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ABSTRACT
Empirically analyzing debugging activity is notoriously difficult.
In particular, aggregating data (obtained from either observation
or event logging) to verify hypotheses on developers’ behavior is
known to be challenging. Overall, the difficulty of studying debug-
ging activities contributes to the need for more empirical evidence
on how practitioners use debuggers.

We propose debugging activity blueprint as a visual tool to ana-
lyze and navigate through all the events recorded in a programming
environment. Our blueprint is a polymetric view representing the
interaction between debuggers and other programming tools. Our
blueprint highlights the flow of a debugging activity across the
tools an IDE offers. An exploratory use case over three participants
and two debugging tasks indicates that our blueprint supports a
fine-grained analysis of complex debugging scenarios.

KEYWORDS
Debugging, Debugging behavior, IDE, visualization, polymetric
views
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1 INTRODUCTION
Debugging is a crucial activity in software development that in-
volves identifying, analyzing, and removing bugs from a software
system. Despite its relevance, in today’s programming and soft-
ware development environments, we still need to understand how
practitioners use debuggers at a fine and coarse-grain level. Not
being able to characterize the behavior of programmers when de-
bugging may hamper the future development of debugging tools
and methodologies.
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For example, a debugging activity does not solely happen in a
debugger. Previous research efforts [15? ] show that practitioners
navigate through the base source code of an application being
debugged. However, we still need to understand the developer
intent behind this phenomenon. Just as we need to provide answers,
correlated with the developer’s intent, to essential questions such as
What programming tools does a practitioner need when debugging?
orWhat information is important to a practitioner that is not provided
by a debugger?.
Considered problem. The problem addressed in this paper is how
to characterize a debugging activity? As far as we are aware of,
no tools or methodologies proposed by the academic community
allow to fully to grasp the intent behind developers’ debugging
actions. Our blueprint is a first step toward answering this question.
Contribution. This paper proposes debugging activity blueprint, a
multi-scale polymetric view [16] to visualize a debugging activity
conducted by a programmer. Our blueprint is built from a seamless
event logging of the programming environment and provides visual
support to analyze the behavior of themonitored debugging activity.
Our blueprint is multi-scale because it helps observe behavior at a
very fine grain (e.g., representing a sequence of debugging actions
like step into and step over) and at a coarse grain (e.g., moving
from one tool to another). Our blueprint is postmortem, meaning
that our visualization is built once the debugging activity is deemed
completed.
Evaluation.We have applied our blueprint to two different debug-
ging tasks performed by three participants. We were able to fully
understand and explain a complete session. We have identified a vi-
sual vocabulary from recurrent visual structures and new questions
raised about debugging activities.
Outline. The paper is structured as follows: Section 2 provides
the necessary background to our work. Section 3 describes our
debugging activity blueprint. Section 4 presents the case studies
and the results we obtained by applying our blueprint. Section 5
presents the visual vocabulary our blueprint defines and uses this
vocabulary in the case studies presented earlier. Section 6 discusses
relevant points of our approach. Section 7 summarizes the threats
to validity we identified. Section 8 discusses the work related to
our effort. Section 9 concludes and highlights our future work.
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2 BACKGROUND: PHARO PROGRAMMING
TOOLS

We applied our blueprint to debugging sessions monitored in the
Pharo programming environment [6]. As such, it is relevant to
give an overview of the programming tools commonly used with
a debugger since our blueprint visualizes the interaction between
these tools.
Inspector. An object in object-oriented programming consists of
values following the structure specified by the class of the object.
An inspector is a tool that shows the values of an object’s variables,
commonly referred as the dynamic state of that object. An object
inspector allows a practitioner to navigate through the graphs of
objects.
Code browser. In Pharo, the code browser is the main tool to view
and edit source code. One can execute code snippets or unit tests
from a code browser. A code browser also displays the breakpoints
associated with a line of code.
Debugger. This is the main tool used by Pharo developers to explore
and navigate the execution state of a program. The Pharo debugger
is similar to traditional debuggers structured along a method call
stack. It shows the current frame with the run-time values of its
defined variables, and the source code associated to that current
frame. In addition, Pharo’s debugger supports live methods edi-
tion, i.e., methods can be modified without requiring the running
program to be restarted.
Queries.One can query the Pharo system to answer questions about
the source code structure. Querying a simple method printOn:
signature lists (i) the implementations of the method printOn:
found in the system or (ii) existing methods that call printOn:.
Commonality between Pharo tools. Programming tools provided
by Pharo have a number of commonalities. First, one can have
multiple instances of each tool. It is common in a debugging activity
to have several debuggers opened at the same time. Pharo does not
impose any restriction on the number of instances of code browsers,
inspectors, queries, or debuggers one can use at the same time.

