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Abstract—Joint diagonalization of collections of matrices,
i.e. the problem of finding a joint set of approximate eigenvectors,
is an important problem that appears in many applicative
contexts. It is commonly formulated as finding the minimizer,
over the set of all possible bases, for a certain non-convex
functional that measures the size of off-diagonal elements. Many
approaches have been studied in the literature, some of the most
popular ones working with approximations of this cost functional.
In this work, we deviate from this philosophy and instead propose
to directly attempt to find a minimizer making use of the gradient
and Hessian of the original functional. Our main contributions
are as follows. First, we design and study gradient descent
and conjugate gradient algorithms. Second, we show that the
intricate geometry of the functional makes it beneficial to change
basis at each iteration, leading to faster convergence. Third, we
conduct large sets of numerical experiments that indicate that
our proposed descent methods yield competitive results when
compared to popular methods such as WJDTE.

Index Terms—matrix diagonalization, simultaneous diagonal-
ization, joint eigen-decomposition, gradient descent, conjugate
gradient

I. INTRODUCTION

Context. Let A = {A1, . . . , AK} be collection of n×n real
matrices. The problem of finding a nonsingular matrix U that
approximately diagonalizes all matrices in A is known as Joint
Diagonalization (JD), and appears in numerous applications in
various fields such as blind source separation and independent
component analysis [1], [2], canonical polyadic decomposition
[3], [4], or multidimensional harmonic analysis [5], [6], to
name but a few. A common denominator in most works is the
desire to minimize the functional

fA(U) =
1

2

K∑
k=1

∑
i 6=j

∣∣(U−1AkU)ij
∣∣2 , (1)

defined for nonsingular matrices U . Throughout this work we
shall for simplicity assume A and U to be real, but our results
have a natural extension to the complex case.
Related work. Many different approaches have been stud-
ied for solving the Joint Diagonalization problem, (also known
as “Joint Eigen-Decomposition” or “Simultaneous Diagonal-
ization”), sometimes in combination with additional assump-
tions such as U−1 = U∗, which naturally appears if the matri-
ces Ak are self-adjoint. These approaches rely on, for instance,
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LU decompositions [7], optimization formulated on manifolds
[8]–[10], random methods [11], as well as approximations of
(1) [12], to name a few. This latter approach recently yielded
a fast algorithm, termed WJDTE, that leads to state-of-the-
art results, and will serve as our benchmark in this work.
Just like [12], our approach focuses on the unconstrained
case but does not require approximations. Instead, it relies
on finding critical points of (1) based on the computation of
its gradient, aided by the Hessian to pick suitable step-lengths.
The expression for the Hessian is to our best knowledge new,
whereas the gradient appears in earlier works such as [13].
However, these articles have been largely overlooked and, to
our knowledge, no operational and competitive gradient-based
method has been implemented or studied thoroughly.
Goals, contributions and outline. The present work aims
at filling this gap and proposes, as key novelties: 1) an
operational gradient descent algorithm and 2) an efficient
conjugate gradient algorithm for finding a local minimizer,
or at least a stationary point, of fA. More precisely, we first
give expressions for the gradient and Hessian of fA. Second,
we show that due to the intricate geometry of the highly non-
convex functional fA, a certain multiplicative change of basis
at each iteration is beneficial in order for good convergence
of related algorithms. Third, we design and study a gradient
descent algorithm, with an efficient Newton step-size selection
based on the Hessian (see Sec. II). Fourth, we detail and
implement a conjugate gradient method, which requires a non-
standard and novel update step due to the change of basis that
we discuss in detail (cf., Sec. III). Finally, in Sec. IV, we
provide a large set of numerical results that indicate that both
our gradient descent and conjugate gradient method lead to
better solutions than the state-of-the-art method WJDTE, and
that our conjugate gradient method is moreover competitive in
terms of computation time.

II. GRADIENT, HESSIAN AND CHANGE OF BASIS

A. Gradient and Hessian

We first compute the gradient and the Hessian of (1). Since
we are working over a linear vector space (of matrices), recall
that the gradient ∇fA evaluated at U is the matrix ∇fA|U
such that

fA(U + Z) = fA(U) + 〈∇fA|U , Z〉+ o(||Z||),



where the norm (and scalar product) refer to the Frobenius
norm and o(||Z||) denotes “little ordo”. Analogously, the
Hessian HA|U at the point U can be defined as the unique
symmetric linear operator, taking matrices into matrices, such
that the ordo term above can be written

1

2
〈Z,HA|U (Z)〉+ o(||Z||2).

The expressions for ∇fA|U and HA|U are given in Theorem
1, whose proof we postpone to a forthcoming paper for space
reasons.

