeline, based on the Simple Sume
Switch architecture [36]. The P4 Match-Action Pipeline is composed of
two modules: the Routing Engine and the Per-port Metrics Extraction
Module.

In the Metrics Extraction Module, packet data obtained by the
parser is fed to the data sketch extern function modules. Specifically,
HLL modules are used to estimate the cardinality of IP source and
destination addresses, as well as TCP source ports, while the Welford
module includes the logic to iteratively update the mean and standard
deviation of the packet size, as well as two counters to track the
number of SYN packets and the total packet count. Finally, the TCP
Port Register keeps track of the port currently under evaluation, and it
can be configured by the controller with an SBI Set TCP Port message.

The Routing Engine handles the forwarding decision, based on
the Routing Table extern function modules, that include remotely
configurable Lookup Tables (LUT) used to match packet headers to des-
tination ports. Specifically, there is one routing table for SBI messages
and four tables for routing data plane traffic according to IP src/dst
addresses and TCP src/dst ports.

Two Data Flows can be identified, as shown in Fig. 2. First, packets
are parsed into two categories: SBI messages and TCP traffic.

For SBI messages, their Switch ID is compared to the one stored in
the Switch ID register. If there is no match, it means that the message is
destined to another device, and the packet must be forwarded accord-
ing to the SBI table. Conversely, if there is a match, it means that the
message contains an instruction intended for this switch, and it must
be processed according to the Message Type, as described in Section 5.
Finally, the Up-link flag is set to 1 to mark that, from now on, the SBI
message is destined to the controller, and the destination port is set
to be the same as the source port, so that the packet is bounced back
upstream.

For TCP traffic, IP and TCP ports are first checked in the data plane
forwarding tables, to determine the destination port. Then, if the TCP
destination port corresponds to the one currently under analysis, packet
information, i.e., [Src IP address, Dst IP address, Src TCP port, pkt size,
SYN flag], is dispatched to the data sketch extern modules.

4. Data sketch modules

In this section, we go over the design of the metric extraction extern
functions, i.e., HLL and Welford modules.

4.1. HyperLogLog extern module

HLL is a cardinality estimation algorithm based on hash functions.
If the output of a hash function is uniformly distributed (i.e., the
probability of each bit to be 0 or 1 is the same), then hash values
with considerable consecutive leading zeros are rare. Therefore, the
cardinality of a dataset can be estimated by looking at the rarest value
obtained from feeding its elements to the hash function. If 𝜌 is the
largest leading one position among the hash values extracted from a
dataset, then a good approximation of its cardinality is 2𝜌.

To reduce the variability of the estimation, we can partition the
dataset in multiple streams and maintain distinct values of 𝜌 in m
separate buckets. The cardinality is then calculated as the normalized
harmonic mean of the buckets, using negative powers of two instead of
reciprocals.

𝐸𝐻𝐿𝐿 ∶= 0.7213
(1 + 1.079∕𝑚)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝛼𝑚

⋅𝑚2 ⋅

( 𝑚
∑

𝑗=1
2−𝜌𝑗

)−1

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑍

(2)
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Fig. 2. P4 pipeline deployed in the simple Sume switch architecture.
Fig. 3. P4 architecture.

4.1.1. Low cardinality correction
For cardinalities below 5

2𝑚, nonlinear distortions appear in the esti-
mation. For example, when all the buckets are initialized to 0, Eq. (2)
returns 𝛼𝑚𝑚2𝑚−1 = 𝛼𝑚𝑚 ≈ 0.72𝑚. To compensate for this, is it common
to use LinearCounting [31], another cardinality estimation algorithm
that is more precise for low cardinalities but less scalable. The principle
behind LinearCounting is that, if we randomly throw 𝑛 balls into 𝑚
buckets, the expected amount of empty buckets is 𝑚 ⋅ 𝑒𝑥𝑝(− 𝑛

𝑚 ). Hence,
if we observe 𝑉 empty buckets, a good estimation of the cardinality is:

𝐸𝐿𝐶 ∶= 𝑚 ⋅ log
(𝑚
𝑉

)

(3)

HLL can be easily extended to employ LinearCounting for low car-
dinalities, as we can use the same set of buckets to determine both 𝑉
and 𝑍, i.e., the first is the number of empty buckets, while the second
is the normalized harmonic mean of the buckets.
5 
4.1.2. Extern design
Recently, an FPGA implementation of HLL for networking appli-

cations has been proposed in [37]. One of the goals of this work is
to achieve very high cardinalities (i.e., over 108) and maximize the
estimation accuracy. Accordingly, a 64-bit hash function, along with
a total of 216 buckets are employed. For our use case, high accuracy
is of less concern, as our final objective is to identify significant shifts
in traffic patterns. Also, since we partition the traffic both according
to TCP destination ports and in time slots of few minutes, we do not
expect to face such high cardinalities. For these reasons, we designed
a lightweight version of HLL, employing a custom 23-bit hash function
and 28 buckets. Furthermore, we embrace the principle of offloading
to the data plane only the operations that are required to run at line
rate, leaving to the controller those that can be executed in software.
Consequently, we do not integrate the logic to solve Eqs. (2) and (3),
but limit ourselves to compute 𝑍−1 and 𝑉 . In fact, 𝑍−1 and 𝑉 are
updated for every packet on the TCP port under analysis, while Eqs. (2)
and (3) should only be solved once per time slot. This has no impact on
the amount of data to store and to transfer to the controller, but allows
to save FPGA resources.

Fig. 4 shows a functional block diagram of the HLL extern module.
The operations performed by the module are dictated by the commands
received from the P4 pipeline: hllUpdate, hllRead or hllReset. While
hllUpdate is applied when data plane packets match the TCP destination
port under analysis, hllRead and hllReset are triggered by specific Metric
Query control plane messages.

In the following, we will describe the behaviour of the HLL extern
module under the three possible operational modes.

Reset. Upon receiving the command hllReset, the module enters a loop
where the content of each bucket is systematically set to 0.

Update. When hllUpdate is issued, the sketch data structure is updated
based on the input y, i.e., the source or destination IP address, or the
source TCP port. Initially, y is fed to a hashing module. To obtain
a uniformly distributed 23-bit string output, we designed a custom
multiplication-shift-XOR based function.

The purpose of using multiplication is to diffuse bits leftwards,
whereas by shifting we redistribute them back rightwards, effectively
shuffling them to obtain uniformly distributed hash values. To realize
the hash function, the input is split and padded into two 24-bit words,
each multiplied by distinct 18-bit odd constant seeds, right shifted by
a constant amount and XORred into a single 23-bit word. The size of
the multiplication operands are chosen according to the capabilities of
the 24 × 18 multiplier present in the DSP48E1 slices on the FPGA, as
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Fig. 4. Block diagram of the HyperLogLog extern function.
specified in [38]. We fix the output length to 23 bits, as we need an
8-bit index 𝑖 to address the 256 buckets, and a 15-bit word 𝑤 since
each 4-bit bucket can contain a leading one position up to 24 − 1.

