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Abstract
We introduce and analyze a quasilinear size-structured population model with nonlinearities accounting

for nonlocal interactions between individuals. The recruitment (immigration), growth and death rates are
inhomogeneous in time and/or space and depend on weighted averages of the density. We first prove the
existence and uniqueness of globally bounded weak solutions using the characteristic curves and Banach
fixed point Theorem, after transforming the partial differential equation into an equivalent system of inte-
gral equations. We then investigate the long-time behavior of the PDE in the case when the growth rate is
separable. Applying a classical time-scaling transformation, the problem boils down to a PDE with linear
growth rate and nonlinear inflow boundary condition, entering the theoretical framework of abstract semi-
linear Cauchy problems. We can then perform a bifurcation analysis which reveals the richness of the model
behavior. Depending on the ratio of the recruitment to the growth rate, the model can exhibit multistability
and stable oscillatory solutions, emanating respectively through saddle-node and Hopf bifurcations. We
illustrate these theoretical results on the biological application motivating this work, oogenesis, the process
of production and maturation of female gametes (oocytes) that is critical to reproductive fitness.
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1 Introduction
1.1 Model and state of the art
We consider the following quasilinear initial boundary value problem modeling the evolution of a continuous
size-structured population with nonlocal interactions between individuals, over a bounded domain:

∂tρ(t, x) + ∂x (Λ(P (t), x)ρ(t, x)) = −µ(P (t), x)ρ(t, x), x ∈ (0, 1), t > 0
Λ(P (t), 0)ρ(t, 0) = r(t, P (t)), t > 0
ρ(0, x) = ρ0(x), x ∈ (0, 1) .

(1)

Here ρ(t, x) stands for the density of individuals at time t with respect to size x, Λ is the individual growth
rate and µ the death rate. In the boundary condition (second line of Eq. (1)), r is classically called the birth
term, but represents in our study the inflow of new individuals into the population (similar to an immigration
process) and is termed the recruitment rate. The interaction terms

P (t) = (Pi(t))1≤i≤N , Pi(t) =
1∫

0

ωi(x)ρ(t, x)dx , (2)

are weighted averages of the density ρ at time t, where the weight functions ω := (ωi)1≤i≤N select (smooth)
subpopulations amounting to size classes that contribute to the interaction term P (t). Generally, both the
growth rate Λ and the death rate µ depend on size x and the interaction term P (t), while the recruitment
rate depends on time t and the interaction term P (t). When the growth rate Λ is constant, Eq. (2) models an
age-structured population. If Λ does not depend on P, the problem is semilinear. It is worth mentioning that a
recruitment term expressed as the sum of an inflow of new individuals C(t, P (t)) and a birth term with a birth
rate of the form β(t, P (t), x) = β̃(t, P (t))ω1(x) can be seen as a specific case of Eq. (1)-(2):

r(t, P (t)) = C(t, P (t)) +
1∫

0

β(t, P (t), x)ρ(t, x)dx = C(t, P (t)) + β̃(t, P (t))P1(t) .

Structured population models, which describe population dynamics in terms of individual characteristics such
as age or size, have been the matter of extensive studies (see [Web85; MD86; Ian95; Cus98; MR18] for a good
overview). They have found concrete applications in diverse fields such as cell population dynamics [GH91;
Dou+11; GW16; Bon+20], ecology [TAY18; Thi88], or manufacturing system modeling [SW11; CW12; LS22].
The well-posedness of quasilinear size-structured models has been extensively studied. The existence of solutions
to these models is typically demonstrated through two approaches: the characteristic method combined with a
fixed-point argument, such as the Banach Theorem [TZ88; CS95; Kat00], or the Schauder Theorem [Kat04](the
latter ensuring only local existence but under weaker assumptions), or by finite difference approximation [AI97].
The model formulated in Eq. (1)-(2) differs slightly from previous works, as it involves a positive growth rate at
x = 1 (leading to positive outflow) and a recruitment rate r not explicitly formulated as a birth term. However,
the proof for the global existence-uniqueness of solutions to Eq. (1)-(2) is based on the Banach fixed-point
Theorem under standard assumptions (given in Sec. 2.1).
The long-time behavior of solutions to quasilinear size-structured population models is challenging to study.
While for semilinear population models the Principle of Linearized Stability for stationary solutions [Web85;
Kat95; GH90], and Hopf bifurcation Theorem [MR09; LMR11; MR18] (associated with oscillatory solutions)
have been established, this is not the case for general quasilinear size-structured models. Recent works, such
as those by Diekmann et al. [CDF16; Bar+22; FDG23], focus on formalizing the relationship between the
PDE formulation and the renewal equation, for which long-time behavior results like the Principle of Linearized
Stability are already known [DGG08; DG12; Bar+22].
In the particular case when a separable growth rate Λ(P, x) = g(P )f(x) is assumed, a classical implicit time-
scaling transformation can remove the nonlinearity of the growth rate [GH90; GH91; CS03], so that the long-time
behavior of the quasilinear model can be studied using results from semilinear equation theory.
Regarding long-time behavior, Farkas et al. have investigated the stability of linearized PDEs around stationary
solutions in various quasilinear and semilinear models that explicitly include a recruitment term composed of
an external inflow of individuals and a birth term. Specifically, they analyzed a general size-structured model
with constant inflow and nonlinear birth rate [Far11], a general age-structured model with nonlinear (density-
dependent) inflow and linear birth rate [Far08], and a classical Daphnia model with nonlinear (food-dependent)
external inflow and nonlinear birth rate [FH07]. Notably, the bistability result in [Far11] aligns with our findings
in Sec. 4.2.
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The current work focuses on the long-time behavior of Eq. (1) with separable growth speed, no death, and
a recruitment term that does not explicitly include a birth term. As a result, the existence and stability of
stationary solutions can be analyzed in a more straightforward way than in a general size-structured model,
and, as said before, the Principle of Linearized Stability can be applied thanks to the implicit time-scaling.
Notably, unlike in Farkas’s studies, multiple interaction terms P ∈ RN are considered rather than just the total
mass P =