Theorem 1: The gradient and Hessian of (1) are given by

∇fA|U =

K∑
k=1

(U−1)T
[
DT

k , (Dk � J)
]
, (2)

HA|U (Z) =

K∑
k=1

(U−1)T
([
DT

k , J � (DkU
−1Z)

]
+
[
J � (U−1ZDk), DT

k

]
+
[
ZT (U−1)T (J �Dk), DT

k

]
+ (J �Dk)

[
DT

k , Z
T (U−1)T

])
, (3)

where Dk , U−1AkU , [X,Y ] = XY − Y X is the matrix
commutator, J is the matrix with zeros on the diagonal and
ones elsewhere, and � denotes Hadamard-multiplication of
matrices.

B. Multiplicative basis change

A basic gradient descent algorithm starts with an initial
point U0 and then iteratively uses the gradient as search
direction to compute the next point as

Um+1 = Um − λm∇fA|Um
(4)

where λm > 0 is the step size parameter. In this setting the
matrix Um is updated additively, while not changing the initial
matrix tuple A. However, since

fA(UmV ) = fU−1
m AUm

(V )

we may instead consider computing the gradient of fU−1
m AUm

at the identity and update via

Um+1 = Um(I − λm∇fU−1
m AUm

|I).

Setting Ak,m = U−1m AkUm and writing Am for
{A1,m, . . . , AK,m}, this leads to the following scheme (with
A0 = A and initializing at U0 = I):

1) Given Am, compute Am+1 by setting

Ak,m+1 = (I − λm∇fAm
|I)−1Ak,m(I − λm∇fAm

|I)

2) Update Um according to

Um+1 = Um(I − λm∇fAm
|I). (5)

The above algorithm functions by a multiplicative update of
Um as opposed to an additive one. Multiplicative updates have
been used before in, e.g, [12], without deeper analysis or
comparison. Our numerical results suggest that this alternative
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Fig. 1. The objective function fA (1) for a random matrix tuple A of five
5×5 matrices plotted along the line I+λS where S = −∇fA|I/||∇fA|I ||.

increases performance by a large amount, in terms of conver-
gence speed. Moreover, the gradient (2) and the Hessian (3)
at the identity matrix U = I are cheaper to compute since no
matrix inverse needs to be computed. In Sec. III we will further
develop this idea into a “multiplicative” version of conjugate
gradient descent.

C. Non-convexity of fA

The functional fA is highly non-convex and its analysis is
intricate, see Fig. 1 for an example of how it can look in
the gradient direction. Why the multiplicative basis change
works better for all the algorithms we have evaluated remains
unclear theoretically, but possibly the basis change somehow
improves the local geometry of the graph. Empirically the
effect is substantial, see Sec. IV-B and Fig. 2.

The non-convexity also makes choosing step-size a delicate
matter. Given a fixed direction S at some point U , our
proposed strategy is to use the Hessian to find a reasonable
step size λ. Noting that fA(U + λS) approximately equals

fA(U) + λ〈∇fA|U , S〉+
1

2
λ2〈S,HA|U (S)〉,

and assuming that 〈S,HA|U (S)〉 > 0, we can minimize this
over λ to get

λ = − 〈∇fA|U , S〉
〈S,HA|U (S)〉

. (6)

However, there is no guarantee for the denominator to be
positive, leading to spurious objective function increase and
possible divergence. An alternative is to further study the
denominator 〈S,HA|U (S)〉 in (6) which after expanding and
simplifying can be written as

K∑
k=1

‖J � [Dk, U
−1S]‖2 + 2〈J �Dk, [U

−1S,U−1SDk]〉

By discarding the second term inside the sum above we obtain
a nonnegative Gauss-Newton approximation of the Hessian,



which leads to the following step-size method that can be used
in cases when (6) gives a negative answer:

λGN = − 〈∇fA|U , S〉
‖J � [Dk, U−1S]‖2

. (7)

Finally, since fA is nonconvex, care must be taken so that
the step-size does not become too large. A good step size
method will approximately minimize fA over the line U+λS.
The behavior of fA along such a line is quite peculiar, see
Fig. 1. However, we have the following result.

Theorem 2: fA(U + λS) has no singularity on the interval
0 ≤ λ < ‖U−1S‖−1.

Proof. Since the inverse (U+λS)−1 is present in the defin-
ing formula (1), fA(U + λS) will typically have poles at the
singularities of (U+λS)−1, which are precisely the reciprocal
of the non-zero eigenvalues of U−1S after change of sign.
Thus, the first singularity of fA(U + λS) will be at distance
1/ρ(U−1S) from the origin, where ρ(U−1S) is the spectral
radius of U−1S. Since we always have ρ(U−1S) ≤ ‖U−1S‖,
a lower bound on this first singularity is given by ‖U−1S‖−1
which can be used as a maximally allowed step size in order
to avoid hitting a singularity with the methods (6) or (7).

