
HAL Id: hal-04699501
https://hal.science/hal-04699501v1

Submitted on 16 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thinking the certification process of embedded
ML-based aeronautical components using AIDGE, a

French open and sovereign AI platform
Filipo Studzinski Perotto, Anthony Fernandes Pires, Jean-Loup Farges,

Youcef Bouchebaba, Mohammed Belcaid, Eric Bonnafous, Claire Pagetti,
Frédéric Boniol, Xavier Pucel, Adrien Chan-Hon-Tong, et al.

To cite this version:
Filipo Studzinski Perotto, Anthony Fernandes Pires, Jean-Loup Farges, Youcef Bouchebaba, Mo-
hammed Belcaid, et al.. Thinking the certification process of embedded ML-based aeronautical
components using AIDGE, a French open and sovereign AI platform. International Conference on
Cognitive Aircraft Systems, May 2024, Toulouse, France. �hal-04699501�

https://hal.science/hal-04699501v1
https://hal.archives-ouvertes.fr


Thinking the certification process of embedded ML-based aeronautical
components using AIDGE, a French open and sovereign AI platforma

Filipo Studzinski Perotto1, Anthony Fernandes Pires1, Jean-Loup Farges1, Youcef Bouchebaba1,
Mohammed Belcaid2, Eric Bonnafous2, Claire Pagetti1, Frédéric Boniol1, Xavier Pucel1,
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Abstract: AIDGE is a novel software development platform for embedded Artificial Intelligence (AI). It is designed to
import or even learn Deep Neural Networks (DNN) and generate optimized code for target hardware archi-
tectures, in a completely open, transparent, and traceable manner. The purpose is to avoid dependence on
opaque and non-sovereign tools or elements, ensuring competitive performance and favoring the certification
of embedded Machine Learning (ML) components. In this paper, we present the preliminary analysis on the
potential benefits of using this platform in light of the rising aeronautical certification standards concerning the
use of ML into critical aeronautical systems, pointing possible steps toward certification, based on the artifacts
that can be automatically generated by AIDGE.

1 Introduction

The aerospace industry is showing increasing inter-
est in the possibility of embedding systems that inte-
grate software functions obtained by machine learn-
ing (ML) methods, especially deep neural networks
(DNN). However, aeronautical standards impose de-
velopment constraints on software components, and
these systems must be certified beforehand. The
severity of the certification rules varies depending on
the level of automation of each function and on its
criticality: the more critical and/or autonomous a sys-
tem is, the higher the level of assurance required.

The use of ML in the development of systems
whose malfunction would contribute to a major fail-
ure with potential threat to user safety presents com-
plex challenges in terms of certification, in particular
due to the non-deterministic and data-intensive nature
of the learning process, and due to the difficulty in
explaining the inferences obtained from the resulting
models. Another issue is the paradigm shift under-
lying machine learning, which is data-oriented, com-
pletely different from classical software development,
thus requiring specific standards and adapted tools.

aThis work is supported by a French government grant
managed by the National Research Agency under the
France 2030 program with the reference ANR-23-DEGR-
0001 – DeepGreen Project.

2 AI-Dedicated Platforms

Artificial Intelligence (AI) is at the heart of an impor-
tant international economic competition. The stakes
are high: AI is engendering a new industrial revolu-
tion and will be crucial for mastering many techno-
logical innovations. The USA is currently the world
leader in AI thanks to the economic power of GAFAM
(their giant IT companies), associated to prestigious
research centers, supported by public incentive and
promotion.

Today, the landscape of Deep Learning frame-
works in the world is dominated by American prod-
ucts, notably TensorFlow, released by Google in
2015, and PyTorch, released by Facebook in 2018.
The creation of AI technological components is then
strongly dependent on the major orientations of these
platforms. This software dependence also creates
hardware dependence, since some processors are bet-
ter supported, integrated and optimized, then benefit-
ing American component suppliers, such as Nvidia,
which is the dominant GPU-based processors man-
ufacturer. Some authors highlight the risk of digi-
tal colonialism (Arora et al., 2023). For this reason,
building a complete ecosystem to support the entire
value chain around AI, from the algorithm to the com-
ponent, is a strategic choice aimed at reducing French
and European dependence on American enterprises.



