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Understanding and optimizing the design of helical micro-swimmers is crucial for advancing their
application in various fields. This study presents an innovative approach combining Free-Form
Deformation with Bayesian Optimization to enhance the shape of these swimmers. Our method
facilitates the computation of generic swimmer shapes that achieve optimal average speed and
efficiency. Applied to both monoflagellated and biflagellated swimmers, our optimization framework
has led to the identification of new optimal shapes. These shapes are compared with biological
counterparts, highlighting a diverse range of swimmers, including both pushers and pullers.

Keywords: Shape Optimization, Bayesian Optimization, Flagellated Helical Micro-swimmer, Free-Form-
Deformation, Boundary-Element-Method

I. INTRODUCTION

Micro-swimmers are microscopic organisms with the ability to move in a fluid environment, as seen in sperm
cells, bacteria, and other similar entities. Understanding and improving their performance, including their swimming
mechanisms and shapes, is a current research focus. This knowledge can be applied to the design of micro-robots
with a wide range of applications, such as delivering drugs to specific target locations in medicine [1, 2].

Because of their small size, micro-swimmers operate at low Reynolds numbers, within the Stokes regime. As explained
by Purcell in the Scallop Theorem, swimmers performing reciprocal motion do not produce any net displacement
at low Reynolds numbers, where viscous forces dominate over inertial forces [3]. Helical flagella allow non-invariant
deformation under time-reversal symmetry, enabling displacement. This swimming mechanism is exemplified by the
Escherichia Coli bacterium, which naturally utilizes helical flagella for propulsion [4], or the MO-1 bacterium [5, 6].
These swimmers are also widely used in robotics because they can be easily guided by an external magnetic field [7].
The performance of micro-swimmers with single or dual helical flagella has been thoroughly studied, especially with
ellipsoidal cell bodies, by optimizing certain parameters while keeping others fixed [8–10], using genetic algorithms
[11], or even experimentally [12]. With the development of Machine Learning (ML), new methods applied to these
problems could yield interesting results, similar to those used in aerodynamics [13].

In this paper, we explore the optimization of micro-swimmer shapes with one and two helical flagella, aiming to find
shapes that enable optimal swimming along a straight line. This involves maximizing speed while accounting for the
power expended during movement. The challenge here is to optimize both the shape of the head and the flagella. This
requires coupling various methods to solve the fluid-structure interaction and the optimization problem. The dynam-
ics of the swimmer are obtained using the Boundary Element Method (BEM), commonly applied in such applications
[8, 10, 14, 15]. The BEM is implemented using the MATLAB library Gypsilab [16]. Several shape optimization methods
are available, including parametric, geometric, and topological optimization [17, 18]. We focus on parametric shape
optimization due to the complexity of the model, particularly the challenges associated with computing the shape
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gradient [19], especially when constraints are involved. The use of Bayesian Optimization (BO) methods, specifically
the Scalable Constrained Bayesian Optimization (SCBO) method [20], represents a novel approach in micro-swimmer
shape optimization. This method, implemented in PYTHON via the BoTorch library [21], is particularly well-suited for
high-dimensional problems with numerous constraints.

One of the major novelties of this paper is that the swimmer’s head is not constrained to a particular geometric shape;
instead, a generic shape can be obtained through optimization. Most previous studies have focused on ellipsoidal
heads [8–11, 22–24]. However, the shape of a micro-swimmer’s head can be complex, such as the flattened water drop
shape of human spermatozoa [25]. We use the Free-Form-Deformation (FFD) approach [26] to achieve a generic shape
framework. FFD allows the deformation of a parameterized shape representation by manipulating control points,
which is then coupled with BO methods, as demonstrated in [27].

The optimal shape results are validated and benchmarked against swimmers found in the literature [8, 10]. Simula-
tions are performed for two optimization problems with different goals: maximize average speed or maximize average
efficiency. We study both monoflagellated and biflagellated swimmers. New swimmer forms emerge from this paper,
providing insights into microscale swimming dynamics. These forms are discussed and compared with their biological
counterparts, showing a rich variety of swimmers that can be pushers or pullers [28].

The paper is organized as follows: Section II presents the mathematical modeling of micro-swimmers, including their
geometry and the swimming problem’s numerical scheme. Section III introduces the shape optimization problem
with FFD and BO coupling. Section IV presents the numerical results, beginning with the optimization of a few
parameters for swimmers found in the literature, and then extending the analysis to include the optimization of all
parameters. Section V and Section VI summarize and conclude the paper.

II. MICRO-SWIMMERS MODELLING

This section provides a description of the geometry of micro-swimmers, with a focus on the flagella, followed by
an explanation of the system’s dynamics and the numerical scheme used to solve them. The parameterization of the
head is detailed in Section III.

A. Geometry of Micro-swimmers

The swimmer, denoted by S, is composed of a head H and a set of nf of flagella, i.e. S = H
⋃nF

i=1 Fi. The head is
assumed to be an arbitrary shape in R3. Each flagellum Fi is a tube of radius r with a centerline of total length L
described by, for s ∈ [0, L] 

x(s) = s,

y(s) = Rt
(
1− e−k2

Es2
)
cos
(
2πs
λ

)
,

z(s) = Rt
(
1− e−k2

Es2
)
sin
(
2πs
λ

)
,

where Rt is the maximal amplitude of the helix, λ is the wavelength, and kE is a shrinkage coefficient [9]. The distance
between each flagellum and the head is defined by l along the normal to the head. We denote (e1, e2, e3) the body
frame which moves with the swimmer, centered in the center mass of the head xH . The junction xFi of each flagellum
Fi is characterized by angles αi in the frame (e1, e3) and βi in the frame (e1, e2). The orientation of each flagellum is
determined by the angles γi and βi, representing rotations around e2 and e3 respectively. The geometric configuration
of the swimmer is illustrated in Figure 1, where the head is represented by a sphere and only one flagellum is depicted
for simplicity. This modelisation was already employed in [10] for biflagellated swimmer, and in [8] for monoflagellated
one.

B. Dynamics of Micro-swimmers

Due to the low Reynolds number in microswimmer dynamics, the fluid behavior is governed by the Stokes equations.
Let u : R3 → R3 and p : R3 → R represent the velocity and pressure fields of the fluid, respectively, satisfying the
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FIG. 1. Schematic of micro-swimmers represented by an arbitrary flagellum Fi with parameters (αi, βi, γi, δi, λi, R
t
i, ri, li) in

the frame (e1, e3) (Left) and in the frame (e1, e2) (Right).

non-slip condition and the following equations:

−µ∆u+∇p = 0 in R3 \ S,
∇ · u = 0 in R3 \ S,

u = U +Ω ∧ (x− xH) on ∂H,

u = U +Ω ∧ (x− xH) + ωeFi
1 ∧ (x− xFi) on ∂Fi,

∥u∥, p→ 0 as x→ +∞,

(1)

for all i ∈ {1, . . . , nF } and where S denotes the micro-swimmer. Here, µ = 1 represents the viscosity of the fluid,

and ω = −2πrad.s−1 denotes the angular velocity of the flagella around their directional axes eFi
1 , mimicking the

propulsion mechanism of bacteria that generate helical waves along their flagella. The motion of the rigid body is
decomposed into a translational velocity U ∈ R3 and an angular velocity Ω ∈ R3 induced by the rotation of the
flagella of angular velocity ω. The Dirichlet boundary conditions are imposed by ωeFi

1 ∧ (x− xFi), where ω is known,
and U +Ω ∧ (x− xH), where U and Ω are the variables of interest that we aim to determine.