To determine 𝜌(𝑤), i.e., the position of the leading 1 in 𝑤, we
designed the Leading One Locator module. Here, a cascade of right-
shifters and bitwise-ORs iteratively converts to 1 all the bits after the
leftmost one. Then, the Hamming weight 𝐻𝑊 is computed by summing
the individual bits of the resulting string. Finally, 𝜌(𝑤) = 15 −𝐻𝑊 + 1,
as the leading one can be seen as the number of leading zeros (i.e., the
length of 𝑤 minus 𝐻𝑊 ) plus one.

For example, if 𝑤 is ′000101010000111′, the shift-OR cascade yields
′000111111111111′, the Hamming Weight is 12 and finally 𝜌(𝑤) = 15 −
12 + 1 = 4 (which is indeed the position of the leading one in 𝑤).

Lastly, 𝜌(𝑤) is compared with 𝑀[𝑖], the value currently stored in the
𝑖th bucket, and the max value is retained.

Read. When hllRead is issued, the buckets are systematically read, in
order to compute 𝑍−1 and 𝑉 , and transmit them to the P4 pipeline to
craft the Metric Query response message. Accordingly, values of 𝑀 are
fed to a right shifter to obtain the related negative powers of two, and
then summed up to obtain 𝑍−1. Simultaneously, a counter is employed
to determine the number of empty buckets 𝑉 .

Upon receiving the Metric Query response, the controller will trans-
late 𝑍−1 to an actual cardinality estimate by using Eq. (2), and eventu-
ally use 𝑉 paired with Eq. (3) in case the first estimation is lower than
5
2𝑚.

As already mentioned, each HLL module employs 256 4-bit buckets,
with a memory footprint of just 4 kbits of FPGA BRAM resources, and
it is able to estimate cardinalities up to 𝛼256 ⋅2562∕

(

256 ⋅ 2−15
)

≈ 6×106.
Moreover, the read operation consists of a fixed and compact amount
of shifts and sums compared to a non-sketch approach, consisting in
storing data for all the packets and periodically counting the unique
elements. This option not only requires much more memory, but also
concentrates an amount of operations proportional to the volume of
packets at the end of each time slot, dramatically increasing the du-
ration of the read operation, during which the module is unavailable.

4.2. Welford’s algorithm extern module

Welford’s algorithm is a one-pass method to estimate mean and
variance with great accuracy, without needing to store previously
observed data.

As shown in Algorithm 1, for each new value 𝑥𝑖, three variables are
iteratively updated: the total number of observations 𝑁 , the average
estimation 𝑎𝑣𝑔 and the squared sum of differences from the mean 𝑀2.
At each iteration, 𝑁 is incremented by 1; 𝑎𝑣𝑔 is incremented by the
ratio between 𝛿1 (i.e., the difference between the new value and the
current mean) and 𝑁 ; while 𝑀2 is incremented by the product between
𝛿1 and 𝛿2 (i.e., the difference between the new value and the updated
mean). At any given moment, the three values can be used to determine
the mean and variance of the data observed so far. While 𝑎𝑣𝑔 is a
direct estimation of the mean, the estimated variance can be obtained
by dividing 𝑀 by 𝑁 − 1.
2

6 
Algorithm 1: Welford’s Algorithm
input : A set 𝑋 of 𝑁 values 𝑥𝑖 ∈ {𝑥1, ..., 𝑥𝑁}
output: The number 𝑁 , the average 𝑎𝑣𝑔 and the variance 𝑣𝑎𝑟 of the

elements in 𝑋
1 Function Update(𝑁, 𝑎𝑣𝑔,𝑀2, 𝑥):
2 𝑁 ← 𝑁 + 1;
3 𝛿1 ← 𝑥 − 𝑎𝑣𝑔;
4 𝑎𝑣𝑔 ← 𝑎𝑣𝑔 + 𝛿1∕𝑁 ;
5 𝛿2 ← 𝑥 − 𝑎𝑣𝑔;
6 𝑀2 ← 𝑀2 + 𝛿1 ⋅ 𝛿2;
7 return 𝑁, 𝑎𝑣𝑔,𝑀2
8 Function Welford(𝑋):
9 for 𝑥𝑖 ∈ {𝑥1, ..., 𝑥𝑁} do
10 (𝑁, 𝑎𝑣𝑔,𝑀2) ←Update(𝑁, 𝑎𝑣𝑔,𝑀2, 𝑥𝑖);
11 end
12 𝑣𝑎𝑟 ← 𝑀2∕(𝑁 − 1)
13 return 𝑁, 𝑎𝑣𝑔, 𝑣𝑎𝑟

4.2.1. Extern design
Recently, some works have proposed promising ways to implement

Welford’s Algorithm in FPGA, tackling the expensive hardware deploy-
ment of the division operation. In [39], the division is simplified by
using a multiply-shift approach [40] and a LUT to store all possible
division values. This is feasible as the range of potential divisors is
limited to integer values between 1 and 255. Authors of [41] designed
an efficient hardware architecture for integer division, that rounds the
result to the closest power of two.

While the multiply-shift approach is not suitable to our use case,
as it would require a LUT as big as the amount of possible values of
the divisor (i.e., 224), the design proposed in [41] could fit our needs.
Nevertheless, we opt for a custom, more lightweight design, coarsely
approximating the division with a right shift. This choice is driven by
two factors: (i) we prioritize resource usage over accuracy, as we aim to
catch long-term changes and not fine grained values; (ii) we can reuse
the Verilog code of the leading one locator employed in the HLL extern
to find the number of bits to right shift.

As shown in Fig. 5, the Welford Extern module comprises four
registers. Two registers are used to count the number of packets 𝑁 and
the number of SYN packets, the remaining two registers are used to
keep track of the variables 𝑎𝑣𝑔 and 𝑀2, required to estimate the mean
and standard deviation of the packet size. The conversion from 𝑀2 to
𝑠𝑡𝑑 is left to the controller, as we only need to perform it once per time
slot.

Similarly to the HLL extern, three operations are defined:
𝑤𝑒𝑙𝑓𝑈𝑝𝑑𝑎𝑡𝑒, 𝑤𝑒𝑙𝑓𝑅𝑒𝑎𝑑 and 𝑤𝑒𝑙𝑓𝑅𝑒𝑠𝑒𝑡. 𝑤𝑒𝑙𝑓𝑈𝑝𝑑𝑎𝑡𝑒 is applied to every
data plane traffic matching the TCP destination port under analysis,
whereas 𝑤𝑒𝑙𝑓𝑅𝑒𝑎𝑑 and 𝑤𝑒𝑙𝑓𝑅𝑒𝑠𝑒𝑡 are triggered by specific control
plane messages.

