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Abstract—Multifractal temporal dynamics in asset price time
series are well documented stylized facts, that however remained
univariate when multivariate (basket) properties are critical in
financial applications, and for long enough samples only. This is
due to a lack of theoretical and practical tools for multivariate
multifractal analysis, and tools that can be used on short sample
sizes. Recently, multivariate wavelet-leader multifractal analysis
has been grounded theoretically and the corresponding Bayesian
estimation framework developed. Elaborating on preliminary
attempts, the Bayesian multivariate multifractal formalism is
used to perform a short-term sliding window analysis of the cross-
temporal dynamics for 17 years of exchange rates. Results suggest
solid and reproducible organized bursts of co-volatilities with
temporal dynamics mainly driven by the same clock worldwide.

I. INTRODUCTION

Context. Accurately characterising the temporal and cross-
temporal dynamics between asset prices has important impli-
cations for the financial industry, ranging from risk assess-
ment to forecasting [1], [2]. It has been well-documented
that financial time series are well modeled by multifractal
dynamics [3]–[7]. Scalefree analyses remained however so far
conducted in univariate settings for long enough sample size,
mostly because of a lack in theoretically grounded practical
tools that permit multivariate multifractal analyses of short
duration samples. The questions of the existence and interest
of multifractal cross temporal dynamics and of their evolution
along time, using Bayesian multivariate multifractal analysis,
constitute the heart of the present work. These are addressed
by studying a basket of exchange rates, for 17 years.
Related work. After Mandelbrot’s seminal works [3], numer-
ous contributions supported scalefree temporal dynamics in
financial time series, yet with no significant information in
autocorrelation functions. This called for multifractal analysis
for a richer characterisation of temporal dynamics beyond
second-order statistics, that mostly converged toward model-
ing financial time series as subordinated Brownian motions,
B(A(t)), where the random process A(t) has multifractal
properties that can be understood as modulating the course of

time and thus controlling volatility burstiness [5]–[7]. These
analyses remained however so far mostly conducted in univari-
ate settings only (except in [7]) and for long enough sample
size, by lack of theoretical multivariate multifractal theory
and because of difficulties in multifractal parameter estima-
tion. Elaborating on [8], a wavelet leader based multivariate
multifractal theory was recently devised [9], [10]. Recently
applied to a large size sample of a basket of exchange rate time
series, it showed rich multifractal cross-temporal dynamics,
with the joint occurrence of local transient structures in co-
organized spatial patterns, and thus calling for further inves-
tigations [11]. In the same time frame, Bayesian estimation
frameworks, first univariate [12] and then multivariate [13],
[14] were devised, that permit the analysis of short sample size
by improving estimation performance compared to classical
linear regressions commonly used in multifractal analysis.
Combining these recent advances paves the way for short time
sliding window longitudinal multivariate multifractal analyses,
the core contribution of the present work.
Goals, contributions and outline. The goal of this work is to
perform a longitudinal study of the foreign exchange (forex)
market, along 17 years (2005-2021), of the joint cross temporal
dynamics of six major currency exchange rates, sampled at
intraday high frequency, using the recently proposed wavelet-
leader based Bayesian multivariate multifractal formalism. To
that end, Section II recalls the key elements of (multivariate)
multifractal analysis and details the key step of the Bayesian
formulation. Section III describes the set of exchange rates
studied here. Section IV compares the analysis of cross-
temporal dynamics in forex market assessed by second-order
statistics and classical linear correlations against the richer
characterization permitted by multivariate multifractal analy-
sis, in terms of co-burstiness in volatility and universal clock.

II. BAYESIAN MULTIVARIATE MULTIFRACTAL ANALYSIS

A. Multivariate multifractal analysis

Theory. Multivariate multifractal analysis jointly quantifies
the fluctuations along time of the pointwise regularities, com-



monly quantified by Hölder exponents hXr (t) ≥ 0, for a set of
signals X(t) = (X1(t), . . . , XM (t)) ∈ RM , t ∈ R. The M -
variate multifractal spectrum D(h1, . . . , hM ) of X , defined
as the collection of Hausdorff dimensions dimH of the sets
of points t with the same M -uplet of Hölder exponents h =
(h1, . . . , hM ), provides a global and geometrical description
of the temporal joint organization of these pointwise regularity
fluctuations of X . Interested readers are referred to [8]–[10],
[15] for more detailed introductions.
Practice. It has been well documented that multifractal anal-
ysis can be efficiently conducted practically using wavelet
leaders as relevant multiscale representations, see e.g., [9],
[10]. Let ψ denote the mother wavelet, a well time-frequency
localized oscillating pattern, characterized by its number of
vanishing moments Nψ defined as ∀n = 0,. . ., Nψ − 1,∫
R t

