
HAL Id: hal-04699796
https://hal.science/hal-04699796

Submitted on 17 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Debugging Activity Blueprint
Valentin Bourcier, Alexandre Bergel, Anne Etien, Steven Costiou

To cite this version:
Valentin Bourcier, Alexandre Bergel, Anne Etien, Steven Costiou. Debugging Activity Blueprint. The
twelfth IEEE Working Conference on Software Visualization (VISSOFT 2024), Oct 2024, Flagstaff
(Arizona), United States. �hal-04699796�

https://hal.science/hal-04699796
https://hal.archives-ouvertes.fr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Debugging Activity Blueprint
Valentin Bourcier

valentin.bourcier@inria.fr
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL

Lille, France

Alexandre Bergel
alexandre.bergel@me.com

RelationalAI
Bern, Switzerland

Anne Etien
anne.etien@univ-lille.fr

Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL
Lille, France

Steven Costiou
steven.costiou@inria.fr

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL
Lille, France

ABSTRACT
Empirically analyzing debugging activity is notoriously difficult.
In particular, aggregating data (obtained from either observation
or event logging) to verify hypotheses on developers’ behavior is
known to be challenging. Overall, the difficulty of studying debug-
ging activities contributes to the need for more empirical evidence
on how practitioners use debuggers.

We propose debugging activity blueprint as a visual tool to ana-
lyze and navigate through all the events recorded in a programming
environment. Our blueprint is a polymetric view representing the
interaction between debuggers and other programming tools. Our
blueprint highlights the flow of a debugging activity across the
tools an IDE offers. An exploratory use case over three participants
and two debugging tasks indicates that our blueprint supports a
fine-grained analysis of complex debugging scenarios.

KEYWORDS
Debugging, Debugging behavior, IDE, visualization, polymetric
views

ACM Reference Format:
Valentin Bourcier, Alexandre Bergel, Anne Etien, and Steven Costiou. 2018.
Debugging Activity Blueprint. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Debugging is a crucial activity in software development that in-
volves identifying, analyzing, and removing bugs from a software
system. Despite its relevance, in today’s programming and soft-
ware development environments, we still need to understand how
practitioners use debuggers at a fine and coarse-grain level. Not
being able to characterize the behavior of programmers when de-
bugging may hamper the future development of debugging tools
and methodologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

For example, a debugging activity does not solely happen in a
debugger. Previous research efforts [15?] show that practitioners
navigate through the base source code of an application being
debugged. However, we still need to understand the developer
intent behind this phenomenon. Just as we need to provide answers,
correlated with the developer’s intent, to essential questions such as
What programming tools does a practitioner need when debugging?
orWhat information is important to a practitioner that is not provided
by a debugger?.
Considered problem. The problem addressed in this paper is how
to characterize a debugging activity? As far as we are aware of,
no tools or methodologies proposed by the academic community
allow to fully to grasp the intent behind developers’ debugging
actions. Our blueprint is a first step toward answering this question.
Contribution. This paper proposes debugging activity blueprint, a
multi-scale polymetric view [16] to visualize a debugging activity
conducted by a programmer. Our blueprint is built from a seamless
event logging of the programming environment and provides visual
support to analyze the behavior of themonitored debugging activity.
Our blueprint is multi-scale because it helps observe behavior at a
very fine grain (e.g., representing a sequence of debugging actions
like step into and step over) and at a coarse grain (e.g., moving
from one tool to another). Our blueprint is postmortem, meaning
that our visualization is built once the debugging activity is deemed
completed.
Evaluation.We have applied our blueprint to two different debug-
ging tasks performed by three participants. We were able to fully
understand and explain a complete session. We have identified a vi-
sual vocabulary from recurrent visual structures and new questions
raised about debugging activities.
Outline. The paper is structured as follows: Section 2 provides
the necessary background to our work. Section 3 describes our
debugging activity blueprint. Section 4 presents the case studies
and the results we obtained by applying our blueprint. Section 5
presents the visual vocabulary our blueprint defines and uses this
vocabulary in the case studies presented earlier. Section 6 discusses
relevant points of our approach. Section 7 summarizes the threats
to validity we identified. Section 8 discusses the work related to
our effort. Section 9 concludes and highlights our future work.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Author et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 BACKGROUND: PHARO PROGRAMMING
TOOLS

We applied our blueprint to debugging sessions monitored in the
Pharo programming environment [6]. As such, it is relevant to
give an overview of the programming tools commonly used with
a debugger since our blueprint visualizes the interaction between
these tools.
Inspector. An object in object-oriented programming consists of
values following the structure specified by the class of the object.
An inspector is a tool that shows the values of an object’s variables,
commonly referred as the dynamic state of that object. An object
inspector allows a practitioner to navigate through the graphs of
objects.
Code browser. In Pharo, the code browser is the main tool to view
and edit source code. One can execute code snippets or unit tests
from a code browser. A code browser also displays the breakpoints
associated with a line of code.
Debugger. This is the main tool used by Pharo developers to explore
and navigate the execution state of a program. The Pharo debugger
is similar to traditional debuggers structured along a method call
stack. It shows the current frame with the run-time values of its
defined variables, and the source code associated to that current
frame. In addition, Pharo’s debugger supports live methods edi-
tion, i.e., methods can be modified without requiring the running
program to be restarted.
Queries.One can query the Pharo system to answer questions about
the source code structure. Querying a simple method printOn:
signature lists (i) the implementations of the method printOn:
found in the system or (ii) existing methods that call printOn:.
Commonality between Pharo tools. Programming tools provided
by Pharo have a number of commonalities. First, one can have
multiple instances of each tool. It is common in a debugging activity
to have several debuggers opened at the same time. Pharo does not
impose any restriction on the number of instances of code browsers,
inspectors, queries, or debuggers one can use at the same time.