C. Numerical Scheme

Stokes’ equations, being linear with respect to velocity u and p, admit the existence of a Green’s tensor kernel Gij

for (i, j) ∈ {1, 2, 3}2. For (x, y) ∈
(
R3
)2
, the Green’s function is given by:

Gij(x, y) =
1

8πµ

(
δij

∥x− y∥2
+

(xi − yi)(xj − yj)

∥x− y∥32

)
,

where δij is the Kronecker delta. The convolution of the Green’s kernel with the fluid surface tensions f = σ(u, p)n
yields an integral representation of the velocity field u on ∂S. Thus, for any y ∈ ∂S [14, 29], we have:

ui(y) = −
∫
∂S

3∑
j=1

Gij(x, y)fj(x)dx+
1

8π

∫
∂S

3∑
j,k=1

uj(x)Tjik(x, y)nk(x)dx, (2)

where Tjik(x, y) = −6
(xi−yi)(xj−yj)(xk−yk)

∥x−y∥5
2

for (i, j, k) ∈ {1, 2, 3}3. In the Stokes equation (1), the immersed object

describes the motion of a rigid object with velocity u(x) = U +Ω ∧ (x− xH), leading to:

1

8π

∫
∂F

3∑
j,k=1

uj(x)Tjik(x, y)nk(x)dx = 0. (3)

Substituting (3) into (2), we obtain:

u(y) = −
∫
∂S

G(x, y)f(x)dx. (4)
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Equation (4) provides the velocity expression on the solid boundary once the stress tensor is known. It can be inverted
to obtain the stress tensor on the solid boundary. If the solid is subjected to external forces or torques, Fext and Text
respectively, (4) must be complemented by the following equations:∫

∂S

f(x)dx = Fext,∫
∂S

f(x) ∧ (x− xH)dx = Text.

(5)

If the external forces and torques are zero, the equations (5) are called self-propulsion constraints. Using (1), (4), and
(5) for self-propulsion, we obtain a system for determining the translational and rotational speeds (U,Ω), given by:

U − (x− xH) ∧ Ω+

∫
∂S

G(x, y)f(y)dy = 0, ∀x ∈ ∂H,

U − (x− xH) ∧ Ω+

∫
∂S

G(x, y)f(y)dy = (x− xF
i

) ∧ ωeF
i

1 , ∀x ∈ ∂F i,∫
∂S

f(y)dy = 0,∫
∂S

f(y) ∧ (y − xH)dy = 0.

(6)

Expressing the Stokes problem (1) as a problem on S boundaries (6), we can use the BEM. In our case, the compu-
tational domain is simply the mesh that discretizes the swimmer, i.e., the mesh of the head and flagella. Let N be
the number of nodes in the mesh and VN the conformal finite element space we’re working in. Here, we’ll consider P1

finite elements. Expressing f in the VN basis, we have for all y ∈ ∂S and for all j ∈ {1, 2, 3}:

fj(y) =

N∑
l=1

f ljϕ
l(y),

where ϕ = {ϕ1, . . . , ϕN} is the basis of VN on ∂S and
(
f1j . . . fNj

)T
is the coordinate vector of fj in VN . By denoting

f l =
(
f l1 f l2 f l3

)T
and multiplying by ϕk, an element of VN , followed by integration over ∂S of the first two equations

in (6), for k ∈ {1, . . . , N}, we obtain the system:

∫
∂H

(
U − (x− xH) ∧ Ω

)
ϕk(x)dx+

∫
∂H

(∫
∂S

G(x, y)

N∑
l=1

f lϕl(y)dy

)
ϕk(x)dx

= 0,∫
∂F i

(
U − (x− xH) ∧ Ω

)
ϕk(x)dx+

∫
∂F i

(∫
∂S

G(x, y)

N∑
l=1

f lϕl(y)dy

)
ϕk(x)dx

=

∫
∂F i

(x− xF
i

) ∧ ωeF
i

1 ϕk(x)dx,∫
∂S

N∑
l=1

f lϕl(y)dy = 0,

∫
∂S

(y − xH) ∧
N∑
l=1

f lϕl(y)dy = 0,

(7)

for all i ∈ {1, . . . , nF }. Since S = H

nF⋃
i=1

Fi, we can separate the integrals so that (7) reads as a matrix system:

G JT KT

J 0 0
K 0 0

fU
Ω

 =

I(ω)0
0

 .
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Sub-matrix G is composed of (1+nF )
2 sub-matrices G{A,B} for (A,B) ∈ {∂H, ∂F 1, . . . , ∂FnF }. Each G{A,B} matrix

can be subdivided into NA ×NB sub-matrices of size 3× 3 defined by:

G
{A,B}
ij,lk =

∫
A

∫
B

Gij(x, y)ϕ
l(x)ϕk(y)dxdy,

for (i, j) ∈ {1, 2, 3}2, l ∈ {1, . . . , NB}, and k ∈ {1, . . . , NA}. The sub-matrix J is composed of (1 + nF ) sub-matrices
JA for A ∈ {∂H, ∂F 1, . . . , ∂FnF }. Each matrix JA is a diagonal block matrix where each block is of dimension 1×NA

and the j-th is denoted JA
il,j , defined by:

JA
il,j =

∫
A

eiϕ
l(x)dx,

for (i, j) ∈ {1, 2, 3}2 and l ∈ {1, . . . , NA}. Similarly, the sub-matrix K is composed of (1 + nF ) sub-matrices KA for
A ∈ {∂H, ∂F 1, . . . , ∂FnF }. Each matrix KA has size 3× 3NA, and its components KA

ij,l are defined by:

KA
ij,l =

∫
A

[
(x− xH) ∧ ei

]
j
ϕl(x)dx,

for (i, j) ∈ {1, 2, 3}2 and l ∈ {1, . . . , NA}. The vector I(ω) is composed of (1 + nF ) subvectors I(ω)
∂H = 0 and I(ω)A

for A ∈ {∂F 1, . . . , ∂FnF }. Each vector I(ω)A is subdivided into NA subvectors of size 3, defined by:

I(ω)Al =

∫
A

[
(x− xH) ∧ ωeA1

]
ϕl(x)dx,

for l ∈ {1, . . . , NA}. The implementation is done using the open-source BEM code Gypsilab[30] in Matlab and the
validation cases are presented in Appendix B.