III. MULTIPLICATIVE CONJUGATE GRADIENT DESCENT

The standard gradient descent method has infamously slow
convergence. One possible improvement is to use the conjugate
gradient method instead. Armed with Theorem 1, and the step
size methods (6) and (7), the gradient descent is straightfor-
ward to implement. However, it becomes a bit unclear how to
interpret conjugate gradient descent in combination with the
everchanging basis, in the multiplicative update setting, which
we now discuss.

A. Multiplicative Conjugate Gradient

Recall that the idea of the conjugate gradient method
in the classical setting is to replace the gradient directions
−∇fA(Um) with search directions Sm and ensure that these
directions are orthogonal with respect to the inner product
induced by the Hessian operator (3)

〈Sm, HA|Um(Sm−1)〉 = 0, (8)

for all m. In the multiplicative update setting, we end up with a
curious situation where after the matrix tuple Am−1 is updated
to Am we are effectively at the point Um = I and are now
seeking to minimize the new functional fAm , where

Am = (I + λm−1Sm−1)−1Am−1(I + λm−1Sm−1). (9)

The above transformation of Am−1 corresponds to a change
of basis on the underlying matrix space we are optimizing
over, where objects V in step m − 1 get transformed by
(I+λm−1Sm−1)−1V . Thus, the old direction Sm−1 will, with
respect to the new tuple Am, correspond to

S̃m−1 , (I + λm−1Sm−1)−1Sm−1. (10)

We now take the new search direction Sm to be of the form

Sm = −∇fAm |I + βmS̃m−1. (11)

Inserting the above into the conjugate criterion (8), we obtain

0 = −〈∇fAm
|I , HAm

|I(S̃m−1)〉+βm〈S̃m−1, HAm
|I(S̃m−1)〉,

and thus we have the following formula for βm,

βm =
〈∇fAm |I , HAm |I(S̃m−1)〉
〈S̃m−1, HAm |I(S̃m−1)〉

. (12)

The proposed conjugate gradient descent method hence con-
sists of the following steps:

Initialization (m = 0): Set Sm−1 = −∇fA|I and
perform a gradient descent step.

1) Given Sm−1, Am and Um, compute S̃m−1 via (10).
2) Compute the new search direction Sm according to (11)

and (12).
3) Compute the step-size λm with (6) or, if negative, with

(7) (using A = Am, S = Sm and U = I).
4) Compute Am+1 via (9) (using m+ 1 in place of m).
5) Update the eigenvectors with

Um+1 = Um(I + λmSm).

6) Repeat steps 1-5 until convergence.
It should be noted that the conjugate gradient method is

only proven to converge when the optimization problem it
is applied on is (at least) convex. Nevertheless, conjugate
gradient methods are still frequently applied on non-convex
problems and, as we show in the next section, it works well on
the functional (1). However, when far from a local minimum,
it may happen that the Hessian is negative at a given step, and
hence there is no guarantee that the conjugate directions Sm

will even be descent directions. In this case one can simply
take the gradient as descent direction instead, which can be
achieved by setting β to 0 in the above algorithm when (12)
returns a negative number.

IV. NUMERICAL EXPERIMENTS AND RESULTS

Our proposed multiplicative gradient descent and conjugate
gradient algorithms for joint diagonalization will be denoted
JD-MG and JD-MCG, respectively.

A. Monte Carlo simulations

We study the performance of the proposed multiplicative up-
date descent algorithms by applying them to a large number of
realizations (NMC = 1000) of collections A = {A1, . . . , AK}
of K n×n matrices, to which centered white Gaussian noise
is added for several signal to noise ratios (SNR). Each matrix
Ak, k = 1, . . . ,K is constructed as Ak = Z∆kZ

−1, where Z
is an n×n matrix whose entries are i.i.d. zero mean Gaussian
random variables, normalized to yield unit norm columns, and
∆k are diagonal matrices with uniform random variables on
the interval [0, 1]. We compare our method with the state-of-
the-art algorithm WJDTE [12]. If not mentioned otherwise,
all algorithms are stopped after M = 1000 iterations, without
other stopping criterion. Results reported here were obtained
for the case n = 10 and K = 6; similar results are obtained
for other values for n and K and not reported here for space
reasons.
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Fig. 2. Additive vs. multiplicative updates. Median of the objective
function values versus iterations for gradient descent with additive (4) and
multiplicative (5) updates.