Second, all the tools can be opened and used at any given time.
For example, it is common for a practitioner to navigate or edit
code using a code browser and debug a given code snippet (which
has the effect of executing the snippet within a debugger).

Third, no programming tool dominates other tools, and all the
tools are equally accessible through a keyboard shortcut and con-
textual menu.
Differences with VSCode and Eclipse. Properties of the Pharo
tools contrast with tools offered by major programming environ-
ments, including VSCode and Eclipse. In these environments, the
source code dominates other tools since they are almost always
present as window tabs. One cannot open more than one debugger
at a given time. The enforced code editing phase vs execution phase
implies that one cannot arbitrarily open a debugger during code
editing. Pharo does not enforce tool dominance or restrict code
editing to a separate activity from program execution

3 DEBUGGING ACTIVITY BLUEPRINT
The debugging activity blueprint is a visualization that shows the
tools used by a developer during a debugging task. Our blueprint
displays the relationships between the tools and the activities per-
formed within these tools.

3.1 In a nutshell
The debugging activity blueprint is a post-mortem visualization rep-
resenting a debugging activity exercised by developers in the Pharo
development environment (or Pharo IDE). We refer to debugging
activity as a portion of a programming session in which a developer
mostly concentrates on fixing or understanding software behavior.

When debugging, every action performed by developers in the
Pharo IDE is recorded as a log. Once the debugging session is
deemed finished by the programmer, our visualization uses these
logs to represent the activities of developers in the debugging tools
from the IDE. Tool activities and their interactions are represented
in a structured fashion, as illustrated by Figure 1.

Query

Inspector
Application

Code
browser

Debugger

Activities

Figure 1: Debugging activity blueprint: tool activities and
interactions.

Representing Pharo tools. Our blueprint represents a Pharo tool
as a colored box. Figure 1 shows the different kinds of Pharo tools
available displayed by the blueprint with their interactions. The
color of the boxes indicates the kind of tool involved in the ac-
tivity. The blueprint uses the following arbitrary color encoding:
Debugger , Inspector , Query , Browser , Application (which
corresponds to the application being debugged).

Flow between tools. An arrow T → S between two boxes 𝑇 and
𝑆 indicates at least once transition that occurred between the tool
𝑇 to the tool 𝑆 . This transition means that the developer used 𝑇
during the debugging activity, and then switched to the tool 𝑆 . This
transition may happen several times during the debugging activity.

Note that our tool does not represent the liveness of the Pharo
tools. A transition T → S does not indicate that 𝑇 was removed
from the IDE or 𝑆 was opened. Instead, it simply means that the
user changed their focus to another tool. Tool opening or closing is
not represented in the blueprint.

Since each of the inspectors and the query forms a cycle with
the debugger, we deduce that the programmer temporarily moved
away from the debugger.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Debugging Activity Blueprint Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Interaction block.Within a given tool, developers typically per-
form several actions before switching to a different tool. We refer to
interaction block as an uninterrupted sequence of actions performed
in the same tool. A sequence of actions interrupted by switching
programming tools results in two interaction blocks. An interaction
block is represented as a smaller gray box located in a box. The
size of an interaction block reflects the number of actions performed
by developers. Many actions can be performed in the debugger, in-
cluding inspecting variables’ values, navigating in the method call
stack, adding new breakpoints, and stepping to the next instruction.

Figure 1 shows that all tools have one or several interaction
blocks. Interaction blocks within a tool are read in a sinistrodextral
fashion, i.e., left to right, top to bottom as in most Indo-European
natural languages. Figure 1 reveals that the programmer performed
many actions in the debuggers since the debugger contains 14
blocks, which means that the programmers move away from and
back to the debugger 13 times. Some debugger’s blocks are large,
indicating the programmer did many actions without leaving the
debugger (e.g., step into or step over). The query and inspectors
have a small block each, indicating that the programmer did not do
much with these tools.

3.2 Interactions
An interaction block is a linear sequence of actions. If at least one
debugging action related to the control flow or program counter (i.e.,
step-over, step-into, add a breakpoint, etc.) is among an interaction
block’s actions, then the interaction block has a thin black border
(i.e.,).

When moving the mouse over a user interaction, such as in
Figure 2, a tooltip appears showing the duration of the activity and
the debugging actions performed during this interaction.We encode
debugging actions into symbols to indicate the actions performed
during an interaction block. Table 1 shows the Pharo debugging
actions with their associated symbols.

Action Symbol Breakpoints Symbol
Over > Add +b
Into V Hit *b

Proceed P Remove -b

Table 1: Symbols for Debugging Actions and breakpoints.

Figure 2: Interactions.

The In symbol (see Figure 2) corresponds to inspections of code,
execution contexts, objects, etc. We do not consider inspections
as debugging actions but as exploration actions. Within the same

tool, developers may execute different exploration actions in dif-
ferent subtools. It is therefore common to have successive basic
interactions without leaving the tool. A classical example is the
inspection of an object: developers may dive into the object’s graph
from its instance variables, which may open sub-inspections or
trees of properties. This kind of tool’s inner interactions spawns
different basic interactions within a tool visualization.

Temporality is not explicitly represented in the blueprint. In-
stead, interactions offered by the blueprint are key to revealing
the different order of sequentiality of events. We visualize tempo-
rality using color highlighting. When pointing the mouse over an
interaction, the visualization highlights the previous interaction in
orange and the next interaction in red. We can see an example in
Figure 3. The mouse is moved over the fifth square of the debugger
(in pink). The developer was previously in the orange interaction
in the same debugger, before arriving at the current interaction. A
tooltip appears over the current interaction and shows the sequence
of actions performed by the developer. The developer inspected
(In) three elements of the debugger, then added a breakpoint (+b),
inspected two elements (In), resumed the execution (P) which hit a
breakpoint (*b). Just after the breakpoint hit, the developer moved
to the red interaction in the code browser at the left of the debugger.
We then interpret that the cause of moving to the code browser
was the breakpoint hit.