nψ(t)dt ≡ 0 and
∫
R t

Nψψ(t)dt 6= 0. The L1 normal-
ized discrete wavelet transform coefficients are defined by
dX(j, k) = 2−j〈ψ(2−j ·−k)|X(·)〉, see e.g., [16]. The wavelet
leaders of X are defined as LX(j, k) , supλ′⊂3λj,k |dX(λ′)|,
with λj,k = [k2j , (k + 1)2j) the dyadic interval of size 2j ,
and 3λj,k the union of λj,k with its 2 neighbors.

For simplicity, bivariate (M = 2) multifractal analysis only
is presented here, extension to M -variate cases are straightfor-
ward [8]–[10]. Let `X(j, k) , (lnLX1

(j, k), lnLX2
(j, k)) ∈

R2 denote the vector of bivariate log-leaders at scale j, and
the corresponding bivariate cumulants Cp1p2(j), p1 + p2 ≥ 1.

For large classes of multivariate multifractal processes,
the Cp1p2(j) evolve linearly across (the logarithm of the)
scales 2j , Cp1p2(j) = c0p1p2 + j cp1p2 ln 2, see e.g., [17]. The
coefficients of the scaling behaviors, cp1p2 critically define an
approximation of the bivariate multifractal spectrum:

D(h1, h2) ≈ 1 +
c02b

2

(
h1 − c10

b

)2

+
c20b

2

(
h2 − c01

b

)2

− c11b
(
h1 − c10

b

)(
h2 − c01

b

)
, (1)

where c20, c02 < 0, b , c20c02 − c211 ≥ 0 [18].
Multifractal correlation. While (c10, c20) (resp. (c01, c02))
characterize the multifractal properties of X1 (resp. X2),
c11 assesses cross-multifractality between X1 and X2, hence
cross-temporal dynamics not already captured by the classi-
cal inter-correlation function. Mimicking the classical linear
(Pearson) correlation coefficient, this leads to define

ρMF , − c11√
c20c02

, (2)

referred to as multifractal correlation, with a slight yet as-
sumed abuse, as this is quantifying cross-temporal dynamics
beyond second-order.

B. Bayesian estimation for joint multifractality parameters

Estimation. Efficiently estimating parameters (c20, c02, c11)
constitutes a major challenge in the practical use of (mul-
tivariate) multifractal analysis. Classically, estimation relies
on linear regressions of sample cumulants across scale j
and often suffer from large estimation variance, notably for

small sample size. Recently, a Bayesian estimation frame-
work was developed with much improved estimation per-
formance [13], [14]. Essentially, it relies on the assumption
that the centered version of the log-leaders `X(j, k), denoted
lX(j, k) = [lX1

(j, k), lX2
(j, k)]

T , is well-modeled as a Gaus-
sian random vector with point covariance matrix parameterized
by two 2 × 2 positive definite real-valued matrices Σ1 and
Σ2, i.e., lX(j, k) ∼ N (0,Σ1 ln 2−j + Σ2), where Σ1 ,

−
(
c20 c11
c11 c02

)
contains the parameters of interest.

Whittle approximation and data augmentation. To sim-
plify the inference model, a Whittle approximation permits
to diagonalize the known and fixed temporal covariance and
to factorize the joint distribution of the Fourier coefficients
zj = FIj (lX(j, ·)) [19], [20]. Operator FIj (·) computes
and vectorizes the discrete Fourier coefficients contained in
Ij = J−d√nj/2e + 1, d√nj/2eK \ {0} (Ja1, a2K denotes
the set of integers ranging from a1 to a2) with frequencies{
ωm = 2πm/

