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With the increasing demand for edge AI application scenar-

ios, as the most popular deep learning models, Convolutional

Neural Networks (CNNs) need advanced solutions for the de-

ployment of highly energy-efficient implementations. This

paper presents a novel approach to improve the efficiency of

CNN inference on Field-Programmable Gate Arrays (FPGAs)

using Partial Reconfiguration (PR). Our method deconstructs

CNN topology into different layers for runtime reconfigu-

ration with fewer resources, aiming to significantly reduce

static power and overall energy consumption. To identify

the conditions for practical PR efficiency, we present a thor-

ough design space exploration study with three CNN bench-

marks, each evaluated across three different implementations.

The comparison results demonstrate that our PR approach can

achieve up to 3.88 and 1.67 times energy savings compared to

software and static hardware implementations, respectively.

These results also show that the benefits of PR improve with

the depth of the network, suggesting very promising levels of

gains as the network gets larger and under the key conditions

of using fast optimized reconfiguration controllers and me-

thodical system-level exploration of the increased hardware

implementation complexity.

1. INTRODUCTION

In recent years, the popularity of Artificial Intelligence (AI) in
various domains has led to a growing demand for research
in power efficiency, particularly due to significant computing
requirements in edge AI. Embedded deep learning models, es-
pecially Convolutional Neural Networks (CNNs), have received
a lot of interest from embedded development research which
quickly started to investigate reconfigurable accelerators and FP-
GAs to combine high performance, low energy, and flexibility. In
this regard, Partial Reconfiguration (PR) is now a well-identified
technique that can be also used to push FPGA adaptivity one
step further. This technique allows modifying an FPGA config-
uration by loading another configuration file, often referred to
as a "partial" BIT file, during runtime. In general, the FPGA is
partitioned into different areas called Reconfigurable Regions

(RR) which are physically independent and could also theoreti-
cally be run in parallel. While a RR is running, it can be locally
configured independently with a new partial BIT file without
compromising the integrity of the other running regions. There-
fore, this technique of local dynamic reconfiguration enables the
configuration of more system functions on a smaller surface area,
consuming less power, and allows running regions in parallel,
thereby enhancing performance. Correct exploitation of this
means potentially bringing significant additional benefits on top
of those resulting from pure static FPGA allocation, but the coun-
terpart is design complexity to identify relevant deployments
which can quickly explode with the application complexity and
the number of hardware functions.

In this work, we address this with the help of a previously
defined methodology for efficient mapping of large and complex
application graphs on manycore reconfigurable accelerated sys-
tems allowing dynamic and partial reconfiguration [11]. Section
2 first reviews existing works on CNN hardware acceleration
in relation to dynamic reconfiguration. Section 3 addresses the
global hardware software investigation methodology including
the central Design Space Exploration (DSE) approach dealing
with PR. Section 4 reports experiment studies of three CNN
benchmarks and a comparison with other works. Section 5
finally draws the main conclusions of the results with future
direction for research.

2. STATE OF THE ART

Despite the very abundant literature investigating the question
of FPGA acceleration for Deep Learning, PR only started to be
addressed in quite recent works. Relatively few papers have
therefore investigated how to benefit from the capabilities of
PR to support more specifically the computation cost of CNN
processing. Ideally, PR would rely on sequentially scheduling
each layer of a CNN onto one or a few RR(s) to reduce the overall
size of the reconfigurable area. In other words, the entire share of
hardware functions would be mapped dynamically to RRs and
no static part would remain in the design, a concept we’ll refer to
as “reductive PR". However, in practice, mainly due to excessive
reconfiguration times, a majority of works restrict the use of PR
to a smaller part of the system, referred to as “functional PR".

This is for example the case in [1] (2019) where PR is used to
add layers at the convolution level when needed, to allow switch-
ing dynamically from shallow to deeper topologies, providing
this way an adaptive capacity to adjust the model structure and
overall classification accuracy at run-time. Another technique
is described in [4] (2021) where a macroblock-based PR imple-
mentation is defined to let the dynamic reconfiguration of parts
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Fig. 1. Overview of our approach workflow. Firstly, we perform training using Keras to process the weights and bias values of the CNN model.
Secondly, with the help of HLS tools, we synthesize our CNN model described in C to get the RTL IPs, which subsequently enable us to measure
the inference time, power, and resource quantity. These characteristics allow the modeling of target FPGA and CNN layers, which are necessary to
explore the implementation solutions using FoRTReSS approach.

of the CNN. Application to a LeNet topology addresses the re-
configuration of two different fully connected layers, enabling a
switch between two network versions for either number recog-
nition or letter recognition. Functional PR is also involved in [5]
(2014) where a PR strategy is used to implement sigmoid and
hyperbolic tangent functions in a Multi-Layer Perception (MLP),
or in [2] (2022) and [3] (2020) to exploit different quantization
schemes or bit widths (12, 10, 8, 7, 6, 5 bits).