Reset. When 𝑤𝑒𝑙𝑓𝑅𝑒𝑠𝑒𝑡 is issued, the module simply sets to 0 the four
registers.



M. Patetta et al. Computer Networks 254 (2024) 110809 
Fig. 5. Block diagram of the Welford extern function, including a SYN packets counter.

Update. Along with the 𝑤𝑒𝑙𝑓𝑈𝑝𝑑𝑎𝑡𝑒 command, the P4 pipeline pro-
vides the inputs Pkt-len, representing the size of the current packet,
and SYN-flag, which is set to 1 if the packet’s SYN flag is raised or 0
otherwise. The logic to update 𝑁 and the SYN registers consists of two
counters. The first counter is triggered by each 𝑤𝑒𝑙𝑓𝑈𝑝𝑑𝑎𝑡𝑒, while the
second is activated if the SYN-flag is up. To update 𝑎𝑣𝑔, its current value
is incremented by 𝛿1∕𝑁 , where 𝛿1 is the difference between 𝑎𝑣𝑔 and 𝑥.
The division by 𝑁 is approximated by a right shift of 𝑘 bits, where 2𝑘

is the power of two closest to 𝑁 . Similarly to 𝛿1, 𝛿2 is obtained as the
difference between 𝑥 and the updated value of 𝑎𝑣𝑔. Subsequently, the
two deltas are multiplied, and the results are accumulated in the 𝑀2
register.

Read. Upon receiving a 𝑤𝑒𝑙𝑓𝑅𝑒𝑎𝑑 command, the module transmits the
content of its registers to the P4 pipeline for filling the related fields in
the Metric Query message before bouncing it back to the controller.

4.2.2. Division approximation
Division is not supported by DSP48E1 slices [38] available on the

board and nontrivial to implement in hardware, often resulting in
designs that take a lot of space and cause great latency. As out goal is
to catch anomalies by detecting major changes in the network traffic,
we care little about fine graded measurements. Therefore, we opt for
a coarse yet lightweight approach by substituting the division with the
right shift operation. Right shifting a number by 𝑘-bits is equivalent to
dividing it by 2𝑘. Hence, if 𝑘 is chosen such that 2𝑘 is the power of two
closest to 𝑁 , the relative error is

𝐸𝑟𝑟(𝑁) = 1 −

(

𝛿1
𝑁

)

𝑎𝑝𝑝𝑟
(

𝛿1
𝑁

)

𝑒𝑥𝑎𝑐𝑡

= 1 −
𝛿1
2𝑘
𝛿1
𝑁

= 1 − 𝑁
2𝑘

= 1 − 2𝑘 + 𝑟
2𝑘

= 𝑟
2𝑘

(4)

Where 𝑟 is the difference between 𝑁 and its closest power of two,
such that 𝑁 = 2𝑘+𝑟. Fig. 6 shows the approximation errors for different
values of 𝑁 . The error is roughly bounded between −30% and 40%. As
𝑁 increases by 1 at each iteration, we will experience all the possible
values of 𝐸𝑟𝑟(𝑁). Hence, negative errors will partially compensate for
positive ones as the results of the division are accumulated to estimate
𝑎𝑣𝑔. Moreover, the cumulative error needs to be small enough only for
the first iterations, as the ratio 𝛿 ∕𝑁 naturally decreases as 𝑁 increases
1
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Fig. 6. Relative error using right shift instead of division.

(being 𝛿1 limited), resulting in that even large relative errors do not
have a strong impact on the final estimation.

To obtain k from 𝑁 , we first convert to 1 all its bits after the leading
one as in the HLL module, obtaining the string 𝑠. We then get the next
power of two 2𝑙 as 𝑠+1, and the previous one 2𝑙−1 is obtained by right
shifting it by one. To find out which one is closer to 𝑁 we just compare
the differences 2𝑙 −𝑁 and 𝑁 − 2𝑙−1. If the former is smaller, than 𝑘 is
equal to the Hamming Weight of 𝑠, otherwise it is that value minus one.

For example, if 𝑁 = 20, that in binary corresponds to ′10100′ (note
that we omit the first 19 bits set to zero for the sake of simplicity), then
𝑠 =′ 11111′. Hence, the next power of two is 2𝑙 = 𝑠+ 1 =′ 100000′ = 32,
and the previous one is 2𝑙−1 = 16. As the difference between 𝑁 and 2𝑙−1

is lower than the difference between 2𝑙 and 𝑁 , 2𝑙−1 = 16 is the closest
power of two, and 𝑘 is equal to the Hamming Weight of 𝑠 minus one,
i.e., 𝑘 = 4.

5. Southbound interface and routing engine

Two requirements of the proposed IDS are the capability to retrieve
metrics computed by multiple Switches to detect anomalies, and the
capability to enforce routing rules tailored to the observed threats
(e.g., blocking an anomalous port, forwarding traffic towards a dedi-
cated server for offline analysis or blocking specific IP addresses). Both
these actions require the control plane to be able to communicate with
the data plane.

As most popular SBI solutions [42,43] are not natively supported
by the P4→NetFPGA framework, we achieve the remote controllability
of the Sume Switch through an SBI derived from the one proposed
in [44], adapted to provide the specific messages required in our IDS.
In the remaining of this section we will first present the set of control
messages composing the SBI and then we describe the Routing Engine
module.

5.1. SBI messages

In the proposed SBI, every message is carried by an IP packet
(protocol ID 144) and is composed by a common shell, plus the content.
The SBI shell carries five fields:

(i) the Controller ID field is introduced for scenarios where multiple
controllers are involved; (ii) the Switch ID is used to identify the target
of a message, allowing switches to assess if they are the intended
recipient and to decide where to forward the packet; (iii) the Up-link
flag is used to distinguish SBI messages that are directed from the
Control Plane to the Data Plane and vice versa; (iv) the Type field
identifies the content of the message, and determines how the SBI
packet will be treated by the P4 pipeline; (v) the Length corresponds
to the number of bytes composing the message, including the shell.

SBI message forwarding is managed by a dedicated SBI routing table
that maps [Switch ID, Up-link flag] pairs to destination ports. Whenever
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a Sume Switch receives a message destined to itself, it will process it
accordingly and send it back to the port it came from with the Up-link
flag set. This way, the controller will receive confirmation of receipt
for the messages sent, along with eventual complementary information
included in the message (e.g., metric query).

Fig. 7 shows the SBI shell format, as well as the proposed set of
control messages:

1. Set Switch ID messages are used to change the ID of the receiving
device, saved in the Switch ID register. Each device only responds
to messages destined to its Switch ID, and forward the rest according
to SBI routing tables. Every switch starts with an ID equal to zero.