√
nj
}
m∈Ij

and d·e denotes the next largest in-
teger. Data augmentation is then used to introduce a complex-
valued vector of latent variables u ∈ C2M , which leads to the
augmented likelihood, p(z,u | Σ1,Σ2) ∝ p(z | u,Σ1)p(u |
Σ2). The vectors z and u have conditional distributions
z | u,Σ1 ∼ CN (u,Σ1⊗G1) and u | Σ2 ∼ CN (0,Σ2⊗G2),
where CN denotes the complex Gaussian distribution. The
matrices G1 and G2 are deterministic diagonal matrices that
subsume the covariance model in time. Thus, p(z,u | Σ1,Σ2)
consists of the product of complex Gaussian distributions with
covariance matrices Σ1 and Σ2.
Prior. The scaled inverse Wishart (SIW) prior uses a factor-
ization Σi , ∆iQi∆i with independent random matrices
Qi and ∆i to decouple estimation for the diagonal and off-
diagonal elements of Σi [21]. Specifically, Qi ∼ IW(νi,Λi),
and ∆i is a diagonal matrix with independent diagonal ele-
ments δir = [∆i]rr and δir ∼ LN (βir, α

2
ir), with LN the log-

normal distribution: p(Σi) = p(Qi)p(δi1)p(δi2), i ∈ {1, 2}.
Posterior. Using Bayes’ rule, the posterior distribution for Σ1,
Σ2 and the latent vector u, p(Σ1,Σ2,u | z) ∝ p(z,u, |
Σ1,Σ2)p(Σ1)p(Σ2), can be used to define the marginal
MMSE estimator Σ̂

MMSE
i , E [Σi | z,u], an approximation

of which is computed using Monte Carlo Markov chains.
Gibbs sampler. Samples {Σ(λ)

1 ,Σ
(λ)
2 ,u(λ)}Nmc

λ=1 are succes-
sively drawn from the conditional distributions:

Qi |∆i, z,u ∼ IW(νi + 2M,Λi + ∆−1i Φ̃i∆
−1
i ) (3)

δir ∼ f(δir) = p(δir | Qi, {δir′}r′ 6=r, z,u)(4)
Σi , ∆iQi∆i

u | z,Σ1,Σ2 ∼ CN (µ̃, Σ̃), (5)

with Φ̃1 = 2 Re(
∑M
s=1(zs − us)(zs − us)

Hg−11s ) and
Φ̃2 = 2 Re(

∑M
s=1 usu

H
s g
−1
2s ), gis = [Gi]ss, i = {1, 2}.

Σ̃ is a block diagonal matrix whose sth block is Σ̃s =[
(g1sΣ1)−1 + (g2sΣ2)−1

]−1
, and µ̃s = Σ̃s(g1sΣ1)−1zs.

f(δir) is not a standard distribution and is sampled using the



Figure 1. Foreign Exchange data. Left: Rates; Right: Returns. Arbitrarily
chosen 6-month window.

log-conditional distribution:

ln(f(δir)) =− (2M + 1) ln(δir)− [Q−1i ]rr[Φ̃i]rr(2δ
2
ir)
−1

− δ−1ir δ
−1
ir′ [Q−1i ]rr′ [Φ̃i]rr′

− (ln(δir)− βir)2/(2α2
ir) + constant.

Metropolis-Hastings random walks are used for sampling each
δir [21]. Finally, the MMSE estimator Σ̂

MMSE
i is approximated

as the average, after burn-in, of {Σ(λ)
i }

Nmc
λ=Nbi+1.

III. FOREIGN EXCHANGE RATES

The intraday (Ts = 5 min sampling period) exchange rates
used in this longitudinal study range from March 2005 to
November 2021 and comprises the Australian Dollar (AUD),
Canadian Dollar (CAD), Japanese Yen (JPY), Swiss Franc
(CHF), Euro (EUR) and British Pound (GBP), against the US
Dollar (USD). Bivariate analysis for the pair of rates XXX/USD
and YYY/USD will be simply referred to as XXX-YYY. Rates
and returns (increments) for these six couples of currencies
and for the chosen period are shown in Fig. 1

IV. CROSS-TEMPORAL DYNAMICS LONGITUDINAL STUDY

A. Longitudinal analysis set-up

Cross-temporal dynamics and multifractal parameters are
estimated within 6-month sliding windows, with 3-month time
shift. Wavelet analysis is performed using a least asymmetric
Daubechies wavelet with Nψ = 3 [22]. Bayesian estimation
is performed using SIW prior, with ∆i = I , νi = 4, and
(βir, α

2
ir) = (0.1, 1). Gibbs samplers produce Nmc = 2000

samples, after a burn-in of Nbi = 500 samples.