In the category of works addressing a reductive PR approach,
fpgaConvNet [6] (2016) is the first proposed approach in the
literature, up to our knowledge. In their work, the authors de-
fine an automated design flow for mapping CNNs on FPGAs
considering design space exploration and High-Level Synthesis
(HLS). They employ a formalization technique to automatically
explore parallelism such as intra-layer unrolled execution and
inter-layer pipeline to tune the performance-resource tradeoff
and explore the design space. It should be noted here that, in
this approach, the authors intend to map each layer on the entire
FPGA without partitioning them into RRs. As a result, they
need to employ full FPGA reconfiguration before the execution
of each layer. They address the associated reconfiguration la-
tency problem by pipelining execution and reconfiguration to
overlap and amortize the associated latency overheads. How-
ever, this solution does not practically remove the important
reconfiguration times of the full FPGA and especially their asso-
ciated energy cost. For instance, the reconfiguration latency for
the entire XC7Z020 device using PCAP on a ZedBoard platform
is around 28 ms. Nevertheless, the results show very promising
savings and efficiency from FPGA mapping with this dynamic
reconfiguration process.

[7] (2018) is a second significant contribution addressing PR.
Starting out from an initial statement on excessive reconfigura-
tion times, which range from 100 to 150 ms in their application
study of an eight-layer CNN for facial landmark detection, the
authors describe a DSE process in which they consider overlap-
ping reconfiguration of parts of the inference path with other
parts that are executed in software. Pooling and activation func-
tion layers run therefore in software while they alternate soft-
ware and hardware executions of convolutional layers. The

approach allows reducing the overall execution time to a factor
of 2.24 compared to pure software execution. Finally, among
this class of PR, [7] is the sole work, up to our knowledge, that
considers the critical partitioning problem inherent with PR. A
formal DSE approach is defined to both compute the optimal
configuration of each layer and decide how to split the network
into chunks that will be dynamically programmed via PR. Ap-
plication on Binary Neural Networks (BNNs), specifically the
CNVW1A1 Binary Neuralnet from Xilinx, reports a clear poten-
tial for resource reduction against static FPGA allocation, but
with highly varying degrees of performance - occupation trade-
offs and unclear performance penalty from large reconfiguration
times.

In conclusion, reductive PR is the most interesting approach
for reducing FPGA logic requirements and thus extending the
efficiency of static FPGA acceleration. The potential is vast for
CNNs because most part of their processing can be moved to
hardware, and this grows very quickly with the size of the topol-
ogy. However, two important conditions must be met: i) a
methodical DSE approach allowing the identification of suitable
solutions in the very large and complex design space involved
with PR and ii) important optimization of reconfiguration pro-
cesses are also mandatory. In the following, we investigate this
by using i) a previously defined methodology for the efficient
mapping on many-core reconfigurable accelerated systems al-
lowing PR [11] and ii) a very fast optimized reconfiguration
controller [10].

3. PARTIAL RECONFIGURATION FLOW
In this study, we investigate the potential of using PR to improve
the energy efficiency of CNNs on FPGAs (Fig. 1). A SystemC
simulation methodology for modeling, scheduling, and estima-
tion of multiprocessor reconfigurable systems called FoRTReSS
[11] is used to explore the mapping of CNNs on reconfigurable
platforms supporting PR. In this approach, applications are rep-
resented as Control Data Flow Graphs (CDFGs) consisting of
several tasks, each with multiple possible implementations that
can be hardware-mapped to the reconfigurable area or software-
mapped to processor cores.
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Table 1. Software/hardware characterization of GTSRB application tasks on Zedboard