Second, all the tools can be opened and used at any given time.
For example, it is common for a practitioner to navigate or edit
code using a code browser and debug a given code snippet (which
has the effect of executing the snippet within a debugger).

Third, no programming tool dominates other tools, and all the
tools are equally accessible through a keyboard shortcut and con-
textual menu.
Differences with VSCode and Eclipse. Properties of the Pharo
tools contrast with tools offered by major programming environ-
ments, including VSCode and Eclipse. In these environments, the
source code dominates other tools since they are almost always
present as window tabs. One cannot open more than one debugger
at a given time. The enforced code editing phase vs execution phase
implies that one cannot arbitrarily open a debugger during code
editing. Pharo does not enforce tool dominance or restrict code
editing to a separate activity from program execution

3 DEBUGGING ACTIVITY BLUEPRINT
The debugging activity blueprint is a visualization that shows the
tools used by a developer during a debugging task. Our blueprint
displays the relationships between the tools and the activities per-
formed within these tools.

3.1 In a nutshell
The debugging activity blueprint is a post-mortem visualization rep-
resenting a debugging activity exercised by developers in the Pharo
development environment (or Pharo IDE). We refer to debugging
activity as a portion of a programming session in which a developer
mostly concentrates on fixing or understanding software behavior.

When debugging, every action performed by developers in the
Pharo IDE is recorded as a log. Once the debugging session is
deemed finished by the programmer, our visualization uses these
logs to represent the activities of developers in the debugging tools
from the IDE. Tool activities and their interactions are represented
in a structured fashion, as illustrated by Figure 1.

Query

Inspector
Application

Code
browser

Debugger

Activities

Figure 1: Debugging activity blueprint: tool activities and
interactions.

Representing Pharo tools. Our blueprint represents a Pharo tool
as a colored box. Figure 1 shows the different kinds of Pharo tools
available displayed by the blueprint with their interactions. The
color of the boxes indicates the kind of tool involved in the ac-
tivity. The blueprint uses the following arbitrary color encoding:
Debugger , Inspector , Query , Browser , Application (which
corresponds to the application being debugged).

Flow between tools. An arrow T → S between two boxes 𝑇 and
𝑆 indicates at least once transition that occurred between the tool
𝑇 to the tool 𝑆 . This transition means that the developer used 𝑇
during the debugging activity, and then switched to the tool 𝑆 . This
transition may happen several times during the debugging activity.

Note that our tool does not represent the liveness of the Pharo
tools. A transition T → S does not indicate that 𝑇 was removed
from the IDE or 𝑆 was opened. Instead, it simply means that the
user changed their focus to another tool. Tool opening or closing is
not represented in the blueprint.

Since each of the inspectors and the query forms a cycle with
the debugger, we deduce that the programmer temporarily moved
away from the debugger.
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Interaction block.Within a given tool, developers typically per-
form several actions before switching to a different tool. We refer to
interaction block as an uninterrupted sequence of actions performed
in the same tool. A sequence of actions interrupted by switching
programming tools results in two interaction blocks. An interaction
block is represented as a smaller gray box located in a box. The
size of an interaction block reflects the number of actions performed
by developers. Many actions can be performed in the debugger, in-
cluding inspecting variables’ values, navigating in the method call
stack, adding new breakpoints, and stepping to the next instruction.

Figure 1 shows that all tools have one or several interaction
blocks. Interaction blocks within a tool are read in a sinistrodextral
fashion, i.e., left to right, top to bottom as in most Indo-European
natural languages. Figure 1 reveals that the programmer performed
many actions in the debuggers since the debugger contains 14
blocks, which means that the programmers move away from and
back to the debugger 13 times. Some debugger’s blocks are large,
indicating the programmer did many actions without leaving the
debugger (e.g., step into or step over). The query and inspectors
have a small block each, indicating that the programmer did not do
much with these tools.

3.2 Interactions
An interaction block is a linear sequence of actions. If at least one
debugging action related to the control flow or program counter (i.e.,
step-over, step-into, add a breakpoint, etc.) is among an interaction
block’s actions, then the interaction block has a thin black border
(i.e., ).