Figure 1: AIDGE workflow.

The mainstream ML research is focused on the cloud,
where giant neural networks are trained through
massive data processing and executed on powerful
servers. However, effective industrial solutions re-
quire frugality to deploy standalone embedded AI
systems, conceived for and transposed into small
components. In addition, ML-based components need
to be explainable and trustworthy to be used in critical
systems and infrastructures.

The DeepGreen project1 contributes to the com-
munity effort in searching for certifiable neural net-
work based components. DeepGreen is funded by
the French National Agency for Research (ANR), and
is led by a consortium composed of around twenty
major French research and industry actors in AI, em-
bedded technology, and microelectronics. The project
started last year and is scheduled to run until 2027.

The goal of DeepGreen is to develop an open-
source software platform for embedded AI called
AIDGE2, with a first complete version expected to be
available this year. The purpose of the project is to
establish a European AI platform, open, sustainable,
and sovereign, aimed at facilitating the deployment
of deep neural networks on limited physical devices
by taking into account the embedding needs and con-
straints that link models and hardware targets. The ca-
pacities of that platform (learning a DNN, importing
a DNN, verifying the model, optimizing the model,
generating source code, etc.), are illustrated in the
Figure 1.

In addition, since AIDGE aims to be a

1https://deepgreen.ai/en
2https://projects.eclipse.org/projects/technology.aidge

certification-friendly platform, it should be able to au-
tomatically generate evidences supporting arguments
for certification, and guide users on the necessary ac-
tivities that must be fulfilled during the development
cycle to meet the selected certification objectives.

3 Aeronautical Certification

Critical systems, which can put lives at risk, are gen-
erally subject to a certification process. A competent
authority evaluates the design conditions and the con-
formity of the product with regulatory requirements,
before authorizing its exploitation. For a system to
be certified, a set of documents constituting a struc-
tured argumentation must be presented in order to
demonstrate that all the recommendations and stan-
dards have been considered and respected. Thus, cer-
tification activities aim to provide justifications ex-
plaining why the development of a specific product is
trustworthy and safe, meeting the requirements of the
pertinent standards. Such comprehensive documenta-
tion should contain not only the results, but also the
input data, assumptions made, techniques applied, ra-
tionales for design decisions, etc.

In the aeronautics field, committees of experts
draft standards in order to respond to regulatory laws.
When these documents are recognized and validated
as Acceptable Means of Compliance (AMC), the cer-
tification of a system can be achieved by demonstrat-
ing compliance with them, which are then formalized
as Aerospace Recommended Practices (ARP). In Eu-



Figure 2: Difference between a standard ML platform and a certifiable one, in terms of hardware deployment (inspired from
(Gauffriau and Pagetti, 2023))

rope, the certification authority is EASA3. Although
the certification process is well covered by current
aeronautical practices in a majority of common areas
and use cases, the approach to compliance is evolv-
ing for certain new and disruptive technologies. This
is the case for solutions that use data-based machine
learning for training artificial neural networks, since
the development cycle of this type of software module
is significantly different from the classic software en-
gineering cycle, based on human programming activi-
ties, expert knowledge and well-defined mathematical
models.

The standard and widely used AI-dedicated plat-
forms, such as TensorFlow and PyTorch, even if avail-
able in open-source, do not meet certain basic cer-
tification requirements. The most restrictive issue
is that deployment on target hardware is carried out
by additional modules, either proprietary, or opaque
in their operation (Figure 2). The AIDGE platform
is intended to be a tool adapted to the construc-
tion of embedded and certifiable AI-based solutions.
AIDGE, which is also open-source, adheres to princi-
ples such as transparency, traceability, and determin-
ism in operations throughout the entire chain (from
learning, to various types of optimization, and con-
figuration for hardware deployment), enabling com-
plete reproducibility. This is a minimum starting point
for certifying ML-created software functions embed-
ded in critical aeronautical systems, which requires a
demonstration of reliability not only of the final prod-
uct, but also of all stages of production. Concerning
ML, this involves in particular:

