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1Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France
2Division of Applied Quantum Systems, Felix-Bloch Institute for Solid-State Physics,
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Among the wide variety of single fluorescent defects investigated in silicon, numerous studies
have focused on color centers with a zero-phonon line around 1.28µm and identified to a common
carbon-complex in silicon, namely the G center. However, inconsistent estimates regarding their
quantum efficiency cast doubt on the correct identification of these individual emitters. Through a
comparative analysis of their single-photon emission properties, we demonstrate that these single
color centers are split in two distinct families of point defects. A first family consists of the genuine
single G centers with a well-identified microscopic structure and whose photoluminescence has been
investigated on ensemble measurements since the 60’s. The remaining defects belong to a new color
center, which we will refer to as G⋆ center, whose atomic configuration has yet to be determined.
These results provide a safeguard against future defect misidentifications, which is crucial for
further development of quantum technologies relying on G or G⋆ center quantum properties.

The recent observation of single color centers in sili-
con has opened a new exploration path for silicon-based
quantum technologies [1–15]. In less than three years,
advanced single-defect spectroscopy has fueled the de-
tection of more than 10 families of individual defects in
silicon, able to emit non-classical, antibunched radiation
in the near infrared [1–7, 9]. Surprisingly, some of these
defects were not previously referenced in the extensive lit-
erature about spectroscopic measurements on defect en-
sembles in silicon, likely because of their relative scarcity
[3]. In view of applications in the fields of single photon
sources or spin-photon interfaces, it is highly desirable
for a color center to possess a high radiative quantum
efficiency η. This value is defined as the probability after
excitation to relax through photon emission rather than
through a non-radiative channel. In this context, seem-
ingly contradictory reports have been published for the
G center in carbon-implanted silicon [1, 3, 8, 10–12], a
defect with a zero-phonon line (ZPL) close to 1.28 µm
[16–19]. A remarkably high quantum efficiency η > 0.5
has been reported in [1], while other investigations at the
single defect level [8, 11] or on ensembles of G centers in
optical cavities [20] point at a much smaller η in the few
percents range at most.

In this paper, we show that low-η and high-η color cen-
ters correspond to two different point defects, hereafter
called G and G⋆ centers, respectively. Based on optical
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experiments at the single defect level, we establish the
specific fingerprints of the G and G⋆ centers, and pro-
vide simple guidelines to identify them unambiguously
among the wide variety of carbon-based color centers in
silicon.

The experimental setup is a home-made low-
temperature confocal microscope built up in a He closed-
cycle cryostat (MyCryoFirm). Optical excitation of
the sample is performed using a continuous laser at
532 nm and with a microscope objective (Olympus,
LCPLN100XIR) mounted inside the cryostat vacuum
chamber. The sample photoluminescence (PL) is col-
lected by the same objective and measured by supercon-
ducting nanowire single-photon detectors with a detec-
tion efficiency of 78% at 1.3 µm (SingleQuantum). Unless
otherwise indicated, all measurements were conducted at
30K.

Single defects are investigated in two different silicon-
on-insulator (SOI) samples. The first sample (#1) un-
derwent a carbon-implantation over its entire surface at
a fluence of 5 × 1013 cm−2, followed by a rapid thermal
annealing during 20 s at 1,000◦C [1]. The second sample
(#2) was locally implanted with carbon ions, then an-
nealed with the same parameters as Sample #1, and at
last locally irradiated with protons [6]. In Sample #2,
only the lowest doses, typically <∼ 1×1011 cm−2 for both
carbon atoms and protons, lead to densities compatible
with single color center isolation [6]. Both SOI samples
have a (001)-oriented top surface. The silicon top layer
has a thickness of 220 nm for Sample #1 and 60 nm for
Sample #2.
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FIG. 1. PL spectra measured for (a) a single G⋆ center and
(b) a single G center in silicon, acquired at 11K and 30K re-
spectively. The vertical dashed lines indicate the wavelengths
of the ZPL and E-line of the G center in silicon in PL reported
in the literature [16–19]. The dashed horizontal bars indicate
the ZPL dispersion range on 41 and 39 defects, respectively.
Inset: autocorrelation function recorded on each defect, evi-
dencing the single-photon emission with an antibunching at
zero delay g(2)(0) < 0.5 [21].