When moving the mouse over a user interaction, such as in
Figure 2, a tooltip appears showing the duration of the activity and
the debugging actions performed during this interaction.We encode
debugging actions into symbols to indicate the actions performed
during an interaction block. Table 1 shows the Pharo debugging
actions with their associated symbols.

Action Symbol Breakpoints Symbol
Over > Add +b
Into V Hit *b

Proceed P Remove -b

Table 1: Symbols for Debugging Actions and breakpoints.

Figure 2: Interactions.

The In symbol (see Figure 2) corresponds to inspections of code,
execution contexts, objects, etc. We do not consider inspections
as debugging actions but as exploration actions. Within the same

tool, developers may execute different exploration actions in dif-
ferent subtools. It is therefore common to have successive basic
interactions without leaving the tool. A classical example is the
inspection of an object: developers may dive into the object’s graph
from its instance variables, which may open sub-inspections or
trees of properties. This kind of tool’s inner interactions spawns
different basic interactions within a tool visualization.

Temporality is not explicitly represented in the blueprint. In-
stead, interactions offered by the blueprint are key to revealing
the different order of sequentiality of events. We visualize tempo-
rality using color highlighting. When pointing the mouse over an
interaction, the visualization highlights the previous interaction in
orange and the next interaction in red. We can see an example in
Figure 3. The mouse is moved over the fifth square of the debugger
(in pink). The developer was previously in the orange interaction
in the same debugger, before arriving at the current interaction. A
tooltip appears over the current interaction and shows the sequence
of actions performed by the developer. The developer inspected
(In) three elements of the debugger, then added a breakpoint (+b),
inspected two elements (In), resumed the execution (P) which hit a
breakpoint (*b). Just after the breakpoint hit, the developer moved
to the red interaction in the code browser at the left of the debugger.
We then interpret that the cause of moving to the code browser
was the breakpoint hit.

Figure 3: Temporality.

3.3 Exploration and annotation of blueprints
To enhance and archive the blueprint understanding, we comple-
ment the visualization with fine-grained logs and annotations asso-
ciated with tools and their interactions.
Access to the logging model.When generating a blueprint from
logs, we maintain a mapping between the visual element (e.g., an
interaction) and the logs from which it was materialized. Combined
with the visual elements, these logs enable fine-grained compre-
hension of the actions performed by developers.

For example, in Figure 3 we know from the blueprint that the
developer installed a breakpoint. When we select the +b symbol in
the tooltip, an inspector opens on the log from which that visual
element was materialized. In Figure 4, we can observe an excerpt
of the inspected breakpoint installed in Figure 3. We then obtain
the knowledge that the developer put a breakpoint on the method
personName of a class OCDPerson, and more specifically on the line
that returns the person’s name (the node element in Figure 4).
Annotations. To save the knowledge acquired when exploring a
blueprint, each tool (i.e., color boxes) and each interaction block

3
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Figure 4: Excerpt of a breakpoint log example.

(i.e., inner grey boxes) can be annotated with texts that persist in
the blueprint model. To do so, we need to select a tool or a tool
interaction and add an annotation in the pane that opens (Figure 5).

Figure 5: An interaction (in red) with an annotation.

4 EXPERIMENTAL DESIGN AND RESULTS
We performed an exploratory experiment with three participants to
study how the debugging activity blueprint can help in understand-
ing how developers debug. We simulate a between-participant ex-
periment for the experimentation of a debugger extension (namely,
an object-centric debugger [25]) by giving developers real debug-
ging tasks, one for which they do not use the debugger extension
and the others for which they use it. The goal of the experiment
is not to study the impact of the object-centric debugger but to
explore the visualization’s potential for understanding debugging
activities and especially the impact a debugger may have.
Study settings. We asked three participants of different profiles
and experiences (see Table 2) to perform a set of debugging tasks
in Pharo. The tasks are composed of one control task and one
treatment task. In both tasks, we ask participants to solve a bug.
During the control task, participants use the standard debugging
tools available in Pharo. During the treatment task, participants
use an object-centric debugger [25].

