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This paper investigates the use of a hybrid Recurrent Neu-

ral Network to reproduce the behavior of a nonlinear long-

horizon Model Predictive Controller (MPC) used in traction

motor drive systems. The goal is to assess the operational va-

lidity and control performances of such neural network based

predictive controller (further referred to as Full Neural Net-

work MPC), and to compare against Field Oriented Control

(FOC), the current industry standard. Based on simulation

results using a Model in the Loop (MiL) environment, it is

shown that the proposed FNN-MPC can properly learn the be-

havior and characteristics of the nonlinear long-horizon MPC

while being more computationally implementable, with still

better control performance and quality than FOC.

1. INTRODUCTION AND BACKGROUND

Efficient control strategies of Interior Permanent Magnet Syn-
chronous Motor (IPMSM) are currently an important challenge
for high-quality real-time management of electric motors in
many electric vehicle traction applications. Popular predictive
control systems usually impose a huge computational burden
and the need for expensive hardware, especially for long predic-
tion horizons [1]. To overcome this, Artificial Neural Network
(ANN)-based modeling methods started to be investigated. De-
spite a variety of papers addressing neural network based ap-
proximation of nonlinear MPC for a range of application do-
mains (industrial processes, financial and economic models,
robotics, etc.), there are currently few works investigating an
application study to IPMSM as it is a recent field of research
with the current democratization of Electric Vehicles (EV) and
Hybrid Electric Vehicles (HEV).

A general state of the art considering how robust control
of electric machines can be improved with neural networks is
provided in [2], encompassing actual applications to control
design, state estimation, signal processing, Pulse Width Mod-
ulation (PWM) synthesis, parameter and model identification.
Besides replacing the control algorithm, some works have nat-
urally started to investigate other benefits of neural networks

such as sensorless position control [3] [4] or internal temperature
estimation [5].

Among the works dealing more specifically with the control
problem, three approaches can be considered for neural network
based predictive controllers [1]. A first and widespread solution
is to replace the MPC model with a neural network trained on
the plant system. This is the easiest method because the network
can be trained using data from a simple system identification
experiment (for example using the Matlab System Identification
Toolbox™ [6]). The main advantage of this method is that for
such complex nonlinear systems, an identification by the data
can give sufficiently robust results compared to a linear approx-
imation of the system [7]. The main drawback is the limited
gains in processing power for long-horizon predictions, as the
optimization algorithm is kept the same and consumes a lot of
computing resources.

An illustration of this in an application to the MPC control of
an IPMSM is described in [8]. A small Multi-Layer Perceptron
(MLP), based on one hidden layer of seven neurons is designed
and trained, with successful simulations showing improved
control of a typical motor example. However, some simplifying
assumptions about motor specifications (reducing the model to
a Single Input Single Output system) are made to facilitate and
allow the actual training procedure, which may restrict practical
applications [8].

A second approach is to replace the optimization algorithm
while keeping the formal prediction model. This type of substi-
tute is more complex to implement because defining a dataset
relevant to the MPC optimisation algorithm for proper repre-
sentation and training is not a trivial task. No references could
be found on this approach in the literature to the best of our
knowledge.

The last approach is to replace the full MPC controller with a
neural network (FNN-MPC). This technique is not as popular as
the first method despite greater potential to reduce complexity
by removing the need to solve complex optimization, state esti-
mation and prediction problems in real-time [9]. This approach
is less used because replacing the whole controller is more diffi-
cult, especially for nonlinear systems, and the resulting neural
network may also lead to limited control performances and
robustness.

[10] describes a FNN-MPC approach used to replace the full
long-horizon finite control set model predictive control (FCS-
MPC) in electrical drive systems. The problem here is simplified
considering the controller output consists of a finite set of switch-
ing states, that can therefore be treated as a classification prob-
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lem. A three layers MLP (9-25-8 topology) is used to learn the
direct model predictive control problem of the power converter
with a prediction horizon of 5. A rich dataset of reference signals
which consists of chirp, sawtooth, and step signals are applied
to the electrical machine controlled by a FCS-MPC controller for
training the neural network. Its ability to operate in a real-time
environment is demonstrated in a simulation using an IPMSM
plant.