Figure 3: Temporality.

3.3 Exploration and annotation of blueprints
To enhance and archive the blueprint understanding, we comple-
ment the visualization with fine-grained logs and annotations asso-
ciated with tools and their interactions.
Access to the logging model.When generating a blueprint from
logs, we maintain a mapping between the visual element (e.g., an
interaction) and the logs from which it was materialized. Combined
with the visual elements, these logs enable fine-grained compre-
hension of the actions performed by developers.

For example, in Figure 3 we know from the blueprint that the
developer installed a breakpoint. When we select the +b symbol in
the tooltip, an inspector opens on the log from which that visual
element was materialized. In Figure 4, we can observe an excerpt
of the inspected breakpoint installed in Figure 3. We then obtain
the knowledge that the developer put a breakpoint on the method
personName of a class OCDPerson, and more specifically on the line
that returns the person’s name (the node element in Figure 4).
Annotations. To save the knowledge acquired when exploring a
blueprint, each tool (i.e., color boxes) and each interaction block

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Author et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 4: Excerpt of a breakpoint log example.

(i.e., inner grey boxes) can be annotated with texts that persist in
the blueprint model. To do so, we need to select a tool or a tool
interaction and add an annotation in the pane that opens (Figure 5).

Figure 5: An interaction (in red) with an annotation.

4 EXPERIMENTAL DESIGN AND RESULTS
We performed an exploratory experiment with three participants to
study how the debugging activity blueprint can help in understand-
ing how developers debug. We simulate a between-participant ex-
periment for the experimentation of a debugger extension (namely,
an object-centric debugger [25]) by giving developers real debug-
ging tasks, one for which they do not use the debugger extension
and the others for which they use it. The goal of the experiment
is not to study the impact of the object-centric debugger but to
explore the visualization’s potential for understanding debugging
activities and especially the impact a debugger may have.
Study settings. We asked three participants of different profiles
and experiences (see Table 2) to perform a set of debugging tasks
in Pharo. The tasks are composed of one control task and one
treatment task. In both tasks, we ask participants to solve a bug.
During the control task, participants use the standard debugging
tools available in Pharo. During the treatment task, participants
use an object-centric debugger [25].

We configured the environment to import the debugging tasks
and record participants’ actions required to generate the visualiza-
tion. Participants never leave the Pharo IDE as the experimental
framework with the task descriptions is included in Pharo. Par-
ticipants record their screens but do not follow any protocol to
comment on what they are doing, e.g., they do not think aloud.
Participants. Table 2 details the participant’s profiles. Participants
are one associate professor with a 10-year-long industry experience
in software development (SD), one computer science PhD student
with 4 years of SD experience, and one engineering intern with 4
years of SD experience. All participants were either familiar with
or already heard of the additional tool used in the treatment task.
All participants are proficient with Pharo tools and are Pharo prac-
titioners, in particular, they are used to debug with Pharo. In the
following, participants are referred to as users.

Alias Soft. dev. experience Position
User-A 4 years Engineering intern
User-I 4 years PhD student
User-V > 10 years Associate professor
Table 2: Participants: three Pharo practitioners.

Debugging tools. Participants used two kinds of tools during the ex-
periment. During control tasks, they use the standard tools available
in Pharo and described in Section 2. During treatment tasks, partic-
ipants use the standard tools complemented by an object-centric
debugger. This debugger provides breakpoints that automatically
scope to specific objects without the need to write conditionals.
Tasks. The tasks assigned to participants are named Atom and
Reflectivity. The Atom task consists in solving a bug in a small
graphical application composed of colored squares named atoms.
The Reflectivity task consists in fixing a unit test of Reflectiv-
ity [7], the reflective layer of Pharo. For each task, participants have
to provide a fix and an explanation for the bug.

Tasks are randomly assigned to users in one of the two sequences
detailed in Table 3. The first tasks (1) are always used as control,
while the other task (2) are always using the treatment (i.e., the
object-centric debugger).

Sequence Task 1 Task 2
1 Atom Reflectivity
2 Reflectivity Atom

Table 3: Tasks sequences.

Results. Table 4 shows for each task the time taken by participants
to complete the task and if participants fixed the task’s bug. All
participants fixed the two bugs. On the measured times we can
observe the following:

• User-A (novice) spent as much time solving the control task
(Atom) and the treatment task (Reflectivity).

• User-I (novice) spent about twice the time on the control
task (Atom) compared to the treatment task (Reflectivity).

• User-I (novice) spent about the same time solving the Re-
flectivity task as treatment as User-V (expert) did for the
same task as control.

• User-V (expert) spent aboutmore time solving the treatment
task (Atom) than the control task (Reflectivity).

These observations, if repeated with many participants, might pro-
vide statistical evidence that the treatment tool has or has not an
effect on the debugging efficiency of the participants. However, such
quantitative evaluation cannot help us to understand the mecha-
nisms at play in the observed effects. In the next section, we use the
Debugging Activity Blueprint to study the participants’ debugging
behavior during these tasks.

5 VISUALIZING DEBUGGING ACTIVITIES
In this section, we study the blueprints of the debugging activities
extracted from the participations to our experiment. Figures 6, 7
and 8 respectively show the debugging activity blueprints of partic-
ipants User-A, User-I, and User-V for their control and treatment

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Debugging Activity Blueprint Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Alias Tasks (in order) Time (in min) Bug fixed
User-A (C) Atom 36’49 yes

(T) Reflectivity 37’08 yes
User-I (C) Atom 43’58 yes

(T) Reflectivity 20’47 yes
User-V (C) Reflectivity 20’54 yes

(T) Atom 33’41 yes
Table 4: Results of the experiment for each task, by user.
Data is computed from the logs. The times are displayed
in minutes with seconds (i.e., 1’15 = one minute and fifteen
seconds). (C) = control task, (T) = treatment task.

tasks. These figures have been manually annotated. We report
notable observable instances of similar tool interactions that we
categorize into a visual vocabulary. We use this vocabulary to do
a summary analysis of each participant’s debugging session. We
discover that our vocabulary could become patterns of debugging
that could be used for systematic analyses of debugging activity
blueprints. Finally, we analyze in detail a specific blueprint and
observe that our understanding of the debugging session from the
blueprint matches what happens in the corresponding video.