We configured the environment to import the debugging tasks
and record participants’ actions required to generate the visualiza-
tion. Participants never leave the Pharo IDE as the experimental
framework with the task descriptions is included in Pharo. Par-
ticipants record their screens but do not follow any protocol to
comment on what they are doing, e.g., they do not think aloud.
Participants. Table 2 details the participant’s profiles. Participants
are one associate professor with a 10-year-long industry experience
in software development (SD), one computer science PhD student
with 4 years of SD experience, and one engineering intern with 4
years of SD experience. All participants were either familiar with
or already heard of the additional tool used in the treatment task.
All participants are proficient with Pharo tools and are Pharo prac-
titioners, in particular, they are used to debug with Pharo. In the
following, participants are referred to as users.

Alias Soft. dev. experience Position
User-A 4 years Engineering intern
User-I 4 years PhD student
User-V > 10 years Associate professor
Table 2: Participants: three Pharo practitioners.

Debugging tools. Participants used two kinds of tools during the ex-
periment. During control tasks, they use the standard tools available
in Pharo and described in Section 2. During treatment tasks, partic-
ipants use the standard tools complemented by an object-centric
debugger. This debugger provides breakpoints that automatically
scope to specific objects without the need to write conditionals.
Tasks. The tasks assigned to participants are named Atom and
Reflectivity. The Atom task consists in solving a bug in a small
graphical application composed of colored squares named atoms.
The Reflectivity task consists in fixing a unit test of Reflectiv-
ity [7], the reflective layer of Pharo. For each task, participants have
to provide a fix and an explanation for the bug.

Tasks are randomly assigned to users in one of the two sequences
detailed in Table 3. The first tasks (1) are always used as control,
while the other task (2) are always using the treatment (i.e., the
object-centric debugger).

Sequence Task 1 Task 2
1 Atom Reflectivity
2 Reflectivity Atom

Table 3: Tasks sequences.

Results. Table 4 shows for each task the time taken by participants
to complete the task and if participants fixed the task’s bug. All
participants fixed the two bugs. On the measured times we can
observe the following:

• User-A (novice) spent as much time solving the control task
(Atom) and the treatment task (Reflectivity).

• User-I (novice) spent about twice the time on the control
task (Atom) compared to the treatment task (Reflectivity).

• User-I (novice) spent about the same time solving the Re-
flectivity task as treatment as User-V (expert) did for the
same task as control.

• User-V (expert) spent aboutmore time solving the treatment
task (Atom) than the control task (Reflectivity).

These observations, if repeated with many participants, might pro-
vide statistical evidence that the treatment tool has or has not an
effect on the debugging efficiency of the participants. However, such
quantitative evaluation cannot help us to understand the mecha-
nisms at play in the observed effects. In the next section, we use the
Debugging Activity Blueprint to study the participants’ debugging
behavior during these tasks.

5 VISUALIZING DEBUGGING ACTIVITIES
In this section, we study the blueprints of the debugging activities
extracted from the participations to our experiment. Figures 6, 7
and 8 respectively show the debugging activity blueprints of partic-
ipants User-A, User-I, and User-V for their control and treatment

4
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Alias Tasks (in order) Time (in min) Bug fixed
User-A (C) Atom 36’49 yes

(T) Reflectivity 37’08 yes
User-I (C) Atom 43’58 yes

(T) Reflectivity 20’47 yes
User-V (C) Reflectivity 20’54 yes

(T) Atom 33’41 yes
Table 4: Results of the experiment for each task, by user.
Data is computed from the logs. The times are displayed
in minutes with seconds (i.e., 1’15 = one minute and fifteen
seconds). (C) = control task, (T) = treatment task.

tasks. These figures have been manually annotated. We report
notable observable instances of similar tool interactions that we
categorize into a visual vocabulary. We use this vocabulary to do
a summary analysis of each participant’s debugging session. We
discover that our vocabulary could become patterns of debugging
that could be used for systematic analyses of debugging activity
blueprints. Finally, we analyze in detail a specific blueprint and
observe that our understanding of the debugging session from the
blueprint matches what happens in the corresponding video.