III. SHAPE OPTIMIZATION PROBLEM

We introduce S0 as the reference monoflagellated swimmer, whose characteristics are summarized in Table I, and
whose flagellar parameters correspond to those in [10], for future comparison. The resulting average velocities and
power dissipation are tabulated in Table II.

TABLE I. Parameter values for the cell body and flagellum of the reference swimmer S0.

Parameter Value (Dimensionlesss) Value (Dimensional)
H0 B∥·∥2(0, 1) B∥·∥2(0, 0.74)
L0 3 2.2 µm
r0 0.067 0.05 µm
λ0 1 0.74 µm
Rt0 0.2 0.15 µm
l0 2r0 0.1 µm
k0E 0.333× 2π/λ0 2.8 µm−1

α0, γ0, β0, δ0 0 0 rad

1.557 µm

1.480 µm

1.480 µm

FIG. 2. Discretization of the reference swimmer S0 used to obtain values in Table II.
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A. Admissible Shape

In this section, we define the set of shapes from which potential swimmers are selected. As outlined earlier,
each swimmer comprises two components: the head and its flagella. These components belong to respective sets
of admissible shapes, denoted as Sad = Hε

ad × FP
ad, where FP

ad (for flagella) and Hε
ad (for the head) are defined

subsequently. In what follows, we denote by |A| the volume of the A shape.

1. Flagella admissible shape

We define the set of flagella admissible shapes FP
ad by

FP
ad =

{
F ⊂ R3 | (λ,Rt, α, γ, β, δ) ∈ P and |F | = |F 0|

}
, (8)

with P a compact set associated with the problem under study and F 0 the referent flagella whose characteristics are
shown in Table I. To keep flagellum volumes constant, we’ll consider flagella of the same radius r = r0 and the same
total length L = L0.

2. Head admissible shape

In this paper, we employ FFD framework [26] to parameterize the shape of the swimmer’s head. The FFD approach
describes an arbitrary basic shape using a discrete set of control points. Let’s briefly outline the main framework below.

The shape we are working on, denoted by Θ, is embedded in a slightly larger geometric domain denoted by D. The
key point is to operate within the unit cube of R3 by using a diffeomorphism with D. In this unit cube, M points,
called the control points, are defined to track the geometrical deformation of the shape. Moving these control points
induces a deformation of the cube consistent with their displacement. The resulting deformed shape is obtained by
applying the inverse diffeomorphism to the ”deformed unit cube”(see Figure 3). This setup defines a map, denoted
by T , which deforms the reference shape by shifting the control points by an amount µ ∈ R3M ,

T : D × R3×M → D(µ)

(Θ, µ) 7→
(
ψ−1 ◦ T̂ ◦ ψ

)
(Θ, µ),

(9)

as illustrated in Figure 3. We define the set from which we can select the potential heads as follows:

Hε
ad =

{
H = T (H0, µ)

∣∣ µ ∈ V and
∣∣|H| − |H0|

∣∣ ≤ ε
}
. (10)

Here, the volume of the sphere H0 is preserved with a precision of ε and V defines a sufficiently small closed set
around the control points to prevent mesh collapse. For V, the displacement of each control point is constrained to
prevent excessive overlap or crossing between points, while only the boundary points of the domain are allowed to
move, keeping the internal points fixed. In Appendix C, several shapes are illustrated by applying the FFD map to
the reference head H0 with different control points. These shapes, which lie in Hε

ad, are shown for various numbers
of control points. By adjusting the control points, we can obtain a wide variety of shapes, including non-convex ones.

B. Statement of the optimization problems

In this part, we state the optimization problem by defining the cost functions of interest. First, we define the power
dissipated and the average power dissipated as follows [10]:

P =

nF∑
i=1

−ωeFi
1 ·

∫
∂Fi

σ(u, p)n ∧ (x− xFi) and P̄ =
1

T

∫ T

0

P (t)dt, (11)

where T is the time for a single stroke, n is the outward normal to ∂F , σ denotes the stress tensor, given by
σ(u, p) = −pI+2µe(u), and e(u) represents the deformation tensor, defined as e(u) = 1

2 (∇u+∇uT ). Then, the mean
translational and angular velocities are given by:

Ū =
1

T

∫ T

0

U(t)dt and Ω̄ =
1

T

∫ T

0

Ω(t)dt. (12)
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D

[0, 1]d T̂
(
[0, 1]d, µ

)

D(µ)

ψ

T̂ (·, µ)

ψ−1

T (·, µ)Θ Θ(µ)

FIG. 3. Illustration of the FFD method deforming a domain D containing a Θ shape via a µ vector using the T application
described by (9).

TABLE II. Mean velocities and power dissipated obtained from (1) by taking the swimmer S0 from Table I.

Parameter Value (Dimensionless) Value (Dimensional)
Ū0

1 −0.0306 −0.0226 µm.s−1

Ω̄0
1 0.1470 0.1470 rad.s−1

P̄ 0 −24.7512 −18.276 µW

Finally, we define the cost functions, J1 and J2, corresponding respectively to the mean speed in the direction of e1
normalized by the one of the reference swimmer S0 and the mean efficiency, as:

J1(S) = − Ū1(S)

Ū0
1

and J2(S) = − Ū1(S)

Ū0
1

× P̄ 0

P̄ (S)
. (13)

Hence, the optimization problem, for i ∈ {1, 2}, is formulated as:

inf
S∈Sad

Ji(S). (14)

Cost functions are adapted to work with minimization problems, as it is more conventional to address minimization
rather than maximization in optimization. In the following, to avoid notational complexity, we omit the dependence
on the swimmer’s shape in some functional.

C. Bayesian Optimization Applied to Shape Optimization

In order to solve these micro-swimmer shape optimization problems, we apply Bayesian optimization methods [31],
specifically the Scalable Constrained Bayesian Optimization (SCBO) method [20]. First of all, Gaussian processes
(GPs) are probabilistic modeling techniques used to approximate functions when direct evaluation is computationally
expensive [32, 33]. Instead of evaluating the expensive function J for many swimmer shapes, GPs allow us to model
J based on limited data and make predictions about its behavior with uncertainty estimates. Figure 4 illustrates how
GPs work on a toy function, showing observed values and the associated GP model.
Solving the problem (14) requires rewriting the constraint spaces Sad, defined by (8) and (10), in terms of inequality
constraints such as:

Sad =
{
S = (H,F ) ⊂ R3 × R3 | c(S) = (c1(S), . . . , cm(S)) ≤ 0

}
.