2. SBI Routing messages are used to configure new entries in the SBI
routing table.
Upon reception, the switch stores a new rule at the line specified by
the LUT Address field. Rules map [Switch ID, Up-link flag] pairs,
corresponding to the [Key Low, Key High] fields carried by SBI
messages, to a given output port, as specified by the Port field. The
higher the address a rule is stored in, the higher its priority. If the
Check flag is set, no rule is added. Instead, the switch searches for
the given keys in the table and eventually writes the matching port
in the Port field
before bouncing the message back to the controller. Such messages
can be used to verify the correct configuration of routing tables.

3. Destination and Source IP Routing messages, similarly to SBI Rout-
ing messages, are used to populate the related tables. In this case,
Keys correspond to IP addresses, while the Mask is used to express
wildcard bits,
i.e., bits that can have any value and still result in a match.

4. Destination and Source TCP Routing messages are used to configure
the related routing tables. Keys correspond to TCP ports.

5. Set TCP Port messages are used to configure the destination TCP port
under analysis. The current design allows to monitor one port at a
time, that is configured by the controller.

6. Metric Query messages are used to retrieve the metrics stored in the
data sketch extern modules. The Metric ID corresponds to the metric
whose value is being queried. When it is 0 (Src IP Cardinality), 1 (Dst
IP Cardinality) or 2 (Src Port Cardinality), the switch will fill Result
1 and 2 respectively with 𝑍−1 and 𝑉 from the related HLL module
before sending the message back to the controller, while Result 3
and 4 are unused. When the Metric ID is set to 3 (Counters), Result
1 is filled with the content of the SYN counter, while Result 2,3 and 4
are respectively filled with 𝑁 , 𝑎𝑣𝑔 and 𝑀 , from the Welford extern.
Finally, if the Reset flag is set, the related extern module is reset
instead.

5.2. Routing engine

The Routing Engine is responsible for the routing decision. As shown
in Fig. 8, it is composed of three elements: the SBI Engine, the Data
Plane Traffic Engine and the Routing Decision Module.

The SBI Engine is transparent with respect to regular data plane
traffic, but is triggered by control plane messages. First, it checks if the
Switch ID of the incoming SBI message matches the ID of the switch
itself. If the ID checks, a P4 metadata signal id_match is sent to the
cascading modules, to enable them to process the message accordingly.

By contrast, if the ID does not check, the SBI Engine proceeds to
search for the related [Switch ID, Up-link flag] pair in the SBI Routing
Table, to retrieve the corresponding output port and transmit it to the
Routing Decision Module.

The Data Plane Traffic Engine acts as interface between the P4
pipeline and the routing tables. For each data plane packet, its source
and destination IP addresses are queried in the respective routing table
and eventual matching output ports are sent to the Routing Decision
Module. In case of TCP packets, source and destination ports are
searched as well.
8 
Fig. 7. Southbound interface message format.

Fig. 8. Routing engine module.

The Routing Decision Module is responsible for choosing the output
port based on the information received from the routing tables. If the
id_match signal is active (i.e., the packet is an SBI message destined to
this switch), the Up-link flag is raised and the destination port is set
as the source port. If id_match is not active and there is a match in the
SBI Routing Table, its output is set as destination port. If the packet
is a data plane packet, the destination port is set to the output of the
highest priority data plane routing table that scores a match. The order
of priority, from high to low, is: destination TCP port, source TCP port,
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Fig. 9. Standard error of the HLL sketch. The horizontal line represents the predicted
standard error.

source IP, destination IP. The idea is to use the destination IP address
as default routing principle, while the other tables are used for filtering
traffic and blocklisting individual hosts.

6. Evaluation

In this section, we evaluate different aspects of the proposed so-
lution. First, we analyse the estimation performance of the designed
data sketches, comparing them to the respective software implemen-
tations. Then, we showcase the effectiveness of the IDS by using it to
detect anomalies in real-world traffic. Finally, we discuss scalability and
resource usage of the proposed solution.

6.1. Data sketch estimation error

To determine the estimation errors of the proposed HLL and Welford
implementations, we crafted packet distributions with ad-hoc IP car-
dinalities and packet lengths. We repeated each test 50 times, and
computed the related standard error of estimation.

6.1.1. HLL evaluation
Fig. 9 shows the Standard Error of Estimation of the HLL module, for

increasing cardinalities. The horizontal line represents the theoretical
standard error for 256 buckets [9] (i.e., 7%). The measured error is
mostly below the predicted one, except for very high cardinalities, as
we approach bucket saturation and hash collisions cause new elements
to be interpreted as already seen ones. According to [9], the value at
which hash collisions should start affecting the estimation is 2𝐿, where
𝐿 is the length of the hashed word. In our implementation, 𝐿 = 15,
so hashing collisions should start being relevant at cardinalities around
30k, but this effect seems to be quite moderate up until values greater
than 100k. Note that, even at cardinalities close to one million, the
standard error of estimation is around 11%, which is still acceptable
for our use case, where the goal is to identify major changes rather
then accurate measurements.

6.1.2. Welford evaluation
As Welford’s Algorithm module is used to estimate two features,

i.e., packet size mean and standard deviation, we have more degrees
of freedom with respect to the HLL analysis. Hence, we perform two
distinct analyses: one to assess the estimation error for the mean and
one for the standard deviation. As no theoretical boundaries are pro-
vided in Welford’s paper [10], we compare our results with a software
implementation of the algorithm.

In the mean estimation performance analysis, we repeat the test for
four mean values and increasing number of packets, keeping the stan-
dard deviation equal to 20% of the mean. Fig. 10 shows the Standard
9 
Fig. 10. Standard error of the Welford sketch estimation of the mean. Each curve
corresponds to a different value of mean: 100 (blue), 200 (yellow), 500 (green), 1000
(red). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Error of Estimation of the mean packet size for packet distributions with
increasing number of packets and mean size equal to 100, 200, 500
and 1000 bytes respectively. In both cases, hardware and software, we
observe smaller errors as the real mean increases. Differently from the
software version, which exhibits stable and negligible standard errors,
the hardware implementation provides a good approximation of the
mean size, with standard errors lower than 1%, when the number of
packets is lower than few hundred thousands, and starts diverging
afterwards. Interestingly, the standard error is more stable as the mean
increases. Note that the worst case error is still lower than 8% even
at 1 million packets, which is perfectly in line with our use case
requirements.

Similarly, to evaluate the performance of the standard deviation
estimation, we fix the mean to 500 bytes and show the results of four
standard deviations (i.e., 25, 50, 100 and 250 bytes) and increasing
number of packets in Fig. 11. Again, the software version exhibits errors
consistently below 1%. We observe that, when the standard deviation
is 250 bytes (i.e., 50% of the average packet size, that we fixed at
500 bytes), the standard error of the software version increases with
the number of packets, although it remains under 1%. Our design too
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Fig. 11. Standard error of the Welford sketch estimation of the Standard deviation.
Each curve corresponds to a different standard deviation: 25 (blue), 50 (yellow), 100
(green), 250 (red). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

exhibits minimal standard errors for distributions with a number of
packets lower than few tens of thousands, which then rapidly degrade
as the number of packet increases. The case with standard deviation
equal to 250 bytes is anomalous even in the hardware case, where it
diverges much faster than the others, whose curves mostly overlap.