Task (i) Execution unit (j) Ti,j (ms) Pstatic
i,j / Pidle

i,j /Prun
i,j (mW) Nslice/Nbram/Ndsp

img_load Core 0.730 45 / 8 / 257.7 –

conv1(5x5, 6)
Core
RR

2.247
0.898

45 / 8 / 257.7
– / 42 / 67

–
1462 / 0 / 25

maxpooling1
Core
RR

0.023
0.024

45 / 8 / 257.7
– / 41 / 2

–
90 / 0 / 0

conv2(5x5, 16)
Core
RR

1.334
1.285

45 / 8 / 257.7
– / 42 / 62

–
450 / 2 / 25

maxpooling2
Core
RR

0.009
0.008

45 / 8 / 257.7
– / 41 / 3

–
78 / 0 / 0

conv3(5x5, 120)
Core
RR

0.331
0.066

45 / 8 / 257.7
– / 41 / 47

–
256 / 0 / 15

fc1(84)
Core
RR

0.066
0.105

45 / 8 / 257.7
– / 41 / 2

–
30 / 0 / 1

fc2(43)
Core
RR

0.025
0.041

45 / 8 / 257.7
– / 41 / 2

–
21 / 0 / 1

softmax Core 0.010 45 / 8 / 258 –

To identify relevant implementation solutions in this very
large design space, it is crucial to consider execution time and
resource consumption of each task, but also power, energy, and
reconfiguration times. Hardware implementations are defined
by considering actual task resources and performance, which
can be based on HLS and lower-level estimates from FPGA syn-
thesis tools. The target architecture is described by detailed
FPGA resource organization and a set of processor cores. Us-
ing the characterization of the application tasks and the target
platform architecture, FoRTReSS can automatically explore all
possible RRs and finally produce a set of mappings fully sched-
uled on different cores and RRs. FoRTReSS provides energy
consumption estimates for the full application and for software
and hardware implementations of each task as well, allowing
decisions on optimal energy efficiency at different levels.

In the following, we introduce the approach for modeling
CNN applications and target platforms, as well as the explo-
ration of design space by FoRTReSS. Specifically, in Section III.C
and Section III.D, we provide an example showing the character-
ization and exploration results of a GTSRB (German Traffic Sign
Recognition Benchmark, 32x32 color traffic sign images) CNN
topology.

A. High-level Synthesis
The definition and simulation of the original CNN topology, also
producing learning weights and bias values, are processed using
Keras. Pure synthesizable C code has been developed to help
fast prototyping of ConvNets and comprehensive hardware/-
software deployment on FPGA following an HLS methodology
of Xilinx. A 16-bit quantization scheme (Q8.8) is first applied
currently to the reference 32-bit floating-point weight and bias
values to produce a fixed-point model. The subsequent layer-
based implementation supports full hardware implementation
of 2D convolutional, max-pooling, and fully connected layers.
Other processing functions such as file reading, pre-processing
and post-processing of images are kept in software. This ap-
proach allows the creation of a wide range of popular network

topologies, with quasi-automated RTL design ensuring complete
practical implementation and execution on real FPGA platforms.
Intra-layer parallelism is explored in terms of loop unrolling,
pipelining, and array partitioning.

For each layer of the network, we explore loop-level paral-
lelism which remains a manual process in the RTL design flow.
Within the entire network architecture, convolutional layers are
the most computationally demanding layers. The 2D convolu-
tion is based on six nested loops processing output channels,
output feature maps (rows and columns), input channels, and
K*K convolution kernels. Vivado HLS offers different pragmas
to optimize the scheduling and resource allocation within these
nested loops. A pipeline directive at the input channel level gives
the best tradeoff between performance and on-chip resources.
The inner nested loops are automatically unrolled by Vivado
HLS, provided concurrent read/write accesses to the different
arrays are possible. The input arrays are therefore partitioned
adequately to let them to be stored in different BRAMs.