5.1 Visual Vocabulary
In this section, we define the debugging activity blueprint vocabu-
lary from what we observe in the visualizations from Figures 6, 7
and 8. We observe three kinds of recurring notable instances of tool
interactions and navigation: chains, hubs, and ping-pongs.
Chain. A chain is a single sequential flow going through three
or more tools of any kind (including start and stop). The flow is
unidirectional, starts from any kind of tool, and may return or not to
its starting point. For example, a long chain of debuggers, manually
annotated C2, can be seen on the right side part of Figure 7.
Hub. A hub is a window with a notable concentration of activities,
from which other tools are navigated back and forth. Visually, a
hub appears central to the debugging activity and catches the eye.
The window is bigger and contains more activities than most of the
other navigated tools. For example, two hubs can be seen in the left
side task of Figure 8: a debugger (pink) and a code browser (green)
marked with h1 and h2.
Ping-pong. A ping-pong is a central window of one kind (e.g.,
a debugger) from which two or more tools (e.g., inspectors) are
navigated back and forth. The navigated tools have a unique activity,
with a unique incoming and outgoing flow from and to the central
windows. Figure 8, in the Atom Task, shows a ping-pong example
with a debugger as the central window and several other tools (six
inspectors, one code browser, and one debugger). A ping-pong is
marked with p1 in the figure.

5.2 Visualizations exploration
In this section, we use our vocabulary to explore the visualizations.
First, we describe the occurrences of the observable vocabulary
instances. Second, we interact with the live visualization to explore
the meaning of these instances in the context of each debugging
task.

5.2.1 Instances of vocabulary. We counted the number of occur-
rences of each vocabulary instance and reported the numbers in
Table 5. To count, we went over each visualization and looked for
all possible instances of one or more of our vocabulary definitions.
To simplify a possible check by the readers, Figures 6, 7 and 8
representing, both the control and the treatment tasks, have been
manually annotated after analysis.

User Chain Hub Ping-Pong

A (Fig. 6) C 9
T 4

C 4
T 3

C 2
T 2

I (Fig. 7) C 8
T 4

C 5
T 0

C 0
T 0

V (Fig. 8) C 10
T 3

C 2
T 1

C 2
T 1

Table 5: Instance count of each vocabulary element by user,
for their control (C) task visualization and their treatment
(T) task visualizations.

First observations lead to the conclusion that these patterns are
independent of the task, the user, and the type of used debugger.
Indeed, vocabulary instances are observed multiple times for each
user, and in each task except the treatment task of User-I for which
we observe no hubs and no ping-pongs. We therefore hypothesize
that our vocabulary may actually represent patterns, i.e., “recurring
solutions to standard problems.” [26].

The visualizations in the scope of the current work are insuffi-
cient to conclude about such patterns. Broader experiments should
be conducted to empirically explore these pattern meanings. How-
ever, before this experiment, it was very difficult for us to explain
or decompose a debugging session. The debugging activity blue-
print allowed us to observe these possible patterns and formulate
a hypothesis about them. More targeted use cases or case studies
using the blueprint could help researchers observe oddities, leading
to new patterns, in the ways developers use their debuggers and
interact with their IDE when debugging. From such observations,
we can then formulate new hypotheses to explore in real empirical
evaluations and learn more about debugging sessions.

5.2.2 Summary analysis of the debugging sessions. Considering
User-A (Figure 6), the debugging activity blueprint enables us to
observe that the debugging sessions for the control and the treat-
ment tasks seem to share some properties: no apparent structure
is obvious, and there are multiple instances of many tools. These
sessions are long and complex in terms of tool interaction.

Considering User-I (Figure 7), the debugging activity blueprint
enables us to observe that the control and the treatment tasks seem
significantly different. The debugging session of the treatment task
is simpler, relatively sequential, and without any hub or ping-pong.
On the opposite, the control task looks like the debugging sessions
of User-A.

Considering User-V (Figure 8), the debugging activity blueprint
shows that the debugging session for the control task looks like
those of the two other participants even if User-V is an expert. This
visualization has hubs, ping-pongs, and chains. His control task is
nevertheless simpler implying that experience has an impact. In
addition as for User-I, the debugging session for User-V’s treatment
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Figure 6: User-A (novice): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.

task is simpler compared to both his control task and the ones of
the two other participants.

We do not consider these three participants as representative.
Still, the debugging activity blueprint encourages us to think that
(i) with traditional debuggers, whatever the experience of the user,
the debugging sessions reflects the complexity of the task, (ii) using

an object-centric debugger may have positive incidences (not only
in terms of time) on the debugging session; (iii) the object-centric
can differently simplify a debugging session and (iv) some patterns
appear in the debugging sessions whatever the used debugger,
object-centric or not.
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Further investigations are needed, for example, to understand
the impact of using the object-centric debugger. We have three
participants, for one, using such a debugger seems to have no
incidence, for the two others it seems it has, by simplifying, but the
blueprints are different. We were completely in the dark without the
debugging activity blueprint. Now, we have a tool to analyze better
and understand debugging sessions. New questions arise such as: (i)
are the debugging sessions with traditional tools always so complex
and not fluid? (ii) does using an object-centric debugger or more
generally, a specific debugger simplify and fluidize a debugging
session? (iii) does the nature of the task influence the debugging
session? (iv) does the expertise of a participant on a project influence
a debugging session more than using a specific debugging tool?
and so on. With the debugging activity blueprint, new perspectives
are opened to understand debugging sessions.