In conclusion, we assess that the Welford Extern comes with negligi-
ble standard errors for distributions with less than few tens of thousands
of packets. Afterwards, the estimation of the mean starts to slowly
degrade but remains acceptable for our use case. On the other hand, the
estimation of the standard deviation degrades much faster, most likely
having a non-negligible impact on the capability to detect anomalies
on that feature. Note that, as elaborated in Section 6.3, some correction
strategies can be employed by the controller.

6.2. Anomaly detection using real-world traffic

We now evaluate the proposed IDS using real-world traces. The
experimental setup comprises a server connected to one of the ports
of a P4→NetFPGA standalone switch. The server is responsible for
10 
Fig. 12. Evolution of the Modified Z-score for the Feature srcIp% on port 3389 in
2016.

(i) controlling the switch, configuring ports to analyse, querying and
resetting metrics by using the SBI messages described in Section 5; (ii)
replaying the traffic traces.

In the following, we briefly describe the dataset that we have used.
In particular, we explain how we manage to divide each trace by the
respective subnetwork, enabling us to analyse the dataset as a Collab-
orative IDS. Accordingly, we provide an example of the collaborative
approach by showing the evolution of one of the monitored features
over time for several subnetworks. Then, we run the anomaly detection
over two periods spanning several months. The first one is related to
2016, in order to compare our results with the ones proposed in [8],
while the second one is from 2023, to assess the effectiveness of the
approach in a more recent time.

6.2.1. MAWI dataset
The WIDE Working group maintains a repository of daily traces

of a transpacific link, namely the MAWI archive [13]. Traces are col-
lected between their network and the upstream ISP, between 14:00:00
and 14:15:00, and are anonymized so that no personal information
can be extracted. Specifically, application data is removed and IP
addresses are scrambled following two principles: 1) there is a one-to-
one mapping between IP addresses before and after anonymization; 2)
it is prefix-preserving. This enables to retrieve the subnetworks after
anonymization. Therefore, we are able to split traces by destination IP
into nine subnetworks and feed them individually to the NetFPGA Sume
board to mimic a configuration with nine distinct switches.

To compare ourselves with [8], we first analyse each Thursday over
a period from March 31 to December 29, 2016. For this analysis, we
set the time series length 𝑊 to 10, the modified Z-score threshold 𝑇𝑖 to
3.5, and the minimum number of appearances for a local anomaly to
be considered as a global one 𝑘 to 2. Consequently, the first ten weeks
are needed to form the initial time series and the detection begins on
June 9. We repeat the analysis considering two values for the parameter
𝑁𝑚𝑖𝑛, i.e., the minimum amount of packets for a port to be considered
used in a given time slot.

Additionally, we perform a similar analysis over a more recent
period from January 12 to July 27, 2023. Using the same parameters,
the first ten weeks are also needed to populate the time series and the
detection begins on March 23.

6.2.2. Per-feature anomaly detection
Fig. 12 displays the evolution of the modified Z-score for the feature

srcIp% on port 3389 in 2016. Only five subnets appear, since not
enough traffic (less than 𝑁𝑚𝑖𝑛 = 100 packets) was measured for the
remaining four on that port. We can see that the threshold −𝑇𝑖 is
crossed on Jul. 28, Aug. 11 and 25, Sept. 28 and Oct. 20, but only
in the last two occurrences this happens in at least two subnets. Hence,
the threshold crossings of July and August are not accounted for when
deriving the AS of port 3389, as localized events are most likely not

related to scanning and botnet activity.
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Table 3
Detected Anomalies with 𝐴𝑆 > 15.

Date Dst Port AS (𝑁𝑚𝑖𝑛 = 20) AS (𝑁𝑚𝑖𝑛 = 100) AS (Original) MAWILab Report TCP traffic %

Jun 6 81 19 16 scan 0.1%
Jun 6 1234 22 < 0.001%
Jun 6 2222 19 16 < 0.1%
Jun 6 54 126 16 < 0.001%
Jun 16 81 28 17 < 0.1%
Jun 16 1234 21 < 0.001%
Jun 16 2222 17 multi-point < 0.1%
Jun 30 6379 20 20 20 missing report 0.1%
Jul 7 445 16 scan 0.7%
Jul 7 995 15 16 < 0.01%
Jul 14 49 562 16 < 0.0001%
Jul 14 52 160 16 < 0.0001%
Aug 4 23 28 28 26 scan, multi-point 4.3%
Aug 4 49 320 17 0.1%
Aug 4 50 000 17 0.01%
Aug 11 23 22 22 scan, multi-point 4.5%
Aug 11 587 17 0.02%
Aug 18 3128 21 16 0.03%
Aug 18 8118 16 0.02%
Aug 18 50 304 19 < 0.01%
Aug 18 52 869 19 < 0.01%
Aug 25 21 20 17 0.2%
Aug 25 23 20 20 scan, multi-point, alpha-flow 4.5%
Sep 1 3128 20 18 scan 0.03%
Sep 29 3389 15 15 16 missing report 0.1%
Oct 6 1080 17 < 0.001%
Oct 13 50 288 16 < 0.001%
Oct 20 3389 16 21 missing report 0.18%
Oct 20 18 245 17 missing report < 0.001%
Nov 24 1723 16 missing report < 0.001%
Dec 1 5555 17 missing report 0.35%
Dec 15 587 18 < 0.001%
Dec 22 7547 19 0.1%
6.2.3. Detection in 2016
We now analyse the metrics collected for ports that were interested

by at least 2000 packets per trace for at least 3 traces in the observation
period. We compare the anomalies detected in two cases: when 𝑁𝑚𝑖𝑛 =
20 and 𝑁𝑚𝑖𝑛 = 100. Note that we are able to analyse both cases without
needing to run the traces twice because the metric collection performed
by the NetFPGA programmable switch is agnostic with respect to the
anomaly detection algorithm. We can tweak Split-and-Merge parameters
and could even integrate other anomaly detection algorithms based on
the same metrics.

Fig. 13 shows the AS occurrences by day for the two cases. The
numbers noted in the squares indicate the number of ports with a given
AS on that day. On average, the number of daily alerts with AS greater
than 15 is 0.47, when 𝑁𝑚𝑖𝑛 = 100, and 1 when 𝑁𝑚𝑖𝑛 = 20. This means
that the average amount of alerts occurring per day is minimal, which
is convenient for network administrators.