In more recent works, some authors have considered full
MPC approximation employing larger Deep Neural Networks
(DNNs), for real-time implementation of IPMSM torque track-
ing [11]. In this approach, the DNN is intended to learn the
MPC functionality based on training data generated offline and
with the controller stimulated in open-loop mode. The DNN
topology is based on a MLP (5 layers of 20 neurons each) and
trained with datatsets of 500,000 and 1,000,000 samples (with
a random sampling strategy). Results show the ability of the
DNN-approximate MPC to have a very good torque tracking
capability on two continuous-time control set MPC (current
tracking delta MPC, Del-MPC, torque tracking economic MPC,
EMPC), and to potentially support long prediction horizons (up
to 20 in their experiments).

IPMSM speed control based on FNN-MPC is also addressed
in [12]. Aiming at the highly nonlinear characteristics of the MPC
IPMSM control system, an Echo State Network (ESN, a type of
recurrent neural network) is considered to replace a part of the
global dual control loop structure of the full MPC (composed of
current loop PI control and the speed loop controller). The ESN
is trained and used in place of the original speed loop controller
to predict the future speed. Simulation results show that the
ESN prediction model is improved, with reduced overshoot and
rise time compared to their reference controller, and have good
dynamic control performance.

Replacing a long-horizon nonlinear MPC with a neural net-
work to control an IPMSM system can bring distinct advantages,
mainly in reducing the computational effort enough to get close
to real-time processing [10]. However actual works are still in
early stage with still many issues on the tangible contributions of
neural network based MPC especially for IPMSM. Performance
comparison with the FOC, the current standard for high perfor-
mance control of IPMSM in the industry, is also lacking in the
literature.

This paper addresses this, introducing a competitive long-
horizon nonlinear MPC that can in theory outperforms a FOC,
and investigates how a neural network trained on this MPC can
be a more effective solution for real-time implementations

2. FNN-MPC DEFINITION AND DESIGN

A. IPMSM control

In electric drive technologies, the standard control approach is
based on different levels of nested loops for torque (or speed)
and current control [13]. The torque/speed request of the first
loop is fed into lookup tables to compute the reference currents
in the rotating dq-frame and supply values for the current loop
[14]. The dq currents are calculated using a Clark / Park trans-
formation on the measured abc phase currents. Since one goal
of this work is to study the theoretical validity of the FNN-MPC
as an IPMSM current controller, the modulation can be removed
to simplify the problem and keep the full system in the dq ref-
erence frame. Differential equations of id and iq can then be

Fig. 1. IPMSM control system environment used for simulations

used to model the plant and serve as the prediction model in the
nonlinear MPC.

We therefore address the block diagram of Fig. 1 where the
control algorithm can be a FOC (used as the reference controller),
a MPC or a FNN-MPC controller.

A.1. IPMSM model

First, the set of differential equations of the IPMSM, which can
later be used as plant and prediction models for the MPC control
problem, has to be specified. The continuous-time model of the
IPMSM in the synchronously rotating dq-frame can be expressed
as follows [13], using the nomenclature of Table 1 :
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The previous equations can be further discretized in time using
the Euler method [13].

This results in a discrete-time model of the IPMSM, corre-
sponding to the set of nonlinear equations :

x(k + 1) = Amx(k) + Bmu(k) + dm (2a)

y(k + 1) = Cmx(k) (2b)
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The values described in Table 2 are used for all the simu-
lations and represent the characteristics extracted from a real
electric motor used in an automotive traction system. Address-
ing the torque control problem in the following, we consider ωe
to be constant and assume ωe = ω0.

A.2. Model Predictive Control

The considered MPC scheme for the defined IPMSM model is de-
picted in Fig. 2. This controller will be further employed to gen-
erate training datasets for the neural network, and also to bench-
mark the different control techniques (FOC, MPC, FNN-MPC)
in the validation study. Equations Eq. (2) are used in the non-
linear predictive model, where interior-point path-following



Research Article © 2024 4

Table 1. Nomenclature of motor parameters

Name Nomenclature Unit

D-axis current id A

Q-axis current iq A

D-axis voltage vd V

Q-axis voltage vq V

Electrical speed ωe rad/s

Table 2. Constant motor parameters used for simulations

Name Nomenclature Value

DC-link Voltage υdc 705V

Number of pole pairs Npp 4

Maximum power Pmax 93kW

Stator resistance Rs 12mΩ

Flux linkage ψ 66mWb

D-axis inductance Ld 153µH

Q-axis inductance Lq 556µH

Constant speed ω0 8000rpm

Sampling frequency fs 100kHz

Sampling time Ts 10µs

Table 3. Constraints on motor parameters

Name Nomenclature Value

Maximum phase voltage υsmax 407V

Maximum phase current ismax 720A

Maximum current slope ismax,slope 50000A/s

Fig. 2. General MPC scheme applied to IPMSM control

algorithms are used to solve the convex optimisation problem
[15].