(a) demonstrating the quality of the data sources, de-
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scribing all pre- and post-processing operations;
(b) justifying the suitability for the operational do-

main to which the system must respond;
(c) demonstrating the robustness of a model learned

automatically in the form of a neural network,
explaining the choice of architecture and hyper-
parameters, being able to deterministically repro-
duce the entire learning cycle;

(d) demonstrating that any optimization applied to the
model in order to facilitate its embedding does not
degrade the required quality of the inferences, be-
ing able to reproduce any optimization operation;

(e) carrying out and documenting verification and
validation operations, ensuring their reproducibil-
ity; and

(f) mastering code generation, compilation, and de-
ployment on target hardware, being able to go
back from the deployed system to the generated
source code, and from that to the model (graph
and parameters of the neural network), ensuring
that the embedded component complies with all
operational and performance constraints.
For a critical system or component to be certi-

fied, it must actually conform to the relevant standards
(be compliant), and that conformity must be demon-
strated (show compliance). The entire development
process must verify certain qualities, and the actions
put in place to ensure compliance must be clearly in-
dicated. Security risks must be identified and actions
to mitigate them must be indicated. Any decision re-
garding the choice of methods or alternatives during
the development phase must be enumerated and jus-
tified. In other words, it is necessary to ensure the
quality of the software developed, and the quality of



DAL Failure Effect Risk Req. Tracing

A Catastrophic: continuing the flight, takeoff or landing safely
is impossible, crippling overload of work for the crew.

– Several fatalities,
maybe airplane crash.

– traces to
executable.

B Hazardous: alarming reduction in safety margins or opera-
tional capacities, harmful overload of work for the crew.

– Serious injuries,
maybe fatalities.

– traces to
source code.

C Major: significant reduction in safety margins or operational
capacities, considerable increase in crew load.

– Discomfort to the occu-
pants, maybe injuries.

– traces to
source code.

D Minor: small reduction in safety margins, light increase in
crew load.

– Some inconvenience to
passengers.

– verification by
tests is enough.

E Insignificant: no effect on aircraft operational capability or
crew workload.

– No particular risks. – no particular
requirements.

Table 1: The 5 different development assurance levels (DAL), depending on the criticality of the system or function, following
DO-178C (EUROCAE, 2011).

Level Description

1A - Augmented perception assistance: AI can help human by analyzing or interpreting input signals.
1B - Decision-making assistance: AI can suggest actions or evaluate preferable choices.
2A - Human-AI Cooperation: AI performs specific tasks when asked for, under human supervision and authority.
2B - Human-AI Collaboration: they communicate and work together with shared initiative under human authority.
3A - Delegated AI Autonomy: AI in charge of whole task under human monitoring who can take control anytime.
3B - Full AI Autonomy: AI in charge of whole task, without human intervention or supervision.

Table 2: Six different levels of AI autonomy in aeronautics (EASA, 2023a).

the development process itself. In aeronautics, these
requirements are defined in the form of Development
Assurance Levels (DAL), defined in DO-178C (EU-
ROCAE, 2011) and ARP4754A (SAE, 2011), ranging
a system from level A (the most critical) to E (the least
critical), depending on the severity of consequences
that a malfunction may cause (Table 1).

4 Constitution of ML Standards

The software-oriented standard DO-178C (EURO-
CAE, 2011) and the hardware-oriented standard DO-
254 (EUROCAE, 2005) effectively regulate the de-
velopment of on-board computer systems for avion-
ics. However, DO-178C was not designed for soft-
ware that comprises functions implemented by artifi-
cial neural networks trained using machine learning
methods on a database. In fact, today, there are no
standards dedicated to the use of machine learning in
the context of onboard avionics systems, but several
recent initiatives aim to establish them. Among those
initiatives, there is the work carried out by EASA,
which recently proposed a roadmap for AI as well as
a classification of AI applications based on the level
of autonomy of the machine in relation to human ac-
tion (EASA, 2023a) (Table 2).