5.1 Visual Vocabulary
In this section, we define the debugging activity blueprint vocabu-
lary from what we observe in the visualizations from Figures 6, 7
and 8. We observe three kinds of recurring notable instances of tool
interactions and navigation: chains, hubs, and ping-pongs.
Chain. A chain is a single sequential flow going through three
or more tools of any kind (including start and stop). The flow is
unidirectional, starts from any kind of tool, and may return or not to
its starting point. For example, a long chain of debuggers, manually
annotated C2, can be seen on the right side part of Figure 7.
Hub. A hub is a window with a notable concentration of activities,
from which other tools are navigated back and forth. Visually, a
hub appears central to the debugging activity and catches the eye.
The window is bigger and contains more activities than most of the
other navigated tools. For example, two hubs can be seen in the left
side task of Figure 8: a debugger (pink) and a code browser (green)
marked with h1 and h2.
Ping-pong. A ping-pong is a central window of one kind (e.g.,
a debugger) from which two or more tools (e.g., inspectors) are
navigated back and forth. The navigated tools have a unique activity,
with a unique incoming and outgoing flow from and to the central
windows. Figure 8, in the Atom Task, shows a ping-pong example
with a debugger as the central window and several other tools (six
inspectors, one code browser, and one debugger). A ping-pong is
marked with p1 in the figure.

5.2 Visualizations exploration
In this section, we use our vocabulary to explore the visualizations.
First, we describe the occurrences of the observable vocabulary
instances. Second, we interact with the live visualization to explore
the meaning of these instances in the context of each debugging
task.

5.2.1 Instances of vocabulary. We counted the number of occur-
rences of each vocabulary instance and reported the numbers in
Table 5. To count, we went over each visualization and looked for
all possible instances of one or more of our vocabulary definitions.
To simplify a possible check by the readers, Figures 6, 7 and 8
representing, both the control and the treatment tasks, have been
manually annotated after analysis.

User Chain Hub Ping-Pong

A (Fig. 6) C 9
T 4

C 4
T 3

C 2
T 2

I (Fig. 7) C 8
T 4

C 5
T 0

C 0
T 0

V (Fig. 8) C 10
T 3

C 2
T 1

C 2
T 1

Table 5: Instance count of each vocabulary element by user,
for their control (C) task visualization and their treatment
(T) task visualizations.

First observations lead to the conclusion that these patterns are
independent of the task, the user, and the type of used debugger.
Indeed, vocabulary instances are observed multiple times for each
user, and in each task except the treatment task of User-I for which
we observe no hubs and no ping-pongs. We therefore hypothesize
that our vocabulary may actually represent patterns, i.e., “recurring
solutions to standard problems.” [26].

The visualizations in the scope of the current work are insuffi-
cient to conclude about such patterns. Broader experiments should
be conducted to empirically explore these pattern meanings. How-
ever, before this experiment, it was very difficult for us to explain
or decompose a debugging session. The debugging activity blue-
print allowed us to observe these possible patterns and formulate
a hypothesis about them. More targeted use cases or case studies
using the blueprint could help researchers observe oddities, leading
to new patterns, in the ways developers use their debuggers and
interact with their IDE when debugging. From such observations,
we can then formulate new hypotheses to explore in real empirical
evaluations and learn more about debugging sessions.

5.2.2 Summary analysis of the debugging sessions. Considering
User-A (Figure 6), the debugging activity blueprint enables us to
observe that the debugging sessions for the control and the treat-
ment tasks seem to share some properties: no apparent structure
is obvious, and there are multiple instances of many tools. These
sessions are long and complex in terms of tool interaction.

Considering User-I (Figure 7), the debugging activity blueprint
enables us to observe that the control and the treatment tasks seem
significantly different. The debugging session of the treatment task
is simpler, relatively sequential, and without any hub or ping-pong.
On the opposite, the control task looks like the debugging sessions
of User-A.

Considering User-V (Figure 8), the debugging activity blueprint
shows that the debugging session for the control task looks like
those of the two other participants even if User-V is an expert. This
visualization has hubs, ping-pongs, and chains. His control task is
nevertheless simpler implying that experience has an impact. In
addition as for User-I, the debugging session for User-V’s treatment

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Author et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Help

c3

c1

c2

c7

c6
c4

c8

c5

c9

h1

h2

h3

h4

p1
p2

Control: Atom Task.

Help

c1

c2

c3

c4

h1

h2

h3

p1

p2

Treatment: Reflectivity Task.

Figure 6: User-A (novice): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.

task is simpler compared to both his control task and the ones of
the two other participants.

We do not consider these three participants as representative.
Still, the debugging activity blueprint encourages us to think that
(i) with traditional debuggers, whatever the experience of the user,
the debugging sessions reflects the complexity of the task, (ii) using

an object-centric debugger may have positive incidences (not only
in terms of time) on the debugging session; (iii) the object-centric
can differently simplify a debugging session and (iv) some patterns
appear in the debugging sessions whatever the used debugger,
object-centric or not.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Debugging Activity Blueprint Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Further investigations are needed, for example, to understand
the impact of using the object-centric debugger. We have three
participants, for one, using such a debugger seems to have no
incidence, for the two others it seems it has, by simplifying, but the
blueprints are different. We were completely in the dark without the
debugging activity blueprint. Now, we have a tool to analyze better
and understand debugging sessions. New questions arise such as: (i)
are the debugging sessions with traditional tools always so complex
and not fluid? (ii) does using an object-centric debugger or more
generally, a specific debugger simplify and fluidize a debugging
session? (iii) does the nature of the task influence the debugging
session? (iv) does the expertise of a participant on a project influence
a debugging session more than using a specific debugging tool?
and so on. With the debugging activity blueprint, new perspectives
are opened to understand debugging sessions.