Table 3 includes all the anomalies with AS greater than 15, specify-
ing the scores obtained in the two cases 𝑁𝑚𝑖𝑛 = 20 and 𝑁𝑚𝑖𝑛 = 100. The
table also includes the eventual score reported in the original Split-and-
Merge works for the same anomaly and the list of anomalies detected
by MAWILab [14] on the same port in that day, based on the taxonomy
proposed in [45]. Finally, the percentage of TCP packets related to that
port is included to show that we are able to spot anomalies even on
lightly used protocols.

The notion of false positive in zero-day attacks is not standard, as
these attacks are unknown and therefore impossible to classify. Con-
currently, as detected anomalies reflect sudden changes in the overall
traffic pattern, which may or may not be due to malicious activity,
there is no solid ground-truth for assigning a label to each event.
Nevertheless, we investigate major anomalies, trying to match the
profile of the anomalous features with known vulnerabilities reported
on the related port. In the following, we present some examples.

1. June 30 - port 6379. This anomaly corresponds to the Redis scan
attack also spotted in [8,46]. Redis is an in-memory data store
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for which several vulnerabilities were discovered few days before
this event (CVE-2016-8339, CVE-2016-10517). The anomaly pattern
consists in a drop in srcIp% and a spike in dstIp% and srcPort%.
Hence, we can infer that it is a scan attack to find vulnerable devices.

2. July 7 - port 445. We have a spike in dstIp% and stdSize, along with a
reduction in srcPort%, suggesting a strong presence of crafted pack-
ets and botnet activity. Port 445 is used by the Server Message Block
(SMB) protocol, a file sharing protocol developed by Microsoft, and
known to be vulnerable to plenty of trojans and worms. MAWILab
reports a scan attack on this port in the same day.

3. July 7 - port 995. For 𝑁𝑚𝑖𝑛 = 100 we have a spike in dstIp%, srcPort%
and Syn% in three subnets, it is an emerging port (i.e., the traffic was
lower than 𝑁𝑚𝑖𝑛 before this day) in another subnet and is practically
unused in the others. The port is used by the POP3 mail over SSL
service, but is also used in the Cyclops Blink Botnet developed by
the Russian group Sandworm. The anomaly pattern for 𝑁𝑚𝑖𝑛 = 100
may indicate a stealthy scan, even though the activity of this botnet
was only reported starting from 2019.

4. August 4 - port 23. This anomaly corresponds to the Mirai [47] scan
also spotted in [8,46]. Infected hosts scan for vulnerable machines
by sending random TCP SYN packets on Telnet ports 23 and 2323.
It is characterized by a surge in srcIp%, srcPort%, stdSize and Syn%,
along with a drop in meanSize. Interestingly, no spike in dstIp%
is recorded, as Telnet ports were already massively scanned even
before the outbreak of Mirai. The same scan is also detected on
August 11 and 25.

5. August 18 - port 3128. This port is used by a web proxy service
called Squid, for which several vulnerabilities leading to privacy
violations (CVE-2016-10003), cache poisoning (CVE-2016-4553),
arbitrary code execution (CVE-2016-4054), and denial of service
(CVE-2016-4052) were discovered in the same year. As the anomaly
pattern shows a surge in srcIp%, along with a reduction in dstIp%
and Syn%, it could be an intrusion attempt perpetrated by multiple
machines towards Squid servers located in the MAWI network. The
same anomaly is detected on September 1.
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Fig. 13. Anomaly Scores for the 2016 period. 𝑁𝑚𝑖𝑛 = 100 (up) 𝑁𝑚𝑖𝑛 = 20 (down).
1

6. August 18 - port 52869. The anomaly pattern shows a surge in
dstIp%, srcPort% and Syn%, which may be in line with a stealthy
scan to detect Realtek Universal Plug and Play (UPnP) devices
accessible through UPnP over SOAP on port 52869. A vulnerability
on this service (CVE-2014-8361) allows remote attackers to execute
arbitrary code.
This is most likely related to the Satori botnet, a Mirai variant
operating on ports 37215 and 52869. Interestingly, the propagation
stage of this botnet should have started in late 2017, meaning that
this is probably a preliminary scanning campaign by the Satori
developers.

7. August 18 - port 8118. This port is used by Privoxy, an ad-filtering
web proxy. A DoS vulnerability (CVE-2016-1982, CVE-2016-1983)
was found at the beginning of 2016. As the anomalies show an
increase in srcIp% and srcPort% along with a decrease in dstIp% and
Syn%, it could be a DDoS attempt.

8. September 29 - port 3389. This anomaly corresponds to a scan also
detected in [46]. This port is used by Windows Remote Desktop
protocol (RDP), a service allowing remote users to connect to an-
other computer through a graphical interface. On this day we have
a single IP address targeting several hosts distributed in the entire
MAWI network with the same source port. In [46] it is supposed
to be either an update issued by an administrator connected to
several machines over RDP or an intrusion attempt. We lean towards
the intrusion hypothesis as (a) several vulnerabilities including ar-
bitrary code execution and denial of service were discovered in
2015 and 2016 (CVE-2015-0079, CVE-2015-2373, CVE-2015-2472,
CVE-2016-0019, CVE-2016-0036) and (b) it is unlikely for a remote
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administrator to push an update on a large number of machines over
a graphical interface. This anomaly is also detected on October 20.

9. December 1 - port 5555. This is an unofficial port used by several
services, including Android Debug Bridge (ADB). Most notably, in
2018 there was a report of the ADB.Miner botnet (i.e., a Mirai
variant) infecting Android devices with ADB turned on, but scanning
activity on this port was already present since November 2016 [48].
Given the nature of the alert, characterized by a surge in srcIp%,
dstIp% and srcPort%, it is most likely an early scan perpetrated by
the botnet.

0. December 22 - port 7547. This anomaly corresponds to the Mirai
variant detected in [8] on December 8. This port is associated to
TR-069, an application layer protocol for remote management of
customer-provided equipment. In November 2016 a vulnerability
was reported on some products using this protocol [49] and few
weeks later, several Deutsche Telekom routers suffered an outage
due to their injection with this variant.

Thanks to this study, we can provide a tentative false positive rate
evaluation. Limiting ourselves to high-relevance anomalies (arbitrarily
defined as those with 𝐴𝑆 > 15) in the 𝑁𝑚𝑖𝑛 = 20 scenario, there
are 12 that likely correspond to malicious activity, 5 that potentially
correspond to malicious activity and 13 that are likely false positives,
resulting in a false positive rate between 43% and 60%. In the case of
𝑁𝑚𝑖𝑛 = 100, we have 7 anomalies likely related to malicious activity,
3 that are potentially related to malicious activity and 3 that are
likely false positives, resulting in a false positive rate between 23%
and 46%. In the second case, we filter out some ports, improving the
false positive rate, but at the cost of reducing the number of potential
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Table 4
Amount of anomalies detected sorted by relevance.