The main method is presented above with Figure 5, which depicts the different steps.
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FIG. 4. Gaussian Process on a toy function. The true function (red line) is approximated by the GP mean (blue line) according
the observations (black point). The Gaussian posterior distribution for x = 3.3 is depicted (green). The associated point-wise
confidence intervals at level 95% are displayed (blue). A set of 100 GP samples is displayed (grey).

1. We start by taking a number of initial shapes and defining the trust region using maximum utility. The trust
region approach allows the selection of samples locally around the best current point by defining a hypercube.
Given n shapes {Si}ni=1, we evaluate the cost function J and the constraint function c. Then, we define the set
of feasible constraints for these shapes as:

Fc = {Si | c(Si) ≤ 0} .

To choose the center S∗ of the hypercube, two cases are considered depending on the cardinality of Fc:

S∗ =


argmin
S∈Fc

J(S) if Fc ̸= ∅,

argmin
S∈{Si}n

i=1

m∑
j=1

max
{
cj(S), 0

}
if Fc = ∅,

i.e., either Fc is non-empty, and we take the point minimizing the cost function, or Fc is empty, and we take
the point minimizing the maximum constraint violation. The length of the hypercube is initialized by Linit.

2. Until the number of remaining possible evaluations reaches zero or L < Lmin:

(a) Gaussian process models associated with the cost function and the constraint functions are constructed
from the observations, i.e., shapes and evaluated functions for these shapes.

(b) Randomly choose r shapes inside the hypercube.

(c) We consider a number of q batches. For each batch, we obtain a sample from the posterior distribution of
cost and constraints models (as in grey in Figure 4) at the level of discretization obtained by the previous
r shapes. The best of the r shapes is then selected for each batch.

(d) For the q best shapes obtained in the previous step, the cost function and constraints are evaluated.

(e) These new shapes are added to the previous observations.

(f) The center of the trust region is updated based on the improvements achieved by the new candidates.
Specifically, the new center is set as the current best point. The length of the trust region is adjusted based
on the number of successes or failures. Let τs and τf be the fixed success and failure rates, respectively,
and ns and nf the number of successes and failures. Success is achieved when a better shape than the

center of the hypercube is obtained. We say that S̃ is a better shape than S when S does not satisfy
the constraints, and S̃ has a smaller constraint violation, or when S satisfies the constraints, and S̃ also
satisfies them while having lower objective value. The length of the hypercube is then adapted as follows:

if ns = τs then

{
L = min{2L,Lmax},
ns = 0,

and if nf = τf then

{
L = L/2,

nf = 0,

with Lmax and Lmin denoting the maximum and minimum length of the hypercube.
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3. The algorithm returns the best admissible point found.

A disturbance probability, as introduced in [20], has been incorporated to mitigate the edge effect, which refers to the
phenomenon where points in high-dimensional spaces tend to lie near the boundaries of the search space. This effect
can trap the algorithm at the boundaries of the hypercube. The implementation is done using the open-source SCBO
code BoTorch[34] in PYTHON.

Ω

Linit

{(
Ĵ(Si)
ĉ(Si)

)}r

i=1

{(
f(S′

i)
c(S′

i)

)}q

i=1

Ω

L

Fit GP models for J and c

1)

2) b)

2) c)

2) d)

2) e)

2) f)

2) a)

FIG. 5. SCBO representation: 1) Initial shapes are taken from Ω (represented by crosses), and the trust zone is defined (a
grid with the central point surrounded and the edge of the zone defined by a square). 2) a) The Gaussian process models
associated with the objective J and the constraints c are constructed. 2) b) r random shapes (represented by triangles) are

taken from the trust region. 2) c) A batch of q realizations {
(
Ĵ(Si) ĉ(Si)

)T }ri=1 is calculated. For each realization, the x-axis
corresponds to the S shapes in Ω and is discretized by the {Si}ri=1 (the triangles) chosen previously. The y-axis shows the
realizations. For simplicity, a single graph is drawn for the objective and the constraints. For each realization, we keep the
best shape (completely filled triangle). 2) d) For the q best shapes {S′

i}qi=1, we calculate the real value of the objective and the
constraints. 2) e) These q new shapes are added to the previous observations. 2) f) The trust region is readjusted by modifying
its center and length.

IV. NUMERICAL RESULTS

This section is divided into two parts. The first part focuses on presenting the results achieved using our method,
which enhances the optimal results found in the literature [8, 10] constrained by a more restrictive geometrical
framework. The second part addresses the outcomes obtained by optimizing all aspects for both the monoflagellated
and biflagellated swimmers. Because of the nature of the problem, it is natural to consider two planes of symmetry for
the head. This is described in Appendix D, along with the details of the numerical implementation. Detailed figures
of the swimmers are given in Appendix A and Appendix E. Bayesian optimisation convergence graphs associated with
optimal swimmers are presented in Appendix F.

A. Outclassing Competing Models

In this subsection, we concentrate on the top-performing swimmers identified in the case of monoflagellates from
[8] and in the case of biflagellates from [10]. Using our method, we propose new swimmer designs capable of outper-
forming the previous models by relaxing the geometric assumptions about the swimmer’s head.

Our results are presented in Table III. The first row shows meshes of the swimmer we aim to outperform. In the first
case, a monoflagellated swimmer from [8] is depicted whose characteristics are described in Table VII, where the head
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is modeled as an ellipse defined by the equation

H =

{
(x, y, z) ∈ R3 | x2

(R1)2
+

y2

(R2)2
+

z2

(R3)2
= 1

}
, (15)

whose parameters have been optimised to minimize inverse efficiency given by

η−1
0 =

P̄

6πµĀŪ2
1

, (16)

where Ā is the volume average radius of the cell body. Beside, we illustrate the swimmer designed using our method,
which optimizes the head shape while maintaining the same head’s volume and same flagellum by using the same
cost function, i.e., inverse efficiency, given by (16). The resulting form is shorter but wider. Non-intuitively, the
forward fluid-exposed side is broader and tapers towards the point where the flagellum is attached. This is contrary
to expectations of a more streamlined, car-like front. The second row presents the case of a biflagellated swimmer.
The position of the second flagellum is determined by a π rotation of the first flagellum around the e1 propulsion
axis. This assumption allows us to constrain the swimmer’s movement to the e1 axis. The left swimmer, with a fixed
ellipsoidal head (whose equation is given by (15) and characteristics are described in Table VIII), has its junction
between the head and the flagella optimized according to the mean efficiency J2, see [10]. The swimmer depicted on
the top right represents the result by optimizing only the head’s shape. Subsequently, we optimized both the shape
of the head and the angle of the junction between 0 and π/2 as in [10]. For the swimmer whose head alone has
been optimized, the shape is flatter and more elongated than the original. Unlike the monoflagellated swimmer, a
triangular shape tapering towards the front can be seen. Additionally, when the angle of the junction between the
head and the flagella is also optimized, the head shape becomes more elongated, echoing optimal aerodynamic shapes.