5.2.3 Focus: fine-grained analysis of a debugging session. In the fol-
lowing, we detail the debugging session of User-I on their treatment
task (Figure 7). We chose this particular visualization because it is
radically different from all others. This visualization corresponds
to a session where User-I, a novice developer, uses an additional
tool named object-centric debugger. User-I finished the task (i.e., cor-
rectly fixed the bug) in about 21 minutes. User-V (expert, Figure 8)
finishes the same task also in 21 minutes but without the additional
tool (i.e., in control). User-I’s treatment visualization is simple, has
no hubs, no ping-pongs, but only chains, and the time to finish the
task matches the expert’s performance. This is not the case for the
novice User-A (Figure 6) on the same task as treatment.
Methodology. We used the live visualization side-by-side with the
video recording of User-I’s treatment task. We used the interactive
flow of the visualization to track User-I’s navigation through dif-
ferent activities, the interaction popups to observe the performed
actions (e.g., debugger steps), and the detailed actions in the logs
associated with each activity to understand the semantics of the
performed actions. When we had doubts about interpreting the
visualization, we looked at the video recording and investigated
both side-by-side. Throughout this analysis, we manually anno-
tated the visualization (see Figure 7 in treatment) with numbers
representing the important steps of the debugging session and we
described our understanding of these steps in the blueprint using
its annotation tool. Finally, after finishing the analysis we watched
the entire video recording with our notes and the visualization and
compared.
Fine-grained analysis results.The participant started the task and
reached the task application window, where the task was described.
This analysis is consistent with the screen recording of User-I. Steps
listed below are indicated in the blueprint (Figure 7, right side).

(1) The user spent under a minute reading before moving on to
the class mentioned in the task description and accessing
the code browser.

(2) The user executed the unit test pointed out by the task
description, which failed and opened a debugger.

(3) In the opened debugger, the user inspected the failure con-
text and the objects within, in multiple activities in the same
debugger window. They performed no actions other than
inspecting the execution state for about a minute. They

then left the debugger and went back to the central code
browser.

(4) (a) The user put a breakpoint at the beginning of the unit
test and started debugging the test.

(b) The user stepped a few times to dive into the code exe-
cution and carefully inspected objects in their context
within the debugger. Then, the user opened a specific
inspector window on one of these objects.

(5) (a) The user performed two inspection activities within
the same inspector window. They navigated two dif-
ferent panes, one showing an object and its properties
and the other showing the details of the selected prop-
erties. They navigated and inspected the properties
of the object inspected from 4. They opened a new
inspector window on one of these objects.

(b) The user briefly inspected the newly opened object,
then left the inspector to get back to the debugger.

(6) (a) Based on their previous observation, the user selected
a set object in the debugger on which they placed two
object-centric breakpoints on methods used to add ele-
ments to sets (Set»#add: and Set»#addIfNotPresent-
:ifPresentDo:). They proceeded with the execution,
which hit a first breakpoint in the same control flow
(i.e., in the same debugger).

(b) The user performed inspection activities until proceed-
ing with the execution again, which hit the breakpoint
again.

(c) The user proceeded through a chain of four object-
centric breakpoint hits (chain 2), which ended up in
the last debugger of the chain.

(d) Arrived in this debugger from four object-centric break-
point hits, the user removed their breakpoints and per-
formed careful inspections of the execution context
and its objects within the same debugger. They finally
closed the debugger and went back to the central code
browser.

(7) (a) In the central code browser, the user debugged the test
again and restarted the process.

(b) In the debugger, the user precisely stepped and looked
for a particular object (a set) on which they put again
an object-centric breakpoint. However, this time they
only put it on the add: message. They proceeded and
the breakpoint hit, opening a new debugger. This break-
point was reached in under a minute.

(c) For 2 minutes, the user inspected the breakpoint con-
text in two debugger activities. They did not seem to
find what they were looking for and ended up proceed-
ing and hitting the breakpoint again.

(d) The user inspected the newly opened debugger and
spent about 2 minutes inside in multiple activities,
inspecting objects and the code context. They made
multiple navigations to the task application window
where they wrote the correct answer that finished the
task.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Author et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Help

c1c5

c4

c7
c
8

c3 c2

c6

h1

h3

h2

h4

h5

Control: Atom Task.

Help

start

2

1

3

4

5

c2

c3

6

7

8 - end

4a

4b

5a
5b

6a

6b

6c

6d

7a

7b

7c

7d

c1

c4

Treatment: Reflectivity Task.
(Manually annotated after analysis)

Figure 7: User-I (novice): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.

General conclusions. Our analysis of the blueprint matches accu-
rately what is observable in the video. Once annotated we can un-
derstand what is happening in the debugging session by reading the
blueprint alone. Video recordings were only needed to understand
some blueprint oddities, like small interactions in a tool without
any connections to other tools. The screen recordings showed that
participants sometimes left the tool’s window briefly (for less than
500ms) and then returned, causing these small interactions.

6 DISCUSSION
Concerning the visualization. The layout may have an incidence
on the comprehension of the visualization and possibly on the iden-
tification of patterns. To minimize the incidence of the layout, all
the visual elements of the visualization are manually draggable.

Moreover, the debugging activity blueprint is not a single visualiza-
tion but a richer tool enabling interactions and annotations, and
providing other views to complete the blueprint.