In the cost function Eq. (3), the error between the reference
current and the predicted current over the horizon is penalized,
with voltage variations as well.

J =
Np−1

∑
k=0

||y∗(k + 1)− y(k + 1)||22 + λu||Δu(k)||22 (3a)

||y∗ − y||22 = (y∗ − y)T I2(y∗ − y) (3b)

Δu(k) = u(k)− u(k − 1) (3c)

Where λu = 0.01, Np = 10 being the prediction horizon and
I2 the identity matrix.

The control horizon is set to be the same as the prediction
horizon. The long horizons are chosen for the enhanced control
quality, with the consequence of increasing the computation time
of the optimization algorithm. Finally, the following set of power
and dynamic constraints Eq. (4), and the motor constraints of
Table 3, must be satisfied at each step of the prediction.

v2
d + v2

q ≤ υ2
smax

i2d + i2q ≤ i2smax

�
Saturation constraints (4a)

Δid,q < ismax,slope Dynamic constraints (4b)

B. Neural network substitution

The goal is to define and train a neural network to reproduce the
behavior of the MPC defined previously. The chosen architecture
of the FNN-MPC is inspired by the approach depicted in [9].

To identify which type of neural network model is capable
to better emulate the MPC control policy of the IPMSM, we
compare the RMSE (Root Mean Square Error) of the output
vector y = [vd, vq] for five types of neural networks: MLP (Multi-
Layer Perceptron), CNN [16] (Convolution Neural Network),
LSTM (Long Short-Term Memory), a mix between MLP and
LSTM (LSTM-NN, as described in Fig. 3), and a mix between
LSTM and CNN (LSTM-CNN). The RMSE was calculated after
getting the best configuration possible for each topology, using
the Experiment Manager™ of Matlab™ [6].

Results show that LSTM-NN has the smallest error with the
original MPC, significantly outperforming other networks in
terms of RMSE by a factor of 2 (Table 4). This result is consistent
with the in-depth study done in [9]. Therefore this combination
of LSTM with NN will be considered in the rest of the study,
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Fig. 3. Architecture of LSTM-NN
with a topology composed of two layers of 300 dense neurons
per layer and one layer of 500 LSTM neurons, further completed
with dropout and activation layers (ReLu for MLP and Sigmoid
for LSTM), and input/output pre/post processing layers.

Sin =




idre f (k) iqre f (k)

. . . . . .

idre f (k + p) iqre f (k + p)

id(k − l) iq(k − l)

. . . . . .

id(k) iq(k)

vd(k) vq(k)




(5a)

Sout =
�
vd(k + 1) vq(k + 1)

�
(5b)

Where p is the prediction horizon of the MPC and l the length of the
past history for LSTM neurons.

Equations Eq. (5) shows the construction of the network’s
input and output vectors. The input vector is built using the
reference vector on the prediction horizon (from k to k + p), the
measured current with an history of length l (used for the LSTM
layers), and the voltage command at instant k. The ouput vector
is simply the voltage command at instant k + 1.

C. Dataset generation and neural network training

We consider the environment defined in Fig. 4 to generate the
D-dimension dataset [Sin, Sout]

D that will be used to train the
network. As the IPMSM is a complex nonlinear system and

Table 4. RMSE comparison of each neural network types

Model RMSE

MLP 0.0245

LSTM 0.0222

CNN 0.0790

LSTM-NN 0.0120

LSTM-CNN 0.0285

Fig. 4. Neural network training environment

considering long prediction horizons for MPC, it is challenging
to create relevant datasets with a reasonable sample size. Limit-
ing the amount of data used for learning is important because
for this complex MPC problem, each sample may take a few
seconds to be produced (Table 5) and this can quickly add up to
an unrealistic amount of time. Therefore we limit the number of
sample points to two million and only explore the motor mode (as
opposed to the generator mode) inside the motor’s map. The cur-
rents reference id,re f and iq,re f are derived from two-dimensional
look-up tables LUT(speed, torque). The LUTs are pre-calculated
using a FEM (Finite Element Model) tool. The nonlinear MPC is
fed with a combination of pseudo-random steps, ramps and si-
nusoidal torque signals (Fig. 4) in a way to stimulate the system
in the most operating states possible. Coverage of the operat-
ing range is supported using Latin Hypercube Sampling (LHS)
which has shown better performance than random sampling
or grid sampling [17]. Each stimulated signal is set for a du-
ration of 2ms at the same sampling frequency as that of the
MPC ( fs = 100kHz) in order to reflect a good representation and
compromise between static and dynamic behaviors.