5.2.3 Focus: fine-grained analysis of a debugging session. In the fol-
lowing, we detail the debugging session of User-I on their treatment
task (Figure 7). We chose this particular visualization because it is
radically different from all others. This visualization corresponds
to a session where User-I, a novice developer, uses an additional
tool named object-centric debugger. User-I finished the task (i.e., cor-
rectly fixed the bug) in about 21 minutes. User-V (expert, Figure 8)
finishes the same task also in 21 minutes but without the additional
tool (i.e., in control). User-I’s treatment visualization is simple, has
no hubs, no ping-pongs, but only chains, and the time to finish the
task matches the expert’s performance. This is not the case for the
novice User-A (Figure 6) on the same task as treatment.
Methodology. We used the live visualization side-by-side with the
video recording of User-I’s treatment task. We used the interactive
flow of the visualization to track User-I’s navigation through dif-
ferent activities, the interaction popups to observe the performed
actions (e.g., debugger steps), and the detailed actions in the logs
associated with each activity to understand the semantics of the
performed actions. When we had doubts about interpreting the
visualization, we looked at the video recording and investigated
both side-by-side. Throughout this analysis, we manually anno-
tated the visualization (see Figure 7 in treatment) with numbers
representing the important steps of the debugging session and we
described our understanding of these steps in the blueprint using
its annotation tool. Finally, after finishing the analysis we watched
the entire video recording with our notes and the visualization and
compared.
Fine-grained analysis results.The participant started the task and
reached the task application window, where the task was described.
This analysis is consistent with the screen recording of User-I. Steps
listed below are indicated in the blueprint (Figure 7, right side).

(1) The user spent under a minute reading before moving on to
the class mentioned in the task description and accessing
the code browser.

(2) The user executed the unit test pointed out by the task
description, which failed and opened a debugger.

(3) In the opened debugger, the user inspected the failure con-
text and the objects within, in multiple activities in the same
debugger window. They performed no actions other than
inspecting the execution state for about a minute. They

then left the debugger and went back to the central code
browser.

(4) (a) The user put a breakpoint at the beginning of the unit
test and started debugging the test.

(b) The user stepped a few times to dive into the code exe-
cution and carefully inspected objects in their context
within the debugger. Then, the user opened a specific
inspector window on one of these objects.

(5) (a) The user performed two inspection activities within
the same inspector window. They navigated two dif-
ferent panes, one showing an object and its properties
and the other showing the details of the selected prop-
erties. They navigated and inspected the properties
of the object inspected from 4. They opened a new
inspector window on one of these objects.

(b) The user briefly inspected the newly opened object,
then left the inspector to get back to the debugger.

(6) (a) Based on their previous observation, the user selected
a set object in the debugger on which they placed two
object-centric breakpoints on methods used to add ele-
ments to sets (Set»#add: and Set»#addIfNotPresent-
:ifPresentDo:). They proceeded with the execution,
which hit a first breakpoint in the same control flow
(i.e., in the same debugger).

(b) The user performed inspection activities until proceed-
ing with the execution again, which hit the breakpoint
again.

(c) The user proceeded through a chain of four object-
centric breakpoint hits (chain 2), which ended up in
the last debugger of the chain.

(d) Arrived in this debugger from four object-centric break-
point hits, the user removed their breakpoints and per-
formed careful inspections of the execution context
and its objects within the same debugger. They finally
closed the debugger and went back to the central code
browser.

(7) (a) In the central code browser, the user debugged the test
again and restarted the process.

(b) In the debugger, the user precisely stepped and looked
for a particular object (a set) on which they put again
an object-centric breakpoint. However, this time they
only put it on the add: message. They proceeded and
the breakpoint hit, opening a new debugger. This break-
point was reached in under a minute.

(c) For 2 minutes, the user inspected the breakpoint con-
text in two debugger activities. They did not seem to
find what they were looking for and ended up proceed-
ing and hitting the breakpoint again.