B. Multiplicative vs. additive updates

Fig. 2 shows the median over realizations of the objective
function values versus iterations for gradient descent when
either the standard additive update (4) or the multiplicative
update (5) are used (SNR=30dB, M = 10000 iterations).
Clearly, the algorithm with multiplicative update converges
much faster than the one with additive update: Indeed, the
latter requires more than 10 times more iterations to reach
the same objective function value than the algorithm with
multiplicative update. A possible reason for this could be that
the objective function for the multiplicative update is locally
better behaved: indeed, because of the update of Am at each
step, it in fact works at each step with a different, local
objective function fAm

evaluated at the point U = I , rather
than a fixed objective function fA. A theoretical investigation
of this phenomenon is left for future work.

C. Performance analysis

Fig. 3 provides a comparison of the performance of JD-
MG, JD-MCG and WJDTE in terms of the objective function
values that each method achieves. Investigation of the median
(over realizations) objective function value at convergence as
a function of noise level (Fig. 3, top) leads us to conclude that
JD-MG and JD-MCG converge to the same minimum of the
objective function, while WJDTE converges to minima with
significantly larger objective function values. As expected,
better results are obtained for larger SNR values for all
methods. Fig. 3 (center) provides a more detailed analysis
and plots, for each individual realization, the final objec-
tive function values for WJDTE against those for JD-MCG
(SNR=20dB). It corroborates the conclusions from average
performance results and shows that JD-MCG systematically
yields a better objective function value than WJDTE (up to
more than one order of magnitude). Finally, Fig. 3 (bottom)
provides a complementary view on this result and plots the
objective function values as a function of the condition number
of the (random drawn) matrix Z for each realization. It shows
that performance is essentially a function of this condition
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Fig. 3. Performance comparisons. Median of objective function values
at convergence as a function of noise level (top); scatter plot of objective
function values at convergence for conjugate gradient vs. WJDTE (center),
and against the condition numbers of the matrices Z (bottom, SNR=20dB).

number: the better conditioned Z, the lower the obtained
objective function values. Moreover, the performance gains
yielded by JD-MCG as compared to WJDTE are larger for
more difficult situations (smaller condition number) and more
moderate for more easier situations (large condition number).

D. Convergence analysis

Fig. 4 (top) plots the median of the objective function values
obtained by the different methods as a function of iteration
number. It suggests that WJDTE gets stuck at minima with
significantly larger objective function value than JD-MG and
JD-MCG after a few iterations. JD-MCG reaches objective
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function values close to its minimum at convergence in a
small but slightly larger number of iterations, whereas JD-MG
requires significantly more iterations but eventually finds the
same optimal point as JD-MCG. Motivated by the analysis
from the previous section, Fig. 4 (bottom) provides a more
detailed analysis of the convergence for WJDTE and JD-
MCG: It plots, for each individual realization, the number
of iterations needed to decrease the objective function value
to a fraction of 1

100 of its initial value, as a function of
the condition number of the matrix Z. It suggests that few
iterations are needed for WJDTE (5-10 iterations) to reach
this value when condition number is large (≥ 10−2), while for
smaller condition numbers many iterations (� 30) are needed,
or the target value can not be reached at all with WJDTE. On
the contrary, JD-MCG consistently converges below the target
value in less than 15 iterations, regardless of the difficulty of
the problem (i.e., the condition number of Z).

Overall, these results lead to the conclusion that the pro-
posed descent algorithms are operational, effective and com-
petitive. In particular, they find better solutions than the
WJDTE method in terms of objective function values at
convergence. Moreover, they lead to more consistent results
than the WJDTE method (which in turn outperforms many
preceding approaches, see [12] for extensive comparisons)
across various levels of difficulty of the joint diagonalization

problem, as quantified by the condition number of the ground
truth matrix Z.

V. CONCLUSIONS

In this work, we studied gradient based descent algorithms
for the joint diagonalization of collections of matrices and
developed a novel conjugate gradient method for the problem.
Our approach builds on three key elements: first, the use
of a multiplicative change of basis at each iteration, which
leads to significantly better convergence; second, analysis and
evaluation of the Hessian as an efficient and effective means
to determine step sizes; third, derivation of the non-standard
conjugate gradient update required by the local change of
basis. Our numerical results indicate that our proposed con-
jugate gradient approach JD-MCG yields competitive results
when compared to the state of the art in terms of objective
function values at convergence, number of iterations as well
as robustness. Future work will focus on the theoretical
analysis of the objective function and change of basis, and on
applications to high dimensional harmonic retrieval problems.
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