We start by examining the photoluminescence (PL)
spectra of single defects evidenced by antibunching
g(2)(0) < 0.5 (see Fig. 1 Insets). The spectral emis-
sion of a single color center from Sample #1 is shown in
Figure 1(a). It displays a strong ZPL at 1279 nm, cor-
responding to the 969.45 meV referenced ZPL energy of
the G center in silicon [17, 19]. A broad phonon replica
with an energy of ≃ 14.5 meV is also found in the PL
spectrum [3]. This type of color center manifests a strong
wavelength dispersion between defects: the ZPL position
fluctuates in the range [1253-1303] nm (horizontal dashed
line in Fig. 1(a), for a set of 41 defects, with an average
value of 1273 nm and a standard deviation of 12 nm. It
should be noted that, although predominant, this family
of fluorescent defects coexists with other unidentified sin-
gle color centers in the Sample #1 [3]. On the contrary
in Sample #2, 98% of the fluorescent defects belong to
the same family, connected to the typical spectrum dis-
played in Figure 1(b) (the remaining 2% have a broad
spectrum with no detectable ZPL, similar to SD-6 de-
fects in [3]). This emission from an individual defect also
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FIG. 2. Emission polarization diagrams recorded on (a) a
single G⋆ center and (b) a single G center. Solid lines repre-
sent data fitting using the function: 1−V +V cos2(ϕ), where

extracted visibilities are respectively V (G⋆) = 90 ± 2% and
V (G) = 62±2%. Histograms of the diagram orientation angle
ϕ for a set of (c) 30 single G⋆ defects and (d) 38 individual G
centers.

shows an intense ZPL at the reference wavelength of the
G center. However, here the zero-phonon line variations
between centers are much smaller. Indeed, for 39 defects,
the ZPL is only found between 1277 and 1280 nm, with
a mean value of 1279 nm and a standard deviation of 0.5
nm. Furthermore, an extra line is visible in the PL spec-
trum at 1382 nm, hence ≃ 72 meV lower than the ZPL
energy. This emission line matches the E-line from the
G center in silicon, associated to a local vibration mode
(LVM) with a phonon energy of 71.9 meV reported in PL
spectra on G-ensembles [16, 17]. It can be seen on Figure
1(a) that this E-line is not present in the PL spectrum
of the individual defect from Sample #1. As a conse-
quence, we can conclude that single color centers from
Sample #2 are genuine single G centers in silicon (Fig.
1(b)). Because of their markedly different spectral signa-
tures, namely a strong ZPL dispersion and the lack of an
E-line, single defects from Sample #1 are not genuine G
centers, and will be called G⋆ centers instead (Fig. 1(a)).

Another way to identify if a single emitter is a G or a
G⋆ center is to analyze the polarization of its single pho-
tons. To this end, the emission signal of single centers
is measured versus the angle of a polarizer installed be-
fore the PL collection fiber. As shown on Figure 2, two
notable differences are seen on the emission polarization
diagrams recorded on single G and G⋆ defects. First, the
visibility of the G⋆ diagram is close to unity [1], while
the one of the G diagram is typically of 62± 2% (Fig. 2
(a,b)). Consequently the PL of G⋆ centers comes from a
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single emission dipole [1], whereas the one from G centers
is a result of the combination of several emission dipoles
[22]. Secondly, a statistical analysis performed on indi-
vidual G defects reveals that the maximum intensity is
always oriented along either [110] or [11̄0] crystal direc-
tions (Fig. 2 (d)). These findings are in line with former
spectroscopic reports from the 80’s predicting an electric
dipole along the ⟨110⟩ axis [16, 23]. On the contrary, a
similar study carried out on single G⋆ centers shows that
their emission dipole can point in a large number of direc-
tions, except crystal axes [110] and [11̄0] (Fig. 2 (c)) [1].
The orientation distribution of the emission polarization
diagrams of G and G⋆ defects are thus non-overlapping,
allowing to directly associate the emitters to one or the
other types of defect.

Measuring the excited-state lifetime is an additional
way to discriminate between G and G⋆ defects. Time-
resolved measurements on single G centers show that
they relax with a short timescale of roughly τ (G) =
4.9 ± 0.3 ns (Fig. 3(a)). This lifetime is very close to
that reported on various ensembles of G centers in sili-
con [6, 19]. On the contrary, single G⋆ centers exhibit a
much longer lifetime, typically τ (G

⋆) ≥ 30 ns, as shown
in Figure 3(b) (see also Ref. [1]).