(d) The user inspected the newly opened debugger and
spent about 2 minutes inside in multiple activities,
inspecting objects and the code context. They made
multiple navigations to the task application window
where they wrote the correct answer that finished the
task.
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Figure 7: User-I (novice): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.

General conclusions. Our analysis of the blueprint matches accu-
rately what is observable in the video. Once annotated we can un-
derstand what is happening in the debugging session by reading the
blueprint alone. Video recordings were only needed to understand
some blueprint oddities, like small interactions in a tool without
any connections to other tools. The screen recordings showed that
participants sometimes left the tool’s window briefly (for less than
500ms) and then returned, causing these small interactions.

6 DISCUSSION
Concerning the visualization. The layout may have an incidence
on the comprehension of the visualization and possibly on the iden-
tification of patterns. To minimize the incidence of the layout, all
the visual elements of the visualization are manually draggable.

Moreover, the debugging activity blueprint is not a single visualiza-
tion but a richer tool enabling interactions and annotations, and
providing other views to complete the blueprint.

Debugging sessions are complex. Consequently, the visualization
cannot be completely simple, even if it provides an abstraction. In
particular, it was easy to analyze in detail the User-I Treatment
task and to realize that the visualization can completely replace
the video. However, for more complex sessions as the ones of the
control tasks, we need to see to what extent it can replace the video.

The debugging activity blueprint enables the discovery of pat-
terns, which we graphically identified. Their semantics and implica-
tions need to be further investigated. On the opposite, we have not
studied the sequence of debugging activities that could have led to
the identification of other patterns, that not graphically emerged.
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Figure 8: User-V (expert): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.

Concerning the analysis of a debugging session. The debugging
activity blueprint opened doors concerning the analysis of debug-
ging sessions. For example, it seems that the use of object-centric
debuggers or perhaps more largely specific debuggers has an inci-
dence on the flow of debugging sessions. Similarly, we can study if
the experience of the users, their knowledge of the project to debug,
or whatever criteria have an incidence on the debugging session,
not only in terms of results (resolving the bug or not), or time, but
also in the flow of the activities inside the debugging session. We
have no answer yet, but we are convinced that now we have the
tool to better investigate debugging sessions.

7 THREATS TO VALIDITY
Conclusion validity. Since we used a small number of sessions, a
gap may exist between our observations and what would be found
in a representative and a large set of observations. The tasks given
to participants were debugging tasks, and as such, we have not
studied micro-debugging activities that may occur when adding a
new software feature.
Construct validity. Debugging tasks were conducted using the
Pharo programming language. As such, the patterns we discovered
may be intimately related to Pharo.

Color blindness. Depending on the population, color blindness
affects about 8% of the population of men. The most common form
of color blindness is the red-green color vision deficiency. We used
an online simulator1 to verify if visual cues due to our coloring
remain perceivable in the presence of the red-green color vision
deficiency. The simulator indicates that the visual cues are perfectly
distinguishable for the red-weak (Protanomaly) and green-weak
(Deuteranomaly) visual deficiency.
Visualization correctness.An important premise of our exploratory
experiment is that the visualization accurately represents what hap-
pens in a real debugging session. We do not formally prove that this
is the case, however, we tame this problem by manually comparing
logs and our blueprint analyses with screen recordings.

First, we analyzed the raw logs of the six studied debugging
sessions and compared them to their associated screen recordings.
For each session, we took samples of the screen recording and
we compared what was visually happening in the video to the
logs of events happening at the same time. The events in the logs
always matched the screen recordings. In the scope of this paper, we
therefore consider that the logs represent the debugging sessions
with enough precision for our exploratory experiment.

1https://www.color-blindness.com/coblis-color-blindness-simulator/

9

https://www.color-blindness.com/coblis-color-blindness-simulator/


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Author et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Second, our detailed analysis of Figure 7 (treatment part) shows
that the blueprint represents a developer activity that matches what
happened in the entire debug session shown in the screen recording.
This improves our trust in the blueprint accuracy although we did
not do this detailed analysis for all the blueprints.