B. Linear Correlation

Pearson correlation coefficients. Naturally, the study of
(cross-)temporal dynamics must start with the second-order
statistics inter- and autocorrelation functions. It has been
abundantly documented that, for most asset return time series,
these functions are estimated close to 0 beyond lag 0 [23],
clearly indicating that second-order statistics based analysis
only suggest multivariate White noise type (cross)-temporal
dynamics. For instance, this was thoroughly demonstrated and
quantified in [11] for a global period of two years of exchange
rates using wavelet based multiscale statistics. The same
analysis (not reported here for space reasons) yield identical
conclusions for each of the 6-month windows analyzed here.

Figure 2. Time evolution of the linear (Pearson) correlation Coefficients.
Red and blue lines correspond to intra-group correlations, black line to inter-
groups correlations. See text for details.

Second-order statistics cross-temporal dynamics analysis
thus boils down to computing (Pearson) correlation coefficient
ρ between pairs of exchange rates, for each time window.
These ρs, for each of the 15 = 6×5/2 pairs of exchange rates,
are reported as functions of time, in Fig. 2. Disregarding colors
for the time being, Fig. 2 shows first that Pearson correlation
coefficients vary widely and rapidly along time and cover the
full accessible range of values (−1, 1).
Multidimensional scaling representations. To better un-
derstand the evolution of the dependence structure among
exchange rates, the matrix of ρs is transformed, independently
for each time window, into an affinity Matrix A, with entries
Am,m′ = exp(−(1−ρm,m′)2). Then, standard Kruskal’s nor-
malized stress multidimensional scaling (2D) representations
[24] are created and illustrated in Fig. 3. For the full 17-
year period (Fig. 3, top left), such a representation shows that
EUR, GBP and AUD are consistently close, while CHF, CAD
and JPY tend to form another group, though less close. The
presence of AUD in the first cluster reflects the anchoring of
most currencies to the USD rather than a direct relationship
between them [25]. In Fig. 2, the red (blue, resp.) lines
corresponds to ρs for all pairs among the first (second, resp.)
cluster, while black lines reports ρs for pairs of rates mixing
both groups. It shows intra-group correlations are essentially
positive while inter-group correlations are mostly negative.
This is thus indicating that groups are mostly gathering curren-
cies showing same variations with respect to the USD. Fig. 3
also shows multidimensional scaling plots for three different
6-month windows: During the European sovereign debt crisis
(2010-2012, Fig. 3 top right); the period when the Swiss
National Bank (SNB) set a minimum exchange rate of CHF
vs. EUR (2012-2014, Fig. 3 bottom left); the period including
the Brexit and Covid-19 pandemics (2016-2021, Fig. 3 bottom
left). The GBP’s departure from the main cluster following
Brexit is very clear. The position of the CHF with respect
to the main cluster is quite stable, even during the SNB’s
active exchange rate policy, while the positions of the CAD
and the JPY are more wandering. These observations are fully
consistent with the existence of local factors influencing the
dynamics of exchange rate movements [26]–[28].
Beyond linear correlations. All together, Fig. 3 show that
second-order based assessment of dependence in exchange



Figure 3. Similarities in cross-temporal dynamics assessed by linear
correlations by multidimensional scaling representations, for the 17-year
period (top left) and three chosen 6-month windows.

rates is extremely volatile and mostly captures a global and
static co-movement of currencies with USD, thus calling for
better assessment of cross-temporal dynamics, as permitted by
multifractal analysis.