Almost one order of magnitude is also observed in
the single-photon count rates between the two types of
color centers. Figure 3 (b) displays the typical satura-
tion curves recorded under continuous pumping for sin-
gle G and G⋆ defects. While the G⋆ center count rate
reaches ≃ 65 kcounts.s−1 for our experimental setup, the
G center saturates around 7 kcounts.s−1. In spite of their
longer lifetime, single G⋆ defects are thus almost 10 times
brighter at saturation than the genuine single G centers.
We also note that the saturation powers follow the same
trend. Indeed, the signal of the G center starts to sat-
urate for an excitation power ≃ 1µW, while for the G⋆

defect, this occurs at ≃ 12µW (Fig. 3 (b)).
Comparing excited state lifetimes and photon count

rates at saturation enables to assess the ratio of quantum
efficiencies of individual G and G⋆ centers. By assuming
that under continuous excitation at saturation all popu-
lations are prepared in the excited state for both defects,

their respective quantum efficiencies, η
(G)
QE and η

(G⋆)
QE , are

related by the formula:

η
(G)
QE = η

(G⋆)
QE

I
(G)
sat

I
(G⋆)
sat

τ (G)

τ (G⋆)

η
(G)
coll

η
(G⋆)
coll

, (1)

where I
(G)
sat , I

(G⋆)
sat are intensities at saturation and η

(G)
coll,

η
(G⋆)
coll collection efficiencies for single G and G⋆ centers,
respectively (Fig. 3(b)). For a maximally collected dipole
in the (001) plane, the collection efficiency varies with
depth between 0.5% and 2% for the 220-nm silicon layer
of Sample #1 [1] [2.5% and 4 % for the 60-nm silicon layer
of Sample #2]. Considering that the brightest single de-
fects have been selected in our experiments, the maximal
value of the collection efficiency can be taken in both
cases. Since the quantum efficiency of a single emitter

(a)

(b)

FIG. 3. (a) Excited-state lifetime measured on single G
and G⋆ centers, under 150-ps pulsed laser excitation at 532
nm. A fit by a mono-exponential function (dashed lines) gives

the following decay times: τ (G) = 4.9 ± 0.3 ns and τ (G⋆) =
33.4± 0.5ns. (b) Saturation curves recorded under continous
pumping for individual G and G⋆ defects. The solid lines show
the data fitting with a standard saturation function Isat/(1+

Psat/P ), leading to intensities at saturation I
(G)
sat = 7.9± 0.1

kcounts.s−1 and I
(G⋆)
sat = 68±1 kcounts.s−1, and to saturation

powers P
(G)
sat = 1.1 ± 0.1µW and P

(G⋆)
sat = 12± 1µW.

cannot exceed 100% by definition, hence η
(G⋆)
QE ≤ 100%,

it follows immediately that the quantum efficiency of G
centers is not greater than 1%. This low value is in
agreement with previous studies [8, 20] and explains the
difficulty to observe a lifetime reduction induced by the
Purcell effect for these emitters [11, 20]. The quantum
efficiency of single G⋆ centers is much greater. It has
indeed been estimated to be at least 50% [1].

In conclusion, we have highlighted the existence of two
families of single fluorescent defects in carbon-implanted
silicon that emit with a ZPL around 1.28 µm. A first
family consists of genuine single G centers in silicon,
associated with the atomic configuration C(s)-Si(i)-C(s)

[24–26]. Individual G centers are unambiguously identi-
fiable by (i) an emission spectrum containing the E-line
at 1382 nm, (ii) a short excited state lifetime of ≃5 ns,
(iii) a low quantum efficiency ≤ 1% and (iv) a partial
linear polarization but with well defined main polariza-
tion axis oriented either along [110] or [11̄0] crystal axes.
On the other hand, individual G⋆ centers are character-
ized by (i) no E-line in their PL spectrum, (ii) an excited
state lifetime typically above 30 ns, (iii) a bright emis-
sion connected to a high quantum efficiency > 50% and
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(iv) a single emission dipole whose orientation deviates
from [110] or [11̄0]. Following these criteria, the single
emitters investigated in [1–3, 12] are likely G⋆ centers,
whereas the genuine G centers are observed in Ref. [6–
8, 10, 11]. Note that the fingerprints given here for G and
G⋆ centers can vary depending on their environment. For
instance, a thicker top silicon layer can reduce the inho-
mogeneous linewidth of G⋆ centers [2] compared to our
findings, and cavity integration can favor one emission
dipole of the G centers as in [11].

The G center has a head start since its microscopic
structure has been identified [24–26] and it can be se-
lectively fabricated at single-defect scale through ion im-
plantation [6, 7]. Moreover, it could host a spin qubit
since a spin resonance linked to a metastable spin triplet
has been detected optically on ensembles of G centers in
silicon [24, 27]. In contrast, the atomic configuration
of the G⋆ center is currently unknown, as well as its
spin properties, and no selective fabrication method is
known to date for such centers [3]. Nevertheless, its high
quantum efficiency combined with single-dipole emission

makes it a very promising color center to fabricate de-
terministic telecom single-photon sources integrated in
silicon. Further investigations, including defect engineer-
ing to look for isotope shifts and ab initio calculations,
are required to elucidate the G⋆ center origin and its po-
tential connection to the G center in silicon.
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