B. System Modeling
All the measurements and estimations described in the following
constitute the necessary elements of an abstract model of the
complete system, which can be further used by FoRTReSS DSE to
process fast and reliable CNN mapping analysis and scheduling
simulations.
B.1. Layer-wise processing functions:

For the CNN model in FoRTReSS, each layer is treated as an
individual task, which may have a hardware or a software imple-
mentation. For hardware implementations, area and power are
estimated for each task using Xilinx post-synthesis estimators.
The power estimated for hardware implementations includes
two components: idle and running power. Idle power represents
the power needed by a task when configured in a RR but not ac-
tively executing. Running power refers to the additional power
consumed during task execution within the RR. Execution times
are derived from Vivado HLS reports. For software implemen-
tations, power characterization of a task is based on the power
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Fig. 2. Scheduling simulation results for GTSRB PR execution with two RRs

model of the Processing System (PS) of the platform. Execution
times are derived from real measurements on one CPU core.
B.2. Reconfigurable platform:

This work targets Zynq series, specifically with a ZedBoard
(dual-core Arm Cortex-A9, XC7Z020-CLG484-1) from the
Zynq-7000 family and a ZCU102 (quad-core Arm Cortex-A53,
XCZU9EG-FFVB1156-1) from the Zynq Ultrascale+ family, both
of which support Dynamic Partial Reconfiguration (DPR). For
the target reconfigurable platforms considered, modeling is
usually divided into two distinct sections: the PS and the Pro-
grammable Logic (PL). The power model for PS is composed
of three parts: static, idle, and active. The construction of this
power model refers to the processor power model presented in
[8], which can be generally expressed by the following formula:

Pcpu = Pstatic
cpu + α ∗ Pidle

cpu + β ∗ Prun
cpu (1)

where α and β are the coefficients expressing the idle and run-
ning contribution respectively for a given type of CPU.

Concerning the PL, we model the amount and arrangements
of the different resources (logic cells, RAM blocks, DSP blocks)
of the entire FPGA using XML files. For the set of RRs generated
by FoRTReSS, the power model is similarly divided into three
components: empty, idle, and running [9]. The empty (static)
power corresponds to the power consumption of a region when
it is unoccupied, which is estimated proportionally to the full
static power consumption of the FPGA device, depending on
the FPGA resources within the region. Idle and running power
are associated with the task when it is configured and executed,
respectively, on the corresponding region. Each component of
the power model mentioned above is derived from Xilinx Power
Estimator after logic synthesis.

Additionally, when implementing hardware with dynamic
reconfiguration, it is fundamental to address reconfiguration effi-
ciency. Reconfiguration times are excessive using original Xilinx
controllers (ICAP, PCAP) which affects both performances and
energy very significantly. Our approach to this well-known
DPR problem is based on using the currently known best-
performance reconfiguration controller in the literature, UPaRC
(Ultra-fast Power-aware Reconfiguration Controller [10]), which
can reach a reconfiguration throughput of 1.433GB/s. The recon-
figuration controller is mainly characterized by two parameters,
Precon f and Trecon f , which characterize respectively the associ-
ated reconfiguration power and performance. Precon f is extrapo-
lated from [10] to consider the maximum operating frequency of
362.5 MHz (thus estimated at 460 mW). It is worth noting that

due to its relatively small size (around 1000 slices), the associ-
ated idle power is set to zero. Reconfiguration time is estimated
as follows:

Trecon f =
Bit f ile size

Recon f controller throughput
(2)

where the size of the bitfile can be calculated by FoRTReSS,
by evaluating the quantity of resources of the RR. Similarly to
the hardware static power, the reconfiguration time of a region
depends on the size of that region, implying that smaller recon-
figuration regions should be selected.

B.3. Application to GTSRB / ZedBoard:

The following details an example of CNN characterization. The
application is a seven-layer convolutional neural network target-
ing GTSRB on ZedBoard. Key features of the implementation
model include task id i, execution unit j (core or RR), execu-
tion time Ti,j, power Pi,j, and the number of FPGA resources
Nslice, Ndsp, and Nbram for hardware implementations. Each
task encompasses one or more implementations, with at least
one software implementation.

As illustrated in Table 1, the hardware acceleration effect is
significant for convolutional layers, especially for conv1 and
conv3. In cases where energy consumption is also advantageous
and depending on other scheduling constraints, these hardware
implementations will be considered in the first place for execu-
tion. Conversely, for layers with approximately equal execution
time on software and hardware (pool1, pool2) or faster execution
on software (fc1, fc2), also considering the reconfiguration over-
head, the allocation would be made preferably on a software
core.

C. Design Space Exploration

C.1. System scheduling:

FoRTReSS generates and simulates full system mappings and
associated schedulings for various possible deployments of the
application /platform model. An illustrative example of this is
provided in Fig. 2, which presents one implementation solution
for the GTSRB topology using two RRs.