C. Multifractal Correlation

Scaling range. The (Bayesian) multifractal analysis tools
applied here to each 6-month time window indicate, quite
remarkably for real-wold data, scalefree temporal dynamics
for scales ranging from 2j1 = 8 to 2j2 = 512, that is, from
' 40 min to ' 3 days, in agreement with the literature, see
e.g., [11]. This range of octaves is thus used to estimate c10
and c20 for the 6 exchange rates, and c11 and thus ρMF for
the 15 pairs, independently in each time windows.
Univariate multifractal analysis. Parameters c10 are esti-
mated consistently along time and for all currencies around
0.5, confirming a global multivariate white noise temporal dy-
namics. However, c20 departs significantly from 0, consistently
along time and for each exchange rate independently (Fig. 4),
confirming a solid and consistent multifractality in each ex-
change rate time series, and thus rich temporal dynamics in
terms of local transient structures occurring in well-organized
time patterns, often related to volatility burstiness [29]. This
is thus motivating the use of bivariate multifractal analysis to
assess rich cross-temporal dynamics beyond what can actually
be captured by second-order statistics.
Bivariate multifractal analysis. Fig. 5 reports the evolution
along time of ρMF for the 15 pairs of exchange rates.
Strikingly, it shows, disregarding colors for the time being,
that multifractal correlations are, for all time windows and
all pairs, only always significantly positive. This indicates
that multifractal correlation is capturing (all-order statistics)
dependencies in temporal dynamics of exchange rates that
totally differ from those assessed by second-order only, both
as functions of time and cross-section wise. Essentially, the
high positive level of ρMF suggest that all 6 exchange rates
share closely related temporal dynamics features. Notably,
burstiness and local transient structures occur for all currencies
with same structured temporal patterns, and jointly. This is

Figure 4. Time evolution of the multifractality parameter c20.

thus as if a universal clock was controlling the entire forex
market, in other words, as if the same process A(t) was used
to subordinate 6 different Brownian motions Bm(t).

Further, multidimensional scaling representations, computed
replacing the matrix Pearson linear correlations ρ by that
of multifractal correlations ρMF , are reported in Fig. 6,
for the global 17-year period and the same three 6-month
periods. It indicates that the temporal dynamics of western
country currency exchange rates (EUR, GBP, CHF and CAD)
are extremely intertwined, and this consistently along time
periods. The temporal dynamics of the Asia-Pacific country
exchange rates are less coordinated with those of western
countries, in accordance with the existence of second order
local factors driving the volatility of exchange rates [30]. This
is illustrated in complementary manner in Fig. 5 with red (resp.
blue) curves for pairs involving JPY (resp. AUD), showing
slightly lower multifractal correlations. Interestingly, Fig. 6
shows that, both during the European debts crisis (top right)
and CHF/EUR ceiling exchange rate period (bottom left), CHF
exhibits temporal dynamics in terms of volatility burstiness,
closely related to that of EUR and GBP, and this despite having
negative Pearson (linear) correlation. This means that despite
having opposite sign variations with respect to USD, EUR and
GBP, CHF undergoes actually the same sporadic increases and
bursts of volatility. CAD, that showed opposite variations to
USD compared to EUR or GBP, however also share closely
related burstiness in volatility. The converse is observed for
AUD, that showed same variations to USD compared to EUR
or GBP, yet with less tightly related volatility burstiness.
Finally and interestingly, Fig. 6 (bottom right) shows that
during the most recent period the cross-sectional dependencies
assessed by multifractal correlations are far less shuffled then
that quantified by linear correlation. All together, multifractal
correlations between JPY (or AUD) and the western currencies
are slightly lower after 2013, compared to before, potentially
suggesting a slightly decreasing integration of financial activ-
ities worldwide.

V. CONCLUSIONS AND PERSPECTIVES

In conclusions, the present work showed that multivariate
multifractal analysis permits to assess cross-temporal dynam-
ics by quantifying the jointly organized occurrence of local
transient structures, or coburstiness, beyond what is already



Figure 5. Time evolution of multifractal correlations ρMF . red and blue
lines correspond to pairs of forex rates involving respectively JPY and AUD.
See text for details.

Figure 6. Similarities in cross-temporal dynamics assessed by multifractal
correlations by multidimensional scaling representations, for the 17-year
period (top left) and three chosen 6-month windows.

captured by second-order statistics global dependencies. Mul-
tivariate multifractal analysis thus complements and enriches
with novel information cross-correlation analysis. Applied to
forex market to perform a longitudinal study, the present work
showed that multifractal correlations indicate integrated and
joint co-burstiness worldwide, with limited impact of signif-
icant international crises on the cross-sectional dependence
structure, while linear correlations essentially split currencies
in terms of groups with same global covariations against the
USD. The high multifractal correlations are also reminiscent of
a worldwide synchronizing clock that drives the forex market.

This work will be extended in several respects: Multivariate
beyond bivariate analyses will be explored on real world
data ; Other categories of financial assets, such as stock prices
or stock market indices, will be investigated. In an effort
toward reproducible research and open science, Matlab codes
implementing (Bayesian) multivariate multifractal analysis are
made publicly available1.
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