Debugging sessions are complex. Consequently, the visualization
cannot be completely simple, even if it provides an abstraction. In
particular, it was easy to analyze in detail the User-I Treatment
task and to realize that the visualization can completely replace
the video. However, for more complex sessions as the ones of the
control tasks, we need to see to what extent it can replace the video.

The debugging activity blueprint enables the discovery of pat-
terns, which we graphically identified. Their semantics and implica-
tions need to be further investigated. On the opposite, we have not
studied the sequence of debugging activities that could have led to
the identification of other patterns, that not graphically emerged.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Debugging Activity Blueprint Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Help

c1

c5

c4
c3

c2

c7

c8
c9

c6

h1

h2

c1
0

p1

p2

Control: Reflectivity Task.

Help

h1

p1

c1

c2 c3

Treatment: Atom Task.

Figure 8: User-V (expert): visualization of debugging activities for control and treatment tasks. c = chain, h = hub, p = ping pong.

Concerning the analysis of a debugging session. The debugging
activity blueprint opened doors concerning the analysis of debug-
ging sessions. For example, it seems that the use of object-centric
debuggers or perhaps more largely specific debuggers has an inci-
dence on the flow of debugging sessions. Similarly, we can study if
the experience of the users, their knowledge of the project to debug,
or whatever criteria have an incidence on the debugging session,
not only in terms of results (resolving the bug or not), or time, but
also in the flow of the activities inside the debugging session. We
have no answer yet, but we are convinced that now we have the
tool to better investigate debugging sessions.

7 THREATS TO VALIDITY
Conclusion validity. Since we used a small number of sessions, a
gap may exist between our observations and what would be found
in a representative and a large set of observations. The tasks given
to participants were debugging tasks, and as such, we have not
studied micro-debugging activities that may occur when adding a
new software feature.
Construct validity. Debugging tasks were conducted using the
Pharo programming language. As such, the patterns we discovered
may be intimately related to Pharo.

Color blindness. Depending on the population, color blindness
affects about 8% of the population of men. The most common form
of color blindness is the red-green color vision deficiency. We used
an online simulator1 to verify if visual cues due to our coloring
remain perceivable in the presence of the red-green color vision
deficiency. The simulator indicates that the visual cues are perfectly
distinguishable for the red-weak (Protanomaly) and green-weak
(Deuteranomaly) visual deficiency.
Visualization correctness.An important premise of our exploratory
experiment is that the visualization accurately represents what hap-
pens in a real debugging session. We do not formally prove that this
is the case, however, we tame this problem by manually comparing
logs and our blueprint analyses with screen recordings.

First, we analyzed the raw logs of the six studied debugging
sessions and compared them to their associated screen recordings.
For each session, we took samples of the screen recording and
we compared what was visually happening in the video to the
logs of events happening at the same time. The events in the logs
always matched the screen recordings. In the scope of this paper, we
therefore consider that the logs represent the debugging sessions
with enough precision for our exploratory experiment.

1https://www.color-blindness.com/coblis-color-blindness-simulator/

9

https://www.color-blindness.com/coblis-color-blindness-simulator/

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Author et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Second, our detailed analysis of Figure 7 (treatment part) shows
that the blueprint represents a developer activity that matches what
happened in the entire debug session shown in the screen recording.
This improves our trust in the blueprint accuracy although we did
not do this detailed analysis for all the blueprints.

8 RELATEDWORKS
A common approach to opening up new research paths for improv-
ing the development and debugging process is to collect data on how
developers interact with their environment while performing de-
velopment and debugging activities. There are different approaches
to collecting data on developers’ needs and interactions.
Collecting data through observations or interviews. Fontana
and Petrillo [12] mapped breakpoints available to developers from
the literature and their observations of existing debuggers. Al-
though they performed an analysis of developers’ understanding
of these breakpoints, this contribution does not provide insight
into how the breakpoints are employed in practice. Baltes et al. and
Alaboudi and LaToza [1–3, 5] observed and analyzed developers’
actions while debugging, using live observations, or video and au-
dio records. Through interviews with professional engineers from
Microsoft, Layman et al. [17] highlighted how practitioners use
information and tools to debug. Similarly, Alaboudi and Latoza [4]
interviewed 11 professional developers and observed that they fre-
quently switched debugging activities after a minute. Although
these studies provide essential information for understanding the
behavior adopted by developers when debugging programs, this
mode of analysis is not scalable and seems limited to orders of
magnitude between 8 and 77 according to the summary of prior
studies from [17] or about 30 hours of activity [2].
Collecting data through event logs. Another approach to study-
ing debugging activity is by collecting and aggregating log data.
The Mylar Monitor [20] records fine-grained events on the Eclipse
IDE, i.e. window events, selections, periods of inactivity, com-
mands invoked throughmenus or key-binding, etc. Similarly, Rabbit
Eclipse [13], FeedBaG [24], and The ProM [27] enable the analysis
of the sequence of debugging events or actions performed by de-
velopers within an IDE, such as the most used commands and the
interactions of these commands with files edited by developers.
The last presented tools focus on the Eclipse IDE [13, 20] and the
Microsoft Visual Studio IDE [24, 27]. The approach of collecting
usage data from the IDE suffers a significant limitation. The amount
of data to analyze depends on the precision of the recorded actions
and the length of the debugging sessions. The more specific the ac-
tion recorded, i.e. low-level, such as mouse movements, the greater
the number of events generated.
Agregating log data with algorithms. Damevski et al. [8, 9] pro-
vide an automatic approach for identifying (using the MG-FSM
algorithm) and clustering developers’ usage patterns from logs of
Visual Studio IDE’s usage. The authors identified 20 different clus-
ters of usage patterns and found that developers are reluctant to use
conditional breakpoints when debugging. The Debugging Activity
Blueprint differs by offering visual support for understanding de-
velopers’ behavior, comparing debugging sessions, and eventually
identifying patterns.