The joint initiative between EUROCAE4 and
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SAE5, called WG-114/G-34 working group, aims
to define a standard dedicated to the development
and certification of critical avionics products using
ML. The result of this work, ARP6983 (SAE, 2025),
still in progress, is expected to be published in the
next year. This document must address five chal-
lenges (Gabreau et al., 2021):

1. Due to the “black box” nature of the data-driven
training mechanism underlying ML, it is difficult
to verify the link between high-level requirements
and the learned model, as well as to validate data-
based requirements. The standard must therefore
indicate ways to open this black box in order to
clearly specify, validate and verify ML require-
ments.

2. Since the ML model is essentially produced from
data using automatic statistical methods, it is nec-
essary to ensure their representativeness and their
completeness in relation to the needs of the sys-
tem, which can prove complex (bias during the
collection data, lack of relevance to the problem,
etc.), in coherence with the defined operational
design domain (ODD).

3. The standard must guide the user in evaluating
the model and learning robustness, assessing both
how dependent the model is on the way it was
trained and how stable and predictable the infer-
ence is in relation to variations in the input data.

5Society of Automotive Engineers



Figure 3: The learning phase (in green) and the inference phase (in yellow) in the W development process of an assured ML
solution (EASA, 2020; EASA, 2021b)

4. The standard must assess the explainability and
interpretability of the model, possibly identifying
causality between the input dataset and machine
learning outputs.

5. Risk mitigation must be assessed by defining the
safe operating framework of the ML product in
its ODD, as well as secure fallback procedures in
case of deviation.
In fact, in order to analyze what kind of ev-

idences (for feeding certification arguments) could
be automatically, or semi-automatically generated by
a certification-friendly AI-dedicated platform, like
AIDGE, the first step is to enumerate a list of certi-
fication objectives, then to develop them in the form
of argument patterns, identifying the kind of arti-
facts that can support compliance with each objec-
tive. Beyond the ARP6983, not yet published, other
documents try to propose necessary certification ob-
jectives. The most complete are the EASA Concept
Papers – Guidance for Machine Learning Applica-
tions (EASA, 2021a; EASA, 2023b) which propose
a first set of objectives and means of compliance for
the certification of critical ML-based systems.

The DEEL White Paper – Machine Learning in
Certified Systems (Delseny et al., 2021) identifies
properties that ML-based systems should present and
which can have a positive impact on certification, like:
auditability, data quality, explainability, maintainabil-
ity, resilience, robustness, verification, and clear spec-
ification. The Concepts of Design Assurance for Neu-
ral Networks reports (EASA, 2020; EASA, 2021b),
concerning the use of ML in critical avionics, iden-

tified a W-shaped development cycle for machine
learning applications (Figure 3).

Other documents making the exercise of enumer-
ating objectives or challenges, or suggesting prac-
tices for certifying ML components are (AVSI, 2020;
Hawkins et al., 2021; LNE, 2021; Ashmore et al.,
2021; Dmitriev et al., 2022; Gabreau et al., 2022;
Gauffriau and Pagetti, 2023; MLEAP, 2024; SAE,
2021). A comparative study of the different exist-
ing reports on ML from different fields (aeronautics,
automotive, etc.), notably carried out in the context
of the certification objectives covered in each doc-
ument and suggested means of compliance, is pre-
sented in (Kaakai et al., 2022).

Figure 4: GSN-style graph to represent an assurance case
for a given certification objective. Evidences are artifacts
that, in some cases, can be generated with the help of the AI
platform.



Once the complete set of certification objectives
established, the next step is to analyze them in order
to identify possible means of compliance. To do so, a
common approach is to break down each certification
objective in the form of argumentation patterns, also
called “assurance case patterns” (Hawkins and Kelly,
2009; Hawkins and Kelly, 2010; Delmas et al., 2020),
where an argument constitutes a structured reasoning
based on assertions (goals) and facts (elements of jus-
tification). Such approach has been applied in aero-
nautical certification (Hawkins et al., 2013; Boniol
et al., 2019; Boniol et al., 2020; Polacsek et al., 2018),
and in particular for ML in (Gabreau et al., 2022;
Hawkins et al., 2021; Damour et al., 2021; Grancey
et al., 2022). An example of assurance case pattern
using the GSN notation (Kelly and Weaver, 2004) is
shown in the Figure 4.