Relevance Original 𝑁𝑚𝑖𝑛 = 20 𝑁𝑚𝑖𝑛 = 100

Low
(AS=1-9)

3001 16 289 12 104

Medium
(AS=10-15)

21 263 62

High
(AS=16+)

8 30 13

attacks detected. Once again, note that the choice of 𝑁𝑚𝑖𝑛 affects only
the centralized analysis of data collected by the switches, and can
be adjusted at any moment without impacting the metric collection
process.

Ultimately, as the goal of the proposed IDS is to provide a first
line of defence against unknown attacks, to be paired with other,
fine-grained methods (e.g., DPI), we care little about the ex-post false
positive rate as long as the average daily number of alerts remains
compact, and therefore recommend keeping 𝑁𝑚𝑖𝑛 low.

6.2.4. Comparison with state-of-the-art method [8]
We compare our results with the ones proposed in the original

Split-and-Merge work, where a similar analysis is carried on.
The use of approximate computing, made necessary due to hard-

ware and timing limitations, introduces small errors that generally do
not impact the AS computation. Yet, there are some key differences
between the results of our work and those presented in the original
Split-and-Merge works. The reason behind these differences is unclear,
as our attempt at reproducing the analysis of the reference work gave
results that are consistent with our solution. For this reason, in the
following we propose a comparison between the two.

Table 4 shows the total number of anomalies detected over the
evaluation period in the two cases 𝑁𝑚𝑖𝑛 = 20 and 𝑁𝑚𝑖𝑛 = 100,
plus the ones reported in [8], where they use 𝑁𝑚𝑖𝑛 = 20. Anomalies
are grouped according to their AS: (i) low-relevance, with 𝐴𝑆 < 10
(i.e., mean number of anomalies per subnet is less than 1); (ii) medium-
relevance, with 10 ≤ 𝐴𝑆 ≤ 15; (iii) high-relevance, with 𝐴𝑆 > 15 As
shown in the table, our online version generates a considerably greater
amount of alerts, but still not so high to be unmanageable by network
administrators.

To further explore the comparison, let us examine the difference
between the most relevant anomalies detected by our solution with the
ones reported in the reference work. There are four anomalies that are
spotted in both frameworks: the Redis scan on port 6379; the Mirai
scan on port 23; the RDP intrusion attempt on port 3389; the Mirai
variant on port 7547. Then, there are five anomalies that our system
is able to detect but are not reported in [8]: the scan on port 445;
the intrusion attempt on port 3128; the stealthy scan on port 52869,
potentially linked to the Satori botnet; the DDoS attack on port 8118;
the Mirai variant on port 5555. Finally, there are three that we are not
able to reproduce despite being detected in [8], namely the Mirai scan
on port 2323 and its variants on port 6789 and 23231.

The Mirai scan on port 2323, detected on September 15 with a score
of 28 in the reference work, only generates a medium anomaly with AS
= 10 on September 8 in our framework (when 𝑁𝑚𝑖𝑛 = 100), although
it is still the port with highest AS of the day. The Mirai variant on
port 6789 detected in [8] on December 29 remains undetected by our
solution. As the port is mostly unused until December 22, there are not
enough data points to populate feature time series by December 29,
making it impossible to calculate an Anomaly Score on five subnets out
of nine. A similar situation occurs for the Mirai variant on port 23231
detected in [8] on December 22. The port starts being used in five
subnets one week before, and ends up generating only few anomalies
in just one subnet, getting filtered out as a local phenomenon.
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Interestingly, all these undetected anomalies share in common that
the attacked ports were mostly unused until the day of the attack
inception. Given that, an administrator may sniff out the attack by
looking at the sudden traffic surge (e.g., by giving a greater weight to
new-port anomalies) and noticing the major increment of traffic from
one week to another.

6.2.5. Detection in 2023
To showcase the relevance of the proposed system to more recent

real-world data, we repeat the analysis for the first 7 months of 2023.
For the sake of simplicity, we limit ourselves to the 𝑁𝑚𝑖𝑛 = 20 case, and
for each day, we only analyse ports that are interested by at least 𝑁𝑚𝑖𝑛
packets in at least two subnets. As a consequence, we observe a massive
reduction in low-relevance anomalies, and notably, the disappearance
of events with 𝐴𝑆 = 1, as shown in Fig. 14.

As we did for the 2016 period, we now briefly discuss the most
notable anomalies detected in 2023. Note that all of these anomalies
go undetected in MAWILabs reports.

1. April 13 - port 52869. Yet another anomaly on port 52869, used
by the UPnP protocol suite. Port 52869 is often victim of scanning
activity related to the Satori botnet, such as the one we spotted for
the 2016 period. In this case, there is an increase in srcIp%, srcPort%,
meanSize, and stdSize, alongside a decrease in Syn%. Given the
increased packet size and the prevalence of non-SYN packets, this
does not look like a scan. It is more likely a DDoS attack, exploiting
UPnP devices to amplify TCP traffic. This can be accomplished
by sending SOAP requests to UPnP devices that were previously
identified, spoofing the target’s address. The UPnP devices then
respond by sending the HTTP location of their XML description file
to the target IP address, potentially saturating its bandwidth.

2. May 4 and July 6 - port 7574. Port 7574 is used by Oracle Coherence,
a distributed cache and in-memory data grid system. The port
behaviour exhibits all the traits of a DDoS attempt: surge in srcIp%
and srcPort%, as multiple connections are being established, drop in
dstIp%, as Oracle servers are being specifically targeted, increase in
meanSize and decrease in stdSize, as big and similar packets are being
crafted, and finally a reduction in Syn%. Some vulnerabilities were
disclosed in 2022, leading to DoS (CVE-2022-21570) and system
takeover (CVE-2022-21420). Most notably, on June 20, i.e., seven
weeks after the first attack and two weeks before the second attack,
a vulnerability was discovered for a component of Oracle Coherence
called Netty (CVE-2023-34462). Due to this vulnerability, a low
privileged attacker can establish TCP connections with an Oracle Co-
herence server and allocate 16MB of heap memory per connection,
potentially causing a Denial of Service if no idle timeout handler is
configured.

To summarize the outcomes of the two evaluations, we observe that
in 2016 we have almost one high-relevance anomaly per day, while
in 2023 we have approximately one relevant anomaly every 5 days.
We must consider that an apples-to-apples comparison between the two
analyses is of little interest, as the number of attacks in a given period
(hence, the amount of detected anomalies) can vary greatly, depending
on factors such as the vulnerabilities discovered in the recent time.
Consequently, the main message that we can draw is that port-based
approaches have been proven over time to be able to detect malicious
activity such as port scanning, botnet spreading and DDoS attacks,
and that the proposed architecture is able to execute metric collection
directly on the data plane, enabling line rate analysis of large volumes
of data without requiring offline processing.
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Fig. 14. Anomaly scores for the 2023 period.
6.3. Scalability

In this section we discuss possible scalability issues related to the
metric collection process. Specifically, we want to consider the poten-
tial impact of unusually large traffic volumes. Looking at the MAWI
dataset, we can observe that the number of TCP packets per subnetwork
in the 15-minute traces is in the order of tens of millions. We also
observe that the percentage of traffic on a given port is usually below
1% and hardly ever beyond 4%. Let us suppose a very pessimistic case
in which the number of packets traversing a single switch within a time
slot is 100 million and the port under analysis accounts for 5% of the
traffic, that is 5 million packets. Additionally, let us suppose that every
packet has unique source and destination IP addresses, such that the IP
address cardinalities to estimate are also 5 million.