This scheduling trace illustrates the detailed and actual allo-
cation, execution, and reconfiguration of each individual task.
It additionally shows power and energy consumption at each
scheduling event, for possibly several hyperperiods. Table 3
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Table 2. Efficiency comparison of software and hardware (static and PR) implementations for MNIST, GTSRB (Zedboard) and
CIFAR-10 (ZCU102)

Implementation
Execution
time (ms)

Average
Power (mW)

Energy
consumption (mJ)

MNIST SW 11.565 310.7 3.593

MNIST Static HW 2.205 468.5 1.033

MNIST PR HW 4.466 458.8 2.049

GTSRB SW 4.775 310.4 1.482

GTSRB Static HW 3.112 357.3 1.112

GTSRB PR HW 3.594 256.5 0.910

CIFAR-10 SW 198.697 220.1 43.734

CIFAR-10 Static HW 14.078 1341.2 18.882

CIFAR-10 PR HW 16.535 682.0 11.277

details values of energy, performance, and power per each CNN
layer, from GTSRB PR scheduling simulation with two RRs on
ZedBoard.

C.2. RR partitioning:

Fig. 3 illustrates the placement of two RRs as part of a PR
implementation solution for the GTSRB topology on Zedboard.
FoRTReSS defines several candidates RRs based on the resources
available on the device and the characterization of tasks. To
make the best choices, these RRs are further evaluated using a
cost function. This takes into account how complex their shape
is, how many tasks they can handle, and how much of their
resources are left unused, known as internal fragmentation [11].
This careful evaluation helps in defining and picking the most
relevant regions for the tasks and identifying the best FPGA
partitioning for the global application.

4. VALIDATION STUDY

In the following, we address the design space exploration of
three typical CNN benchmarks by comparing their software and
hardware implementations (static and PR): MNIST (Modified
National Institute of Standards and Technology database, 28x28
grayscale handwritten digits), GTSRB and CIFAR-10 (Canadian
Institute for Advanced Research, 32x32 color object and animal
images). We consider three standard topologies associated with
these benchmarks, that are further trained and validated us-
ing Keras to serve as a reference for accuracy and provide the
weights and biases used for CNN inference in the corresponding
HLS C code. For the topologies associated with MNIST and
GTSRB, we analyze different implementations (software, static
hardware, PR hardware) on ZedBoard using FoRTReSS. For
CIFAR-10 we consider a ZCU102 platform since ZedBoard is too
small. For PR hardware, we only report the best energy-efficient
solution with the optimal number of RRs.

On top of these three benchmarks, we also address a short
comparison with existing works related to LeNet-5 on XC7Z020,
in a way to better assess the relevance of numbers and conclu-
sions reported.

A. CNN Benchmarks Exploration Results
A.1. MNIST:

The first benchmark is a five-layer CNN applied to the MNIST
dataset (improved LeNet-5), composed of two convolutional
layers, two max-pooling layers, and two fully connected layers
(28x28-20C5-P2-40C5-P2-400-10). The corresponding classifica-
tion accuracy is 99.05%. The best energy-efficient solution for
PR HW identified by FoRTReSS DSE is based on using two RRs.

Fig. 3. Layout of RRs placement for the solution HW PR with
two RRs for GTSRB topology on Zedboard

For the MNIST dataset, both hardware implementations per-
form better in energy consumption than software (Table 2). PR
HW reports 2.59 times faster and 1.75 times better energy effi-
ciency compared to software. However, due to reconfiguration
times, PR is 2.03 times slower than static hardware, particularly
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Table 3. Power and performance breakdown for GTSRB PR execution on Zedboard
Task (i) Energy (mJ) Execution time (us) P_core (mW)[1] P_RZ (mW)[1] P_Reconf (mW) P_total (mW)