To compare the various micro-swimmers, we present their swimming characteristics in Table IV. For the monoflagel-
lated swimmer, the optimized version exhibits greater speed but consumes more power compared to the benchmark.
Additionally, its wider, flatter geometry results in a significant reduction in angular velocity. In contrast, the opti-
mized biflagellate swimmers demonstrate a higher angular velocity and lower power consumption. They also achieve
greater translational speed.

B. Shape Optimization of Flagellated Micro-swimmers

In this section, we generalize the optimization process to account for all parameters describing the head and flagella
of the micro-swimmer. We assume the swimmer’s shape (head and the second flagellum in respect the first for
biflagellate swimmers) must be symmetric with respect to e1 (i.e., the desired direction of displacement). The flagella
parameters are considered within the set P, defining the admissible flagella FP

ad (see (8)), prescribed as:

P = [0.3, 4]× [0.1, 1]×
[
−π
2
,
π

2

]
×
[
−π
2
,
π

2

]
×
[
−π
2
,
π

2

]
×
[
−π
2
,
π

2

]
.

The existence and convergence of our approach towards a globally optimal shape are not confirmed. Therefore,
multiple simulations of the same problem were conducted, consistently yielding similar results. The best results are
summarized in Table V and Table VI. Convergence graphs, presented in Appendix F, and detailed figures of the
swimmers, provided in Appendix E, offer additional insights.

1. Monoflagellated swimmer

Optimal shape description : Focusing on the translational velocity, J1 in (13), Table V and Table VI reveal
that a water-drop-shaped head with a large-amplitude flagellum results in a swimmer about 3.6 times faster than
the reference swimmer. When power dissipation is considered, J2 in (13), the results show a swimmer 1.5 times
more efficient than the reference swimmer, with a slightly elongated head and a flagellum of smaller amplitude and
longer wavelength. The head shapes are quite similar in both cases, so we will refer to these swimmers as water-drop
swimmers.

Swimming trajectory : As can be seen in Figure 6, the velocity-optimized swimmer has a helical trajectory with
larger steps but also with a larger radius than the optimal swimmer that takes power dissipation into account. This is
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TABLE III. Comparison between benchmark swimmers and optimized designs based on efficiency metrics. The first column
includes benchmark swimmers obtained from [8] (first row) and [10] (second row). The second column showcases outperforming
designs achieved through different optimization strategies: the first and second rows represent designs optimized only by head
shape, while the third row includes designs with the addition of the α parameter for biflagellate swimmers. Efficiency metrics
are evaluated using inverse efficiency (16) for monoflagellated swimmers and mean efficiency (13) for biflagellate swimmers.

Benchmark swimmers Outclassing swimmers

Monoflagellated swimmers
5.313 µm

2.490 µm

1.743 µm

η   = 149.881-1
0

e1

e2

e3
5.313 µm

2.274 µm

2.217 µm

η   = 149.441-1
0

Biflagellate swimmers

1.557 µm

1.300 µm

1.950 µm

J  = 0.95512

α=0.4π
1.557 µm

2.018 µm

1.907 µm

J  = 1.06572

α=0.4π

2.296 µm

1.557 µm

1.527 µm

J  = 1.09202

α=0.223π

TABLE IV. Swimming characteristics for benchmark swimmers from [8, 10] and optimized versions from Table III. The
swimming characteristics are normalized relative to the benchmark.

Ū1/Ū
0
1 1 1.0618 1 1.1152 1.1338

Ω̄1/Ω̄
0
1 1 0.7983 1 1.0251 1.3268

P̄ /P̄ 0 1 1.1209 1 0.9994 0.9916

due to the large amplitude of the flagellum, which almost reaches the upper limit. Conversely, when power dissipation
is considered, the resulting helical trajectory has a smaller radius. Thus, accounting for power dissipation signifi-
cantly impacts the resulting optimal swimmer displacement. To meet the constraint specified in (D1) for average
displacement along the e1 axis, the algorithm identifies optimal swimmers with a flagellum oriented along the e1 axis.
However, a single flagellum induces significant displacement in the e2 and e3 directions during its stroke.

2. Biflagellated swimmer

Optimal shape description : Focusing on the translational velocity, J1 in (13), we obtain a rather unusual swimmer
with a much more compact head than those that can be obtained in other types of problem and flagella of very large
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amplitudes (here again the upper limit is almost reached). Because of its similarity in shape, we’ll call this swimmer
Bullhead swimmer. This swimmer is almost 11 times faster than the reference swimmer S0. However, as soon as we
take into account the power expended, J2 in (13), we obtain a more ”conventional” shape. It has an elongated head
with flagella of low amplitude. The swimmer is slightly more than 1.2 times more efficient than the reference swimmer.

Swimming trajectory : As can be seen on Figure 6, the optimal swimmers only move in the e1 direction during
their stroke, unlike the reference swimmer. This is due to the second flagellum, which is placed symmetrically and
gives the swimmer a certain stability. The fastest moving swimmer does not take into account the power dissipated,
so we can see the appearance of a particular trajectory where the swimmer moves backwards during the stroke,
allowing him to reach a high propulsion speed along e1 while dissipating a lot of power. On the other hand, when the
power dissipated is taken into account, the swimmer adopts a strategy that allows him to make as few ”unnecessary”
movements as possible.

TABLE V. Comparison between the reference swimmer, S0, introduced in Table I, and the best swimmers with one and two
flagella found through Bayesian optimization using two cost functions (13): mean velocity (first column) and mean efficiency
(second column). The first row represents the reference swimmer. The second row displays optimized monoflagellated swimmers,
and the third row shows optimized biflagellate swimmers.

Mean speed Mean efficiency

Reference swimmer S0

1.557 µm

1.480 µm

1.480 µm

J   =  J   = 11| | 2| |

Best monoflagellated swimmers

e3

1.405 µm

2.768 µm

1.152 µm

J   = 3.59801| |

1.896 µm

2.790 µm

1.103 µm

J   = 1.55402| |

Best biflagellate swimmers 1.369 µm

1.104 µm

1.364 µm

J   = 10.9081| |

1.927 µm

2.263 µm

1.425 µm

J   = 1.24772| |
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FIG. 6. Center of mass trajectories of the reference swimmer S0 (blue triangles) compared to optimal swimmers (from Table V)
optimized for mean velocity (green squares) and mean efficiency (red rounds) for two periods.

TABLE VI. Swimming and geometrical characteristics of optimized swimmers from Table V, normalized relative to the reference
swimmer S0 (see Table II).