Agregating log data with visualizations. For our contribution,
we record fine-grained data because we want to open up the possi-
bility of identifying the developers’ intent when using the different
parts of the programming environment. As Kovarova et al. [14] sug-
gest, we argue that aggregating the information extracted from de-
bugging sessions through visualization would help explore records
of developers’ activity while debugging. Swarm debugging[11, 21–
23] proposes a Method Call Graph, a Sequence Stack diagram, and a
list of Step Into or Breakpoint events for visualizing information ob-
tained during debugging sessions. Swarm debugging aims at sharing
information found on a given program during a debugging session
among several developers and therefore differs from The Debugging
Activity Blueprint which aims at helping researchers understand
how developers debug. DFLow [18, 19] is a visualization of object-
oriented program development sessions. The visualization focuses
on classes, methods, and related events, i.e. navigation or edition.
Whereas debugging and development are intricated activities, our
Debugging Activity Blueprint differs from DFlow by providing more
information on the debugging aspects and focusing first on the IDE
tools and their usage by developers rather than the source code.
Ferax [10] is a platform for recording developers’ activities inside
and outside the IDE and summarizing them into four views. The
Debugging Activity Blueprint does not provide information on de-
velopers’ activities outside the IDE. However, it offers more precise
data on interactions between IDE tools and allows one to inspect
tool-specific events.

9 CONCLUSION
Studying debugging activities is complex and challenging due to
the inherent difficulties in aggregating and interpreting data from
event logs. This complexity underscores the need formore empirical
evidence on how developers use debugging tools.

Our proposed debugging activity blueprint addresses this need
by offering a visual tool that aids in the detailed analysis and nav-
igation of events within a programming environment. The blue-
print encapsulates the interactions between debuggers and other
programming tools, effectively illustrating the flow of debugging
activities within an IDE.

Through an exploratory use case involving three participants
and two distinct debugging tasks, our blueprint has demonstrated
its utility in facilitating a fine-grained analysis of intricate debug-
ging scenarios. Furthermore, it opens several open questions in the
analysis of debugging sessions. This indicates the potential of our
approach to enhance the understanding of debugging practices and
support the development of more effective debugging tools. Further
research and validation with larger samples and diverse tasks are
recommended to confirm and extend these findings.

ACKNOWLEDGMENTS
This work was funded by the ANR JCJC OCRE Project (https://anr.
fr/Project-ANR-21-CE25-0004).

REFERENCES
[1] Abdulaziz Alaboudi and Thomas D LaToza. 2021. Edit-run behavior in pro-

gramming and debugging. In 2021 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE, 1–10.

10

https://anr.fr/Project-ANR-21-CE25-0004
https://anr.fr/Project-ANR-21-CE25-0004

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Debugging Activity Blueprint Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[2] Abdulaziz Alaboudi and Thomas D LaToza. 2021. An exploratory study of
debugging episodes. arXiv preprint arXiv:2105.02162 (2021).

[3] Abdulaziz Alaboudi and Thomas D LaToza. 2021. Rethinking Debugging and
Debuggers. In 12th Annual Workshop at the Intersection of PL and HCI.

[4] Abdulaziz Alaboudi and Thomas D. Latoza. 2023. What constitutes debugging?
An exploratory study of debugging episodes. Empirical Software Engineering 28
(2023), 1–34. https://api.semanticscholar.org/CorpusID:261662669

[5] Sebastian Baltes, Oliver Moseler, Fabian Beck, and Stephan Diehl. 2015. Navi-
gate, understand, communicate: How developers locate performance bugs. In
2015 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 1–10.

[6] Alexandre Bergel, Damien Cassou, Stéphane Ducasse, and Jannik Laval. 2013.
Deep Into Pharo. Square Bracket Associates. 420 pages. http://books.pharo.org/
deep-into-pharo/

[7] Steven Costiou, Vincent Aranega, and Marcus Denker. 2020. Sub-method, partial
behavioral reflection with Reflectivity: Looking back on 10 years of use. The
Art, Science, and Engineering of Programming 4, 3 (Feb. 2020). https://doi.org/10.
22152/programming-journal.org/2020/4/5

[8] Kostadin Damevski, Hui Chen, David C. Shepherd, and Lori L. Pollock. 2016.
Interactive Exploration of Developer Interaction Traces using a Hidden Markov
Model. 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR) (2016), 126–136. https://api.semanticscholar.org/CorpusID:12367713

[9] Kostadin Damevski, David C. Shepherd, Johannes Schneider, and Lori L. Pollock.
2017. Mining Sequences of Developer Interactions in Visual Studio for Usage
Smells. IEEE Transactions on Software Engineering 43 (2017), 359–371. https:
//api.semanticscholar.org/CorpusID:15000607

[10] Gabriele di Rosa, Andrea Mocci, and Marco D’Ambros. 2020. Visualizing In-
teraction Data Inside & Outside the IDE to Characterize Developer Productiv-
ity. 2020 Working Conference on Software Visualization (VISSOFT) (2020), 38–48.
https://api.semanticscholar.org/CorpusID:226292830

[11] Eduardo A. Fontana and Fabio Petrillo. 2019. Visualizing Sequences of Debug-
ging Sessions using Swarm Debugging. In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). 139–143. https://doi.org/10.1109/
ICPC.2019.00030

[12] Eduardo Andreetta Fontana and Fabio Petrillo. 2021. Mapping breakpoint types:
an exploratory study. In 2021 IEEE 21st International Conference on Software Qual-
ity, Reliability and Security (QRS). 1014–1023. https://doi.org/10.1109/QRS54544.
2021.00110

[13] Constantina Ioannou, Andrea Burattin, and Barbara Weber. 2018. Mining
Developers’ Workflows from IDE Usage. In CAiSE Workshops. https://api.
semanticscholar.org/CorpusID:46970864

[14] Alena Kovarova, Martin Konopka, Lukas Sekerak, and Pavol Navrat. 2016. Vi-
sualising Software Developers’ Activity Logs to Facilitate Explorative Analysis.
Acta Polytechnica Hungarica 13, 2 (2016).