img_load 0.230 730 45 + 8 + 257.7 6.93 + 0 + 0 0 317.7

config_conv1 0.116 222 (RZ 1) 45 + 8 + 0 6.93 + 0 + 0 460 519.9

running_conv1 0.152 898 45 + 8 + 0 6.93 + 42 + 67 0 168.9

running_pool1 0.007 23.1 45 + 8 + 257.7 6.93 + 42 + 0 0 359.7

config_conv2 0.117 222 (RZ 1) 45 + 8 + 0 6.93 + 0 + 0 460 519.9

running_conv2 0.211 1285 45 + 8 + 0 6.93 + 42 + 62 0 163.9

running_pool2 0.002 8.98 45 + 8 + 257.7 6.93 + 42 + 0 0 359.7

config_conv3 0.022 38.3 (RZ 2) 45 + 8 + 0 6.93 + 42 + 0 460 561.9

running_conv3 0.013 66 45 + 8 + 0 6.93 + 83 + 47 0 189.9

running_fc1 0.026 65.9 45 + 8 + 257.7 6.93 + 83 + 0 0 400.7

running_fc2 0.010 24.9 45 + 8 + 257.7 6.93 + 83 + 0 0 400.7

softmax 0.004 10 45 + 8 + 257.7 6.93 + 83 + 0 0 400.7

Total 0.910 3594 - - - -
1 P = P_static + P_idle +P_run

for the conv2 layer, as the associated RR is quite large, covering
nearly half the size of the FPGA device. The corresponding
reconfiguration time ends up representing around 25% of the
total CNN inference time, also negatively impacting the energy
consumption of the PR solution which is 1.98 times less energy-
efficient than static hardware.

It is worth noting that in terms of average power, and despite
previous net energy benefits, both static and PR HW consume
more than software (468.5 mW and 458.8 mW, vs. 310.7 mW).
This is due to the relatively high static power consumption of
FPGA devices compared to hard IP cores on Zynq. In terms of
resource occupation, Table 4 reports a slight increase of Slices
and DSPs for PR HW, and around 2x more BRAM compared
to static HW. This can be attributed to the fact that the total
resources covered by the rectangular RR generated for conv2
marginally exceed those of the static implementation.
A.2. GTSRB:

The topology used with the GTSRB dataset consists of three
convolutional layers, two max-pooling layers, and two fully
connected layers (32x32-6C5-P2-16C5-P2-120C5-84-43). Classifi-
cation accuracy is 85.20% for this benchmark. The best energy-
efficient solution for PR HW identified by FoRTReSS DSE is
based on using two RRs.

Like previously on the MNIST dataset, hardware solutions
have better performance and energy efficiency compared to
software execution (Table 2). PR HW brings 1.33 times (24.7%)
better inference time and 1.63 times (38.6%) higher energy ef-
ficiency compared to software. In terms of execution time, PR
HW remains slightly slower (+15.5%) than static HW due to the
additional reconfiguration times.

However, in contrast to the MNIST benchmark, PR HW is 1.22
times (18.2%) more energy-efficient than static implementation.
With more layers, there is also more potential for hardware
acceleration and better efficiency. In addition, for this benchmark
PR HW saves more resources compared to static HW (Table 4),
resulting in a more significant improvement of 28% in average
power consumption (256.5 mW vs. 357.3 mW). Comparing with
software (310.4 mW) further highlights the benefits of PR on

this example, but also the relatively high cost of static power
inherent to static HW implementations.
A.3. CIFAR-10:

The last benchmark, which is also the largest topology, con-
sists of six convolutional layers, three max-pooling layers, and
one fully connected layer (32x32-32C3-32C3-P2-64C3-64C3-P2-
128C3-128C3-10). It is applied to the CIFAR-10 dataset with a
classification accuracy of 79.2%. The best energy-efficient solu-
tion for PR HW identified by FoRTReSS DSE utilizes two RRs.

For this dataset, as demonstrated in Table 2, PR HW continues
to report faster performance and lower energy consumption than
software. It is notably 12.02 times (91.7%) faster and 3.88 times
(74.2%) more energy-efficient, indicating a more pronounced im-
provement compared to the two previous topologies. Similar to
the GTSRB benchmark, the PR implementation is slightly slower
(+17.5%) than static HW due to reconfiguration overheads.

It should be noted here that the CIFAR benchmark, the largest
CNN example in this application study, is where PR has the best
results against static implementation with 1.67 times (40.3%)
more energy efficiency. In this benchmark, PR HW provides the
most important FPGA resource savings among the three bench-
marks examined as well (Table 4). Similar to MNIST and GTSRB,
PR HW occupies more BRAM resources than static HW. This is
primarily due to the fact that the tasks within this topology uti-
lize fewer BRAMs. However, FoRTReSS generates rectangular
RRs that occupy a full column of BRAMs. As a consequence, ad-
ditional BRAMs are present and contribute to the total increased
count. Conversely, it achieves approximately 40% savings for
Slice and DSP resources. This results in better average power
consumption for PR against static HW with 49% improvement.