5 Preliminary Results, Discussion,
Conclusion, and Perspectives

The work within the DeepGreen project is still in its
first steps. Nevertheless, some general characteristics
have been identified to ensure that the proposed AI-
dedicated platform (AIDGE) will respect the certifi-
cation objectives and will be able to generate useful
artifacts to fill the assurance cases:
1. determinism: all the operations executed with

the help of the platform (dataset split, learning,
optimization, quantization, translation into inter-
mediate model, decomposition into items, trans-
lation into source code, compilation, etc.) must
be deterministic, i.e. all the necessary parameters
and random seeds must be controllable and ex-
plicit, ensuring that repeating the operations will
always lead to exactly the same results.

2. traceability: all the subsequent models, gener-
ated by chained transformations, must have their
parts identified in order to trace from where they
come. For example, each neural network layer
must be commented, annotated, and identified
identically from the ML model to the generated
source code.

3. reproducibility: the complete process leading
from the data to the implemented model must be
reported, identifying the order, inputs and param-
eters used on each operation, allowing to repro-
duce all the activities of the development cycle
obtaining the same results.

4. formalization: to each manipulated model, ob-
ject, and operation, a complete, explicit, non-
ambiguous formal description language (syntax

and semantics) and mathematical structure must
be associated.

To be able to generate the artifacts necessary to
certification, the entire process must be encapsulated
in the form of a project, including the data used for
training and verification, an explicit ODD description,
and the description of the physical architecture into
which the executable code will run (Figure 5). All
those elements must be stored together, in a structured
manner, to allow verification and reproducibility.

Some works in the literature propose formal struc-
tures for a rigorous ODD characterization in ML-
based components (Kaakai et al., 2023; Adedjouma
et al., 2024). Such kind of ODD representation can
be used within AIDGE, allowing the user to enter
ODD parameters, like value intervals, edge and cor-
ner cases, then analyze the learning, validation, and
test datasets on the ODD, and produce artifacts to
demonstrate their adequacy.

Similarly, some works in the literature propose
formal structures to represent the important aspects
of the hardware architecture, relative to the supported
operations, numerical precision, number of cores, size
of different levels of cache memories, bus speed, etc.
In (Binder et al., 2022) a procedure for describing
abstract processor models is presented, enabling the
evaluation of predictable execution time and security
assessments. Similar representation could be used
within AIDGE to represent the target hardware archi-
tecture, with the possibility of assessing its compati-
bility with generated code, and even estimating worst
case execution times (WCET).

In practice, building a high-quality ML system for
a specific task relies on data-scientist expertise, de-
manding several iterations of trial and error exper-
imentation to correctly fine-tuning the learning pro-
cess and the model architecture. Automated Machine
Learning (AutoML) is an active research topic in the
field, proposing a set of techniques for automating the
ML development pipeline, which includes data prepa-
ration, feature engineering, hyperparameter optimiza-
tion, and neural architecture search (He et al., 2021).
Several of those activities are similar to the ones de-
manded by certification. One of the possible ways to
improve a certification-friendly AI-dedicate platform,
like AIDGE, is by adapting certain of those AutoML
techniques to automatically produce verification re-
ports concerning, for example, the choice of neural ar-
chitecture, by systematically testing performance and
robustness of different configurations.

Finally, a certification-friendly AI-dedicated plat-
form should allow to control and adapt the activi-
ties within the development cycle by maintaining the
compliance state with the defined objectives, indicat-



Figure 5: Draft of what a project .aidge could be, with the representation of the imported or learned neural network, in an
open, formal and non-ambiguous format, associated with other elements necessary for verification, validation and certification
of the network, such as the ODD, and the description of the target hardware architecture.

ing to the user the remaining needed activities to gen-
erate necessary artifacts, in the same way as suggested
by (Idmessaoud et al., 2024).
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