8 RELATEDWORKS
A common approach to opening up new research paths for improv-
ing the development and debugging process is to collect data on how
developers interact with their environment while performing de-
velopment and debugging activities. There are different approaches
to collecting data on developers’ needs and interactions.
Collecting data through observations or interviews. Fontana
and Petrillo [12] mapped breakpoints available to developers from
the literature and their observations of existing debuggers. Al-
though they performed an analysis of developers’ understanding
of these breakpoints, this contribution does not provide insight
into how the breakpoints are employed in practice. Baltes et al. and
Alaboudi and LaToza [1–3, 5] observed and analyzed developers’
actions while debugging, using live observations, or video and au-
dio records. Through interviews with professional engineers from
Microsoft, Layman et al. [17] highlighted how practitioners use
information and tools to debug. Similarly, Alaboudi and Latoza [4]
interviewed 11 professional developers and observed that they fre-
quently switched debugging activities after a minute. Although
these studies provide essential information for understanding the
behavior adopted by developers when debugging programs, this
mode of analysis is not scalable and seems limited to orders of
magnitude between 8 and 77 according to the summary of prior
studies from [17] or about 30 hours of activity [2].
Collecting data through event logs. Another approach to study-
ing debugging activity is by collecting and aggregating log data.
The Mylar Monitor [20] records fine-grained events on the Eclipse
IDE, i.e. window events, selections, periods of inactivity, com-
mands invoked throughmenus or key-binding, etc. Similarly, Rabbit
Eclipse [13], FeedBaG [24], and The ProM [27] enable the analysis
of the sequence of debugging events or actions performed by de-
velopers within an IDE, such as the most used commands and the
interactions of these commands with files edited by developers.
The last presented tools focus on the Eclipse IDE [13, 20] and the
Microsoft Visual Studio IDE [24, 27]. The approach of collecting
usage data from the IDE suffers a significant limitation. The amount
of data to analyze depends on the precision of the recorded actions
and the length of the debugging sessions. The more specific the ac-
tion recorded, i.e. low-level, such as mouse movements, the greater
the number of events generated.
Agregating log data with algorithms. Damevski et al. [8, 9] pro-
vide an automatic approach for identifying (using the MG-FSM
algorithm) and clustering developers’ usage patterns from logs of
Visual Studio IDE’s usage. The authors identified 20 different clus-
ters of usage patterns and found that developers are reluctant to use
conditional breakpoints when debugging. The Debugging Activity
Blueprint differs by offering visual support for understanding de-
velopers’ behavior, comparing debugging sessions, and eventually
identifying patterns.

Agregating log data with visualizations. For our contribution,
we record fine-grained data because we want to open up the possi-
bility of identifying the developers’ intent when using the different
parts of the programming environment. As Kovarova et al. [14] sug-
gest, we argue that aggregating the information extracted from de-
bugging sessions through visualization would help explore records
of developers’ activity while debugging. Swarm debugging[11, 21–
23] proposes a Method Call Graph, a Sequence Stack diagram, and a
list of Step Into or Breakpoint events for visualizing information ob-
tained during debugging sessions. Swarm debugging aims at sharing
information found on a given program during a debugging session
among several developers and therefore differs from The Debugging
Activity Blueprint which aims at helping researchers understand
how developers debug. DFLow [18, 19] is a visualization of object-
oriented program development sessions. The visualization focuses
on classes, methods, and related events, i.e. navigation or edition.
Whereas debugging and development are intricated activities, our
Debugging Activity Blueprint differs from DFlow by providing more
information on the debugging aspects and focusing first on the IDE
tools and their usage by developers rather than the source code.
Ferax [10] is a platform for recording developers’ activities inside
and outside the IDE and summarizing them into four views. The
Debugging Activity Blueprint does not provide information on de-
velopers’ activities outside the IDE. However, it offers more precise
data on interactions between IDE tools and allows one to inspect
tool-specific events.

9 CONCLUSION
Studying debugging activities is complex and challenging due to
the inherent difficulties in aggregating and interpreting data from
event logs. This complexity underscores the need formore empirical
evidence on how developers use debugging tools.

Our proposed debugging activity blueprint addresses this need
by offering a visual tool that aids in the detailed analysis and nav-
igation of events within a programming environment. The blue-
print encapsulates the interactions between debuggers and other
programming tools, effectively illustrating the flow of debugging
activities within an IDE.

Through an exploratory use case involving three participants
and two distinct debugging tasks, our blueprint has demonstrated
its utility in facilitating a fine-grained analysis of intricate debug-
ging scenarios. Furthermore, it opens several open questions in the
analysis of debugging sessions. This indicates the potential of our
approach to enhance the understanding of debugging practices and
support the development of more effective debugging tools. Further
research and validation with larger samples and diverse tasks are
recommended to confirm and extend these findings.
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