Unlike GTSRB, here PR HW is less power efficient than soft-
ware (682.0 mW vs. 220.1 mW). This is due to the size of the
network, featuring more layers, and leading to increased re-
source usage and higher static power in comparison to GTSRB.
Static HW is not very efficient for the same reason, consum-
ing up to six times more average power than software for this
relatively large topology.

In light of these results, it appears that PR can notably im-
prove the processing efficiency of static hardware acceleration



Research Article © 2024 8

Table 4. Resource occupation of hardware implementations (static and PR) for MNIST, GTSRB (Zedboard) and CIFAR-10 (ZCU102)

Implementation Functions on HW Nslice Nbram_18k Ndsp

MNIST Static HW
conv1, conv2, fc1

6764 / 13300 99 / 280 136 / 220

MNIST PR HW (2 RRs) 6900 / 13300 220 / 280 140 / 220

GTSRB Static HW
conv1, conv2, conv3

2168 / 13300 2 / 280 65 / 220

GTSRB PR HW (2 RRs) 1900 / 13300 20 / 280 60 / 220

CIFAR-10 Static HW conv2, conv3, conv4,
conv5, conv6

28408 / 34260 6 / 1824 777 /2520

CIFAR-10 PR HW (2 RRs) 18360 /34260 48 / 1824 480 / 2520

for CNNs, provided certain conditions are met. This is clearly
the case for the two largest topologies investigated, GTSRB
and CIFAR-10, with respectively 1.22 (18.2%) and 1.67 times
(40.3%) more energy efficiency than static hardware. However,
for MNIST which is the smallest topology, fewer layers means
less hardware acceleration and RR reuse potential, making PR
improvements less impactful.

B. Comparison with Other Works
In this section, we attempt to compare our results to other works.
It should be noted here that it is difficult to identify some works
for this, with so many design options: CNN benchmark and
topology, FPGA device, and implementation parallelism. Most
works report on actual performances, among which few allow
for power and energy comparison, also considering both static
and dynamic solutions. In the following, we have been able to
set up an interesting comparison of the MNIST benchmark with
fpgaConvNet [6], in terms of performance. Indeed the paper
reports a measured performance of 0.48 GOp/s for a LeNet-5
CNN (32x32-6C5-P2-16C5-P2-120-84-10, 98.57%) on an XC7Z020
device at 100 MHz. [13] (2019) is another work addressing the
implementation of LeNet-5, but there is no PR involved. How-
ever, they report comparable performance with 0.343 GFLOPS
on the ZYBO Z7 board (XC7Z020) at 100 MHz.

Our results on the MNIST (28x28-20C5-P2-40C5-P2-400-10,
99.05%) on an XC7Z020 device at 100 MHz, despite higher topol-
ogy complexity, reflect a similar level of performance with 0.83
GOp/s for the static implementation and 0.41 GOp/s for the
dynamic implementation. In other words, we are at the same
level of performance with [6] but for a twice bigger topology
with approximately 50% fewer resources for the dynamic solu-
tion (cf. Table 4). This would allow to target smaller devices
for implementation, thus highly reducing power consumption
when considering that MNIST is the least energy efficient of the
three benchmarks investigated.

5. CONCLUSION AND PERSPECTIVES
In this work, we proposed a novel and elegant approach to
improve the efficiency of CNN inference on FPGAs exploiting
reductive PR. This approach partitions the original CNN topol-
ogy based on various layers and reconfigures the PL with a
smaller number of reconfigurable resources at runtime. This
methodology greatly helps to explore automatically different
FPGA partitioning and arrangements of RRs and to identify
more energy-efficient hardware/software mapping solutions
given the extended size of the PR codesign space.

We assessed this approach on three different network exam-
ples, showing potential improvements reaching a factor of 3.88
(gain vs. software solution) and 1.67 (gain vs. static solution)
in energy savings. The improvement levels greatly depend on
the inner potential of layers for hardware acceleration and grow
steadily with the depth of the network as more hardware reuse
is possible.

From these results, future works will investigate an appli-
cation study on deeper, widely-used CNN networks, such as
ResNet50. Ongoing works also address the automated imple-
mentation of the identified solutions on real platforms following
the methodology of [12] on Xilinx Zedboard and ZCU102 plat-
forms.
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