[15] Juraj Kubelka, Romain Robbes, and Alexandre Bergel. 2018. The Road to Live
Programming: Insights from the Practice. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 1090–1101. https://doi.org/10.
1145/3180155.3180200

[16] Michele Lanza and Stéphane Ducasse. 2003. Polymetric Views—A Lightweight
Visual Approach to Reverse Engineering. Transactions on Software Engineering
(TSE) 29, 9 (Sept. 2003), 782–795. https://doi.org/10.1109/TSE.2003.1232284

[17] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert
Deline, and Gina Venolia. 2013. Debugging revisited: Toward understanding the
debugging needs of contemporary software developers. In Empirical Software
Engineering and Measurement, 2013 ACM/IEEE International Symposium on. IEEE,
383–392.

[18] R. Minelli, L. Baracchi, A. Mocci, and M. Lanza. 2014. Visual Storytelling of Devel-
opment Sessions. In 2014 IEEE International Conference on Software Maintenance
and Evolution. 416–420. https://doi.org/10.1109/ICSME.2014.65

[19] R. Minelli and M. Lanza. 2013. Visualizing the workflow of developers. In
2013 First IEEE Working Conference on Software Visualization (VISSOFT). 1–4.
https://doi.org/10.1109/VISSOFT.2013.6650531

[20] Gail C. Murphy, Mik Kersten, and Leah Findlater. 2006. How are Java software
developers using the Eclipse IDE? IEEE Softw. 23, 4 (July 2006), 76–83. https:
//doi.org/10.1109/MS.2006.105

[21] Fabio Petrillo, Yann-Gaël Guéhéneuc, Marcelo Pimenta, Carla Dal Sasso Freitas,
and Foutse Khomh. 2019. Swarm debugging: The collective intelligence on
interactive debugging. Journal of Systems and Software 153 (2019), 152–174.
https://doi.org/10.1016/j.jss.2019.04.028

[22] Fabio Petrillo, Guilherme Lacerda, Marcelo Pimenta, and Carla Freitas. 2015.
Visualizing interactive and shared debugging sessions. In 2015 IEEE 3rd Working
Conference on Software Visualization (VISSOFT). IEEE, 140–144.

[23] Fabio Petrillo, Zéphyrin Soh, Foutse Khomh, Marcelo Pimenta, Carla Freitas, and
Yann-Gaël Guéhéneuc. 2016. Towards Understanding Interactive Debugging. In
2016 IEEE International Conference on Software Quality, Reliability and Security
(QRS). 152–163. https://doi.org/10.1109/QRS.2016.27

[24] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams:
A General Dataset for Empirical Studies on In-IDE Activities of Software Develop-
ers. 2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR) (2018), 62–65. https://api.semanticscholar.org/CorpusID:30268042

[25] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. 2012. Object-Centric De-
bugging. In Proceeding of the 34rd international conference on Software engineering
(Zurich, Switzerland) (ICSE ’12). https://doi.org/10.1109/ICSE.2012.6227167

[26] Douglas C. Schmidt, Mohamed Fayad, and Ralph E. Johnson. 1996. Software
patterns. Commun. ACM 39, 10 (Oct. 1996), 37–39. https://doi.org/10.1145/
236156.236164

[27] Viktor Shynkarenko and Oleksandr K. Zhevaho. 2020. Development of a Toolkit
for Analyzing Software Debugging Processes Using the Constructive Approach.
EngRN: Computer Engineering (Topic) (2020). https://api.semanticscholar.org/
CorpusID:228928155

11

https://api.semanticscholar.org/CorpusID:261662669
http://books.pharo.org/deep-into-pharo/
http://books.pharo.org/deep-into-pharo/
https://doi.org/10.22152/programming-journal.org/2020/4/5
https://doi.org/10.22152/programming-journal.org/2020/4/5
https://api.semanticscholar.org/CorpusID:12367713
https://api.semanticscholar.org/CorpusID:15000607
https://api.semanticscholar.org/CorpusID:15000607
https://api.semanticscholar.org/CorpusID:226292830
https://doi.org/10.1109/ICPC.2019.00030
https://doi.org/10.1109/ICPC.2019.00030
https://doi.org/10.1109/QRS54544.2021.00110
https://doi.org/10.1109/QRS54544.2021.00110
https://api.semanticscholar.org/CorpusID:46970864
https://api.semanticscholar.org/CorpusID:46970864
https://doi.org/10.1145/3180155.3180200
https://doi.org/10.1145/3180155.3180200
https://doi.org/10.1109/TSE.2003.1232284
https://doi.org/10.1109/ICSME.2014.65
https://doi.org/10.1109/VISSOFT.2013.6650531
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1109/MS.2006.105
https://doi.org/10.1016/j.jss.2019.04.028
https://doi.org/10.1109/QRS.2016.27
https://api.semanticscholar.org/CorpusID:30268042
https://doi.org/10.1109/ICSE.2012.6227167
https://doi.org/10.1145/236156.236164
https://doi.org/10.1145/236156.236164
https://api.semanticscholar.org/CorpusID:228928155
https://api.semanticscholar.org/CorpusID:228928155

	Abstract
	1 Introduction
	2 Background: Pharo Programming Tools
	3 Debugging Activity Blueprint
	3.1 In a nutshell
	3.2 Interactions
	3.3 Exploration and annotation of blueprints

	4 Experimental design and results
	5 Visualizing debugging activities
	5.1 Visual Vocabulary
	5.2 Visualizations exploration

	6 Discussion
	7 Threats To Validity
	8 Related works
	9 Conclusion
	References