Optimization of J1 Optimization of J2

Ū1/Ū
0
1 1 3.5980 10.908 1.5196 2.6046

Ω̄1/Ω̄
0
1 1 5.3728 1.7061 1.3660 1.3993

P̄ /P̄ 0 1 3.9366 15.144 0.9785 2.0874
λ/λ0 1 2.5705 1.0169 1.7162 1.9069
Rt/Rt0 1 4.9985 4.9965 1.0985 1.1745
α/π 0 2.5485e−3 0.3686 2.5420e−3 0.1868
β/π 0 1.7318e−3 0.4994 3.0524e−2 3.9592e−2
γ/π 0 −2.1914e−3 0.2518 2.3316e−3 1.2893e−2
δ/π 0 5.9362e−3 −0.2911 4.7056e−3 1.5362e−2

V. DISCUSSIONS

Our results on the shape optimization of flagellated micro-swimmers through Bayesian optimization offer valu-
able insights into the efficiency morphology at the microscale. A notable finding from our study is the significant
influence of flagellar number and positioning on micro-swimmer head shapes as can be seen between Figure 17 and
Figure 19, and Figure 18 and Figure 20. However, our study extends beyond existing research by adopting a bigger
admissible shape space. By doing so, we discover novel and better optimal shapes that diverge from conventional
ellipsoidal designs [8, 11, 28, 35], highlighting the importance of considering a new range of morphological possibilities.

An important characteristic of flagella, revealed through optimization, is that while larger flagellar amplitudes result
in higher speeds, they also lead to increased power consumption, as detailed in Table VI. Amplitude and wavelength
also play an important role in the swimmer’s motion. This counterintuitive phenomenon was observed both ex-
perimentally and analytically, where the fastest magnetic helical swimmers in [36] had a flagellum close to one full
turn. While there are differences in motility — as this paper considers a torque-free swimmer, in contrast to the
torque-driven helical propeller in [36] — the same geometric property can be observed in both cases. This trade-off
has significant implications for micro-swimmer design, emphasizing the need for nuanced optimization strategies that
balance velocity with efficiency.

In Table VI, we note certain phenomena common to the mono- and biflagellated cases. In the J1-case (13), the
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t = 0 t = 0.25π t = 0.5π t = 0.75π

t = π t = 1.25π t = 1.5π t = 1.75π
U 1

FIG. 7. Time sequence of the velocity field evolution throughout the stroke cycle of the bullhead swimmer. The fluid streamlines
in the plane y = 0 are depicted in white. The colormap represents the fluid velocity along e1. The red arrow indicates the
direction of the swimmer’s displacement. (t = 0-0.25π) The swimmer exhibits a small recoil. (t = 0.5π-1.5π) The swimmer
moves forward with a peak velocity at t = π. (t = 1.75π) The swimmer experiences a small recoil similar to the start of the
movement.

FIG. 8. Time-averaged velocity field around optimized swimmers: (first) optimized monoflagellated swimmer for J1, (second)
optimized monoflagellated for J2, (third) optimized biflagellate for J1, and (fourth) optimized biflagellate for J2. The fluid
streamlines in the plane y = 0 are depicted in white. The colormap illustrates the magnitude of the fluid velocity, with each
representation adjusted to its specific scale due to significant variations in velocity intensities.

angular velocities and the power dissipated are higher than in the other cases, and the flagellum amplitude is almost
equal to the upper limit chosen. In the J2-case, on the other hand, we obtain lower angular velocities and flagellum
amplitudes. We can also see that the orientation of the flagella, i.e., γ and δ, are very small with the exception
for the bullhead swimmer. Additionally, we observe that the optimized monoflagellated swimmer is more efficient
than the optimized biflagellate swimmer (1.5540 > 1.2477). Indeed, the biflagellate swimmer dissipates slightly more
than twice the power of the monoflagellated swimmer. Moreover, the addition of a second flagellum does not result
in a doubling of the translational velocity. An important difference can be seen in Figure 6 between mono- and
biflagellate swimmers. Swimmers with a single flagellum produce helical trajectories. This phenomenon, known as
the Helix Theorem, is described in more detail in [37, 38]. The addition of a second symmetrical flagellum results
in a helical trajectory with zero amplitude, unlike the monoflagellated swimmer. This characteristic is important to
consider in the context of maneuverability. As shown in [39], the second flagellum plays a crucial role in achieving
great maneuverability, particularly in the reorientation of microorganisms.

In contrast to prior works that often focus on optimizing individual parameters incrementally [35, 40], or even testing
different types of flagella [41] our approach considers the simultaneous optimization of complex head and flagella
parameters. This methodology allows us to achieve generalized optimization results, as demonstrated by the distinct
morphologies observed in single and biflagellated micro-swimmers. Our findings suggest that by incorporating con-
siderations of power dissipation, we can achieve more streamlined head shapes. These shapes are both flattened and
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puffed in certain areas, similar to the head of a human spermatozoon [25], with the difference that the attachment
point of our flagella is in the puffed area.

Two aspects are particularly distinctive for the bullhead swimmer: its shape and its trajectory. Unlike other swimmers,
a low-amplitude recoil appears during its stroke. A study of the fluid in the neighbourhood of this swimmer at eight
different instants during a stroke is described in Figure 7. We observe a low-amplitude backward movement at
t ∈ {0, π8 ,

7π
8 }, while during the rest of the stroke, the forward displacement is much greater. Additionally, Figure 7

closely resembles the time sequence of the velocity field observed for Chlamydomonas reinhardtii in Figure 3 of [42],
which exhibits a puller behavior. In Figure 8, which presents time-averaged velocity fields, the other swimmers display
a typical pusher behavior, while the bullhead swimmer demonstrates a behavior closer to neutral, as illustrated in
Figure 1a of [43].

VI. CONCLUSION AND PERSPECTIVES

The implementation of a more general parametric optimization of shape has enabled the discovery of new optimal
shapes for micro-swimmers, which were previously represented almost exclusively by ellipsoidal forms. The obtained
characteristics provide a better understanding of the impact of the shapes of the heads and flagella, as well as their
number, on micro-swimming performance.

Future extensions of this work could lead to a better understanding of the forms of micro-swimmers that can be found
in nature or improve the design of micro-robots. While our study has provided new results on the optimal shapes of
flagellated micro-swimmers, many avenues for further exploration remain open. For instance, incorporating advanced
techniques such as machine learning, or different shape spaces as B-spline in [44], could reveal new optimal designs.
Additionally, investigating more complex environments, such as swimmers immersed in viscoelastic fluids or account-
ing for the elasticity of the swimmer, holds significant potential, particularly in micro-robotics. This is especially
relevant in the medical field, where micro-robots must navigate multiple fluids with varying complex characteristics
(often non-Newtonian), which can cause significant reductions in swimming accuracy [45]. The methods presented
in this paper could be instrumental in designing micro-robots that maintain their effectiveness in such challenging
environments.