In the Welford extern, we use 24-bit registers for the number of
packets, the number of SYN packets and the average packet size, and
a 40-bit register for 𝑀2. 24 bits allow us to count packets up to 16.7
million, so there is no risk of overflow. The average packet size cannot
overflow either, as it is bounded by the maximum size of IP packets.
Indeed, if the value of 𝑎𝑣𝑔 grows excessively large, such as following
a sequence of large-sized packets, it is probable that the next packet
sizes observed will be smaller than 𝑎𝑣𝑔. Therefore, next increments
to 𝑎𝑣𝑔 will likely be negative, pushing its value towards the actual
average. Finally, the 𝑀2 register is always incremented by the product
between the two deltas, which is bounded (as deltas are bounded) but
almost always positive (as deltas are likely of the same sign). Being the
increment always positive, there is a risk of overflow in case of large
traffic volumes, and that is why we conservatively use 40 bits instead
of 24 for 𝑀2.

As specified in Section 4, the HLL extern can estimate cardinalities
up to 6 million. Therefore, even in this very pessimistic scenario where
every packet has unique IP addresses, there is no risk of saturating the
HLL buckets.

Ultimately, the proposed design is dimensioned after the expected
data rate, and it could need to be resized if employed in a different
use case. It must be observed, in fact, that 100 million packets per
15-minutes is far lower than the maximum throughput of a NetFPGA
Sume switch, that is in the order of tens of billions of packets. On the
other hand, note that we use 15-minute time slots just because MAWI
traces come in that format. A possible approach could be to adjust the
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length of the observation window while maintaining a constant number
of observed packets. On top of that, the centralized controller may
increase the frequency of metric queries from one at the end of each
time slot to more than one, spread out over time. This way, eventual
overflows and bucket saturation effects may be spotted, and correction
strategies could be employed.

For example, if a packet count overflow is detected, it can be
easily compensated by the centralized controller by just summing the
maximum allowed value in the related register (i.e., 224 −1) to the last
count retrieved.

As another example, intermediate queries of packet standard devi-
ation can be retained and used instead of the end-of-time-slot one, as
the expected estimation error grows as the number of observed packets
increases (as shown in Section 6.1.2). In fact, assuming the packet size
distribution to be normal (as proven in [8]), we do not need to compute
the standard deviation using all the packets observed in a given time
slot, but we can limit to a subset based on the confidence interval
we are willing to tolerate. To calculate this, we can use the following
formula from [50]:

𝑃𝑟

(

𝑆𝑇
√

𝑁 − 1
𝑞1− 𝛼

2

< 𝜎 < 𝑆𝑇
√

𝑁 − 1
𝑞 𝛼

2

)

= 1 − 𝛼 (5)

where 𝑁 is the number of packets used for the estimation, 𝜎 is the
real standard deviation, 𝑆𝑇 is the estimated standard deviation, 𝑞𝑝 is
the 𝑝th quantile of the chi-square distribution with 𝑁 − 1 degrees of
freedom, and 𝛼 − 1 is the confidence interval. For example, we could
retain an intermediate 𝑆𝐷 query with 𝑁 = 1000 and have a 95%
probability that the real standard deviation 𝜎 falls within the interval
[0.96 ⋅ 𝑆𝐷, 1.05 ⋅ 𝑆𝐷].

6.4. Resource usage

Table 5 shows the resources required to synthesize two variants of
the proposed design. The first version has a simplified Routing Engine,
where data plane traffic is only routed according to a dst IP table,
while the second version employs the full routing logic as described
in Section 5.

The usage of LUTs, BRAM modules and Flip-Flops increases by
11.61%, 18.01% and 31.11% respectively, showing a clear bottleneck
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Table 5
NetFPGA Resource Usage.

Design LUT BRAM FF

Split-and-Merge +
Simple Routing Engine

35.08% 51.87% 47.75%

Split-and-Merge +
Full Routing Engine

46.69% 69.86% 78.86%

on FF availability. This prevents us from upscaling currently inte-
grated modules or adding further logic to our solution. Rather than
the introduction of the additional extern modules, the main driver of
the bottleneck is the increased complexity of the P4 pipeline, which
accounts for around 80% of the FF usage growth, hinting that the
bottleneck could be reduced by (i) implementing part of the routing
engine in a dedicated extern module to ease the P4 pipeline and (ii)
merging some of the SBI messages to decrease the redundancy of the
Parser and the Deparser.

7. Conclusions

In this paper we propose a CIDS-like unsupervised distributed
anomaly detection system. For this purpose we refine the Split-and-
Merge algorithm and design NetFPGA board forwarding system to act
as both programmable switches and network probes, managed by a
remote controller that, via a dedicated new South-Bound-Interface we
designed, retrieves the metrics from the data plane and uses them to
detect anomalies and traffic shifts. We leverage approximation and
data sketches to cope with the resource limitations and the need to
perform operations at line rate. On top of anomaly detection, we also
allow network administrators to enforce basic mitigation actions, such
as traffic redirecting, port blocking and IP allowlisting or blocklisting.

We test our solution against the MAWI Archive dataset, showing
how it can catch several intrusion attempts that actually took place
in 2016, to compare our work with the reference algorithm, and in
2023, to showcase the effectiveness of the approach in a more recent
time, generating few high-level anomalies per day thanks to the false
positive filtering granted by the collaborative approach.

The current practical shortcoming of our solution is its scaling with
multiple monitored port. On one hand, the evaluation from both our
work and [8,46] shows that monitoring 15 min per week is enough
to catch network level traffic shifts, and therefore the controller could
assign each 15-minute time slot to a different port to scale with a wide
span of ports every week. Nevertheless, we are currently working on
a solution to monitor several ports at the same time, as this would
(a) increase the number of monitored ports per day, (b) provide more
reedom to customize the time slot duration and (c) increase the
lexibility in terms of which ports to analyse without reducing the
overage. This effort could also support the introduction of additional
eature computing at line rate.

Besides, established the unfeasibility of monitoring every port, apart
rom how many ports to analyse, an important open question is which
nes. A potential answer that we are exploring is to use a heavy hitter
etection algorithm to figure out the most used ports, while possibly
eaving some room for monitoring random or arbitrary ones.
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