3. VALIDATION STUDY

A. Overview

The validation strategy is based on two steps: determine the
operational validity of the proposed NN based controller to
check if the FNN-MPC can correctly reproduce the behavior
of the original MPC, and then compare performances against
other reference controllers. In order to simulate the practical
action in realistic EV drives, step and ramp of torque requests
are applied to generate the IPMSM commands. Steps are used
to highlight the advantages of MPC over FOC, and check if
the FNN-MPC can keep these benefits. Ramps are used for
more realistic motor simulations since this is how commands
are generated under real operating conditions. A sampling
frequency of 100kHz is chosen for the three controllers, as the
goal in future work is to implement the solutions on a Silicon
Mobilty OLEA U target, which is already capable of running an
industrial application of FOC at 100kHz. It should be noted
here that the speed is considered constant at ω0 in all following
simulations as a first assessment of the validity of the NN based
control system. This will be extended to the whole possible
range of speed in upcoming work.
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A.1. Simulation environment

Simulations are based on Matlab Simulink™ with a MiL environ-
ment in Rapid Acceleration mode. Each controller is evaluated on
the same experiment scenarios using the Key Performance Indi-
cators (KPIs) of Table 5 and Table 6 to better assess the tangible
benefits. KPIs are calculated from an average of each response
for a total of 200 random 10ms scenarios. All measurements are
conducted on a 12th Gen Intel(R) Core(TM) i7-1280P CPU.

A.2. Reference controller

To assess more effectively the relevance of the FNN-MPC, we
consider a reference controller for comparison. As the standard
control method for AC synchronous and induction motors in
the industry [18], the FOC is the best candidate for this task.

The FOC is based on two proportional integral regulators,
followed by a decoupling layer. The reference currents are cal-
culated using LUTs as described previously. The FOC used for
comparison also features an anti-windup scheme on its outputs
for better performances. No extra saturation is applied on the
stator voltage (υs) so that we can highlight the native saturation
constraints available in the MPC. No flux weakening strategy is
implemented as it will provide minimal performance improve-
ment considering our simple simulation environment.

B. Operational validity

Static error is used to give a measure of the relative accuracy of
the control model in terms of torque response. The static error
is measured starting from Tsettling and represents the deviation
from the reference in steady state. First, it can be noted that
static error of the FNN-MPC (0.170% for step, 0.105% for ramp)
is close to that of MPC (0.0111% for step, 0.0002% for ramp),
reflecting satisfying neural network approximation. However,
the static error of FOC is large in comparison (1.954% for step,
1.084% for ramp). This error comes mostly from the integrator
of the FOC. Indeed, starting at 2% of the reference at Tsettling, the
currents do not have sufficient time to reach 0% within the 10ms
of simulation time. This could be improved by fine-tuning the
integrator parameters but at the risk of degrading other KPIs
such as the overshoot. As a result, FNN-MPC is about ten times
more efficient in terms of static error.

In Fig. 5, the different traces reported show the responses
of each controller to steps and ramps torque requests. The step
response emphasize some inherent benefits of the MPC. As the
torque reference is known on the prediction horizon, the MPC
is able to anticipate the commands on the control horizon and
optimize the response time. A similar behavior is observed for
the FNN-MPC which clearly shows that the neural network cor-
rectly learns the prediction capability of MPC. In the traces of
Fig. 5, the norm of the voltage vector (υs) is plotted against υsmax .
For the step response (Fig. 5a), a saturation is visible for MPC
resulting from the direct processing of motor constraints in the
optimization function. As for the FOC, no saturation is present
thus reflecting the need for another scheme to limit the output
voltage norm. On its part, the FNN-MPC correctly reproduces
the saturation capability, further confirming successful training
for this control feature. On the other side, ramp responses com-
ply with motor gradient constraints and no overshoot on the
norm voltage is present (Fig. 5b). In this case, MPC and FNN-
MPC both stick to the reference signal in dynamic mode, unlike
FOC showing a sensitive response deviation (also reflected in
the KPI response times).