Supplementary Materials: See supplementary materials (video files) available with the submission on arXiv for
videos of the movements associated with the optimized swimmers and a race between the best swimmers and the
reference swimmer.
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Appendix A: Benchmark swimmers

Detailed presentation of swimmers from the literature are depicted in this appendix. The best swimmer, according
to the inverse efficiency (16), obtained in [8] by optimizing only the parameters related to the head is described in
Table VII and its mesh is displayed in Figure 9.
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TABLE VII. Geometric parameters describing the head and the flagella of the optimal bacteria in Figure 9 from [10] by
optimizing only the radius of the ellipsoidal head.

Parameter Value (Dimensionless) Value (Dimensional)

R1 (0.7× 0.3)−1/3 1.245 µm
R2 0.3×R1 0.374 µm
R3 0.7×R1 0.872 µm
Ā 1 0.74 µm
L 10× Ā 7.4 µm
r 0.05× Ā 0.037 µm
λ 4.7863 3.542 µm
Rt λ/(2π) 0.564 µm
kE 2π/λ 1.773 µm−1

3e

1e 5.313 µm

2.490 µm

1.743 µm
2e

1e

0.747 µm

FIG. 9. Optimal swimmer, in frame (e1, e3) (Left) and in frame (e1, e2) (Right), according to the inverse efficiency (16) from
[8] by optimizing only the radius of the ellipsoidal head. The geometric parameters are presented in Table VII.

In [10], micro-swimmers are described by a fixed ellipsoidal head, with only the angle α varying to yield the best
swimmer according to the average efficiency (13) at α = 0.4π. The characteristics of the swimmer’s head and flagella
are presented in Table VIII. Figure 10 shows the reference swimmer from [10] on the left, used to normalize speeds
and powers, and the best swimmer with an angle α equal to 0.4π on the right.

1.557 µm

1.300 µm

1.950 µm

3e

1e 1.557 µm

1.300 µm

1.950 µm

3e

1e

FIG. 10. (Left) Mesh of the reference monoflagellated swimmer from [10] with α = 0 and the geometric parameters in Table VIII.
(Right) Example mesh from [10] for biflagellated swimmer with α = 0.4π and the geometric parameters in Table VIII.

TABLE VIII. Geometric parameters describing the head and the flagella of the bacteria in [10].

Parameter Value (Dimensionless) Value (Dimensional)
R1 0.874 0.65 µm
R2 0.874 0.65 µm
R3 1.5R1 0.975 µm
L 3.0 2.2 µm
r 0.067 0.05 µm
Rt 0.2 0.15 µm
λ 1.0 0.74 µm
kE 0.333× 2π/λ = 2.09 2.8 µm−1

l 2r = 0.134 0.1 µm
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Appendix B: Validation of the BEM.

1. Monoflagellated micro-swimmer

We reproduce here a case from the literature [9] where Slender-Body-Theory (SBT) was used to solve a self-
propulsion problem. The aim is to recover the mean translational velocity and the inverse efficiency for a monoflag-
ellated bacterium according to the number of wavelength Nλ. This number is related to the total tail length L
by

L =

∫ λNλ

0

∥∥∥∥(dx(s)ds
,
dy(s)

ds
,
dz(s)

ds

)∥∥∥∥
2

ds,

where (x(s), y(s), z(s)) are given by (IIA). The mean translational velocity is normalized by V = ω/kE (IIA)-(1)
and the inverse efficiency is given, here, by (16). The head of the swimmer is taken as sphere of unit radius A = 1.
The geometry of the swimmer considered is referenced in Table IX where α = γ = β = δ = 0. Figure 11 shows the
comparison between the different results obtained for L/A = 5 and L/A = 10 ratio, and those in the paper [9].

TABLE IX. Geometric parameters describing the flagellum of the bacteria in [9].

Parameter Value (Dimensionless) Value (Dimensional)
A 1 0.74 µm
r 0.02A 0.0148 µm
l 2r 0.0296 µm
Rt λ/(2π)
kE 2π/λ
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FIG. 11. Comparison of normalized mean translational velocity (Left) and the inverse efficiency (Right) between the results
obtained in [9] (dashes) and our simulations for L/A = 5 (round) and L/A = 10 (square).

2. Biflagellated micro-swimmer.

We reproduce a case from the literature [10] where the BEM was used to solve a self-propulsion problem. The aim
is to recover the mean translational and rotational velocities, mean power dissipation, and efficiency for a biflagellate
bacterium, normalizing these quantities by those obtained for a monoflagellated bacterium with the same head and
flagellum shape, as presented on the left in Figure 10. The different quantities are described by equations (11) and
(12), with respect to the new reference swimmer chosen in Table VIII. Figure 12 shows the comparison between the
results and those in the paper [10]. The shape of the head is defined by (15). In addition, the second flagellum is
considered to be created by a rotation of π around the axis of propulsion e1 of the first flagellum, whose junction
point is determined solely by the angle α. The geometric parameters used for the simulations are shown in Table VIII
where γ = β = δ = 0.
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FIG. 12. Comparison of normalized mean translational velocity (top left), normalized mean rotational velocity (top right),
normalized mean power dissipation (bottom left) and normalized mean efficiency (bottom right) between the results obtained
in [10] (cross), and our simulations (round).

Appendix C: Shape Variability with FFD

To illustrate the diversity of shapes belonging to the set V (defined in equation (10)) that can be generated using
the FFD method, we present a collection of random shapes with varying characteristics in Figure 13. These shapes
are obtained by displacing control points, with same characteristics as in Appendix D, while respecting the constraints
of the set V. The geometric constraints, especially symmetry, play a significant role in shaping the outcomes. Despite
these constraints, Figure 13 demonstrates the ability to produce a wide range of shapes, including both non-convex
(e.g., shapes (a) and (c)) and convex shapes (e.g., shapes (b) and (d)). Furthermore, the four examples exhibit distinct
curvatures and geometrical features, highlighting the flexibility of the FFD method in generating diverse and complex
forms. Additional shapes are presented in Appendix E, where the different optimized head shapes resulting from the
FFD method are displayed.

FIG. 13. Examples of random shapes generated using FFD by applying displacements to control points within the set V.
Shapes (a) and (c) are non-convex, while shapes (b) and (d) are convex.

Appendix D: Numerical Implementation

Stroke discretization : In the simulations, the number of BEM evaluations to compute the different mean values
(11) and (12) is set to four, obtained by rotating the flagella around their axis by angles of π

2 t with t ∈ {0, 1, 2, 3}.
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Choosing 6, 8, or 12 evaluations does not significantly change the average values (relative error less than 10−3), thus
4 evaluations seems be a good choice especially considering the high computational cost of BEM coupled with the
optimization routine.

Volume Computation: To compute the volume of different shapes, we use a boundary integral method. According
to the divergence theorem: ∫

S

(∇ · F ) dV =

∫
∂S

F · ndS,

where F is a vector field and n is the normal vector on the surface ∂S. By choosing F (x, y, z) = 1
3 (x, y, z), we obtain:

|S| =
∫
S

dV =

∫
∂S

1

3
(x, y, z) · ndS.

Since we work with triangular element meshes, we approximate the volume as:

|S| ≈ 1

3

∑
triangle

∫
triangle

(x, y, z) · ndS.

Symmetry constraint : In order to obtain a varied shape space for the heads of micro-swimmers while limiting the
dimension of the problem due to computational costs and optimization performance, we consider four control points
along the three axes, i.e., M =M1 ×M2 ×M3 = 64 with M1 =M2 =M3 = 4. As we are interested in the movement
of the swimmers along the e1 axis, it seems natural to consider symmetries along the (e1, e3) and (e1, e2) planes. To
do this, we apply this symmetry constraint to our control points (since the reference shape we are deforming, H0,
itself respects these symmetries). All that remains is to determine the position of (64− 8)/2 = 14 control points (as
explained above, we’re not touching the internal control points). We are working in dimension d = 3, so the head
optimization problem is of dimension 14 × 3 = 42. The overall dimension of the optimization problem is d = 42 + p
where p is the number of flagellum parameters being optimized.

Trajectory constraint : Additional constraints must be added to ensure that swimmers, on average, do not move
along e2 or e3 as they swim, described by:

|Ū2|, |Ū3| ≤ εtol, (D1)

where εtol > 0 is a chosen tolerance.

Mesh collisions : On top of that, a new constraint must be considered to avoid mesh collisions. Depending on the
shape of the head and the parameters of the flagella, such collisions may occur. To avoid this, we introduce a new
constraint to the optimization problem. The natural constraint would be to consider a binary constraint informing
whether or not the parameters are feasible or infeasible. This type of constraint can be complicated to deal with,
particularly for complicated problems because of its binary discrete nature. It is preferable to work with continuous
constraints. Here, we use a Monte Carlo (MC) method to quantify this: we draw NMC = 106 points inside a hypercube
and look at the number of points that are inside, Nin, at least two different convex envelopes associated with the
meshes. Considering the convex envelopes of the flagella allows us to check whether there is an intersection that can
occur when the tail rotates around its axis. The constraint is defined as:

Nin

NMC
≤ 0. (D2)

The numerical parameters of the optimization problem are described in Table X. The optimization problem (13)
becomes : for i ∈ {1, 2},

inf
S∈Sad

Nin/NMC≤0
|Ū2|,|Ū3|≤εtol

Ji(S). (D3)
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TABLE X. Constraints optimization parameters.

Parameter Value Description
ε 0.01 Tolerance on head volume conservation (10).
εtol 0.001 Tolerance on the average trajectory according to e1 (D1).
NMC 5e6 Number of points for the MC method to avoid mesh collisions (D2).
M1,M2,M3 4 Number of control points by direction e1, e2 and e3.

M̃ Π3
i=1Mi −Π3

i=1(Mi − 2) Number of movable control points, i.e. those at the edge.
ri

4
2(Mi−1)

− 0.4
Mi

Bounds in the direction ei for the control points.

V ΠM̃
k=1

(
Π3

i=1[−ri, ri]
)

Closed set for the control points to prevent mesh collapse in (10).
p Number of flagellum parameters being optimized.
d 42 + p Dimension of the optimization problem.
rSCBO min(5000,max(2000, 200× d)) Candidates generated in the trust region of SCBO algorithm.
qSCBO 15 Number of batches of SCBO algorithm.
LSCBO

init 1.6 Initial length of the trust region of SCBO algorithm.
LSCBO

min 0.57 Minimal length of the trust region of SCBO algorithm.
LSCBO

max 1.6 Maximal length of the trust region of SCBO algorithm.
nSCBO
init 3× d Number of initial points of SCBO algorithm.
τSCBO
s max(3, ⌈d/10⌉) Sucess rate of SCBO algorithm.
τSCBO
f ⌈d/q⌉ Failure rate of SCBO algorithm.

Appendix E: A collection of the best swimmers

A set of images illustrating in greater detail the swimmers optimized in this paper in different orientations, as well
as their dimensions.

e1

e2

e3
5.313 µm

2.274 µm

2.217 µm
3e

1e
2e

1e

0.789 µm

FIG. 14. Optimal swimmer obtained by the head optimization of the literature swimmer from [8] in the frame (e1, e3) (Left)
and in the frame (e1, e2) (Right).

FIG. 15. Optimal swimmer obtained by the head optimization of the literature swimmer from [10] in the frame (e1, e3) (Left)
and in the frame (e1, e2) (Right).
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FIG. 16. Optimal swimmer obtained by optimising both the head and the α parameter in relation to the literature swimmer
from [10] in the frame (e1, e3) (Left) and in the frame (e1, e2) (Right).

FIG. 17. Optimal monoflagellated swimmer (water-drop swimmer) obtained by optimizing all parameters describing the head
and flagellum, taking into account the mean velocity problem J1 (13) in the frame (e1, e3) (Left) and in the frame (e1, e2)
(Right).

FIG. 18. Optimal monoflagellated swimmer (water-drop swimmer) obtained by optimizing all parameters describing the head
and flagellum, taking into account the mean efficiency problem J2 (13) in the frame (e1, e3) (Left) and in the frame (e1, e2)
(Right).

FIG. 19. Optimal biflagellate swimmer (bullhead swimmer) obtained by optimizing all parameters describing the head and
flagellum, taking into account the mean velocity problem J1 (13) in the frame (e1, e3) (Left) and in the frame (e1, e2) (Right).
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FIG. 20. Optimal biflagellate swimmer obtained by optimizing all parameters describing the head and flagellum, taking into
account the mean efficiency problem J2 (13) in the frame (e1, e3) (Left) and in the frame (e1, e2) (Right).

Appendix F: Convergence graph

Plots of the different convergence graphs of the SCBO Bayesian optimization algorithm applied to the shape
optimization of the various micro-swimming problems studied in this paper.
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FIG. 21. The curves are associated with the best current point during the various iterations and batches. The infeasible region
corresponds to iterations where constraints have not yet been met. (Left) Comparison between the best swimmer in [8] (red)
and the optimal shape while optimizing the head for the inverse efficiency (16). (Right) Comparison between the best swimmer
in [10] (red), the optimal shape while optimizing the head with α = 0.4π (green), and the optimal shape while optimizing the
head and α (blue) for the mean efficiency (13).
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FIG. 22. The curves are associated with the best current point during the various iterations and batches. The infeasible region
corresponds to iterations where constraints have not yet been met. (Left) Convergence graph for mean velocity problem J1,
(13), with one flagellum. (Right) Convergence graph for mean efficiency problem J2, (13), with one flagellum.
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FIG. 23. The curves are associated with the best current point during the various iterations and batches. The infeasible region
corresponds to iterations where constraints have not yet been met. (Left) Convergence graph for mean velocity problem J1,
(13), with two flagella. (Right) Convergence graph for mean efficiency problem J2, (13), with two flagella.
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