Table 5. Controller performance comparison on a step response

FOC MPC FNN-MPC

Tresponse (ms) 0.303 0.149 0.152

Tsettling (ms) 0.404 0.161 0.164

Overshoot (%) 0.055 1.379 0.755

Static error (%) 1.954 0.011 0.170

Texec (s) 1.47 6.82 2.07

Table 6. Controller performance comparison on a ramp
response

FOC MPC FNN-MPC

Tresponse (ms) 0.067 0.010 0.014

Tsettling (ms) 0.144 0.010 0.024

Overshoot (%) 0.052 0.123 0.039

Static error (%) 1.084 0.0002 0.105

Texec (s) 1.510 8.51 1.69

Execution time Texec is where the limitations of the MPC
are most visible. The execution time is the time taken by the
MiL to simulate a 10ms signal. A longer Texec means a greater
controller complexity, which increase the difficulty of a real-time
implementation. With the FOC as reference for performance,
FNN-MPC and MPC are respectively 26% and 414% slower
(averaged from step and ramp). Thanks to the corresponding
processing complexity improvement, real-time implementation
of the FNN-MPC can be considered using specialised processors
or dedicated hardware (contrary to the MPC).

C. Performance comparison

In the following, we address a detailed analysis of performance
results. The KPIs defined for this purpose are derived from
simulations and reported in Table 5 and Table 6 for step and
ramp input requests respectively. In terms of system response,
it can be observed that on average, response times are at a com-
parable level for the FNN-MPC in regards to the original MPC
(0.152ms vs. 0.149ms for step command, 0.014ms vs. 0.010ms for
ramp). However compared to FOC, FNN-MPC improvement
is more significant (2 times faster for step, 5 times for ramp).
Settling times follow a very similar pattern, with a great corre-
lation between MPC and FNN-MPC (0.161ms vs. 0.164ms for
step, 0.010ms vs. 0.024ms for ramp), compared to 2.5 to 6 times
improvement against FOC.

Concerning overshoot, MPC has higher values than FOC
because the original MPC cost function aims at minimizing the
error on the current values for the whole horizon prediction,
rather than reducing the overshoot. It is also interesting to note
in the results that the percentage overshoot is lower for FNN-
MPC (0.755% for step, 0.039% for ramp) than for MPC (1.379%
for step, 0.123% for ramp). Indeed we should expect the FNN-
MPC to overshoot more than the MPC as the behavior of the
neural network is learned from the original MPC. This seeming
contradiction comes from the construction of the training dataset,
composed of 10000 step signals with an average overshoot of
0.52%. In the learning data, there is a higher representation
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Fig. 5. Example of a step (c) and ramp (d) torque response for each controller. (a) and (b) are the corresponding υs compared to υsmax

of small steps (low percentage overshoot) compared to high
steps (high percentage overshoot). This consideration was not
anticipated at first but it can be exploited to better tune the FNN-
MPC model in upcoming research. With minimum overshoot
and despite a marginal reduction of performances compared to
the MPC on previous performance KPIs (Tresponse, Tsettling), the
use of the FNN-MPC in place of the MPC in the control loop
objectively brings additional control benefits.

4. CONCLUSION

In this paper, a hybrid RNN based approach for the control of
traction motor drive systems is developed to overcome the com-
putational complexity of a long-horizon nonlinear MPC. Neural
Network design, training and validation have been explained
in detail with special focus on dataset creation to obtain usable
training and validation sets for the defined ANN. Finally, the
resulting FNN-MPC strategy has been simulated and compared
with a reference field-oriented controller and a MPC in Matlab,
Simulink™ [6]. Validation study have shown that the ANN is ca-
pable of correctly approximating the nonlinear IPMSM electrical
drive control system. And while being nearly five times faster
than the MPC, the FNN-MPC still globally improve the control
quality against the FOC reference controller.

Future work will essentially address implementation issues
related to the FNN-MPC definition (training at constant speed)
and simulation with gradually more realistic conditions (mod-
ulation, inverter and noise models) using Hardware in the Loop
(HIL) implementation targeting the Silicon Mobility OLEA(r) U
FPCU with programmable hardware.
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