∫ 1
0 ρ(t, x)dx, and the implications of this difference will be discussed. Additionally, this work explores

the existence of Hopf bifurcations and periodic solutions, which were not addressed in Farkas’s works, and, as
far as we know, have not been addressed in the literature for quasilinear models with separable growth speed.

1.2 Biological and biomathematical motivations
The main biological application motivating the study of Eq. (1) lies in developmental/reproductive biology. We
are interested in oogenesis, the process of growth and maturation undergone by germ cells until the release of
a fertilizable female gamete, with a focus on fish oogenesis.
Understanding fish oogenesis is useful for basic research, fish farming and ecophysiology. Indeed, due to their
aquatic lifestyle, fish are particularly exposed to pollutants such as endocrine disruptors (ED), while, due to
their reproductive physiology subject to chemically-induced sex reversal and disruption of the sex-ratio, they
are particularly sensitive to ED. Hence fish are sentinel vertebrate species for chemical pollution enabling one
to study the multiscale impact of ED from individual reproductive troubles up to population collapse [Kid+07].
Once the germ cells have reached the oocyte stage, they stop proliferating and pursue their development enclosed
in somatic structures called ovarian follicles. In fish, there is a single layer of somatic cells surrounding the oocyte,
so that follicle growth is almost exclusively due to the increase in oocyte diameter. Hence oocyte size is a natural
structuring variable for the whole oocyte population within the ovary, and a proxy for oocyte maturity which
appears as a main entry into the reference classifications of oogenesis stages [Iwa+88; Sel+93].
The formalism of structured population dynamics with nonlocal nonlinearities is well suited for representing the
controls exerted onto oogenesis, which emanate, either directly (i.e. on the local ovarian scale) or indirectly (i.e.
through endocrine loops involving the hypothalamus and pituitary) from the oocyte and somatic companion
cells. We previously handled such a formalism in the framework of mammal oogenesis to investigate the earliest
steps of follicle development (i.e. activation from a non-renewed pool of quiescent follicles) [BCY22; BCY24]
and the competition between terminally developing follicles for ovulation [Aym+16].
Here, we apply the generic model formulated in Eq. (1) to design a size-structured model of (follicle-enclosed)
oogenesis in fish, where x corresponds to the oocyte size. The main salient features are (i) the non-zero
recruitment rate (boundary condition at x = 0), since, contrary to mammals, oocytes can be renewed from
germline stem cells all along life, and (ii) the non-scalar formulation of the nonlocal control term, P (t), to
account for the combination of size-specific hormonal signals as well as for the size-dependent effect of those
signals on the growth speed. The outflow (at x = 1) corresponds to the spawning event, so that the integral in
time of the outflow assesses the cumulative number of spawned eggs.
In the field of mathematical biology, the model could be adapted to other cell lineages in which the dynamics
of the less mature stages is controlled by the number of more mature cells. A canonical instance is the red cell
(hematopoietic) lineage, in which the dynamics of precursor cells (erythocytes) is controlled by an hormonal
signal (erythropoietin) secreted from the red cells. Other applications could be considered in fields such as
ecology (management of natural resources stock according to the population size) or manufacturing systems in
which the total (or weighted) mass of products affects the production speed and the production inflow.

1.3 Outline of this work
In Sec. 2, under some regularity assumptions, and a crucial bounding assumption on the recruitment rate, we
derive a global existence-uniqueness result on the solutions to Eq. (1)-(2), and a first result on the existence
of stationary solutions. In Sec. 3, with a separable growth rate and in the absence of death, we exhibit a
simpler characterization of the stationary solutions, and investigate with care the influence of the recruitment-
to-growth ratio on their existence as well as local stability. Using these results, we fully describe in Sec. 4 the
long-time behavior of the model when the recruitment-to-growth ratio is monotonous in all interaction terms,
with same direction of variation in all these terms. We first illustrate a scenario where negative feedback on
the recruitment rate and positive feedback on the growth rate can lead to monostability or oscillations, with
the latter occurring through a Hopf bifurcation. We then exhibit a situation where negative feedback affects
both the recruitment rate and the growth rate, leading to either mono- or multistability through two successive
saddle-node bifurcations. These cases are also motivated by the study of fish oocyte populations over the entire
life span. In the two considered scenarios (Hopf and saddle-node bifurcations), we include numerical simulations
involving a slow time-varying recruitment rate, which leads to transitions in the reproductive status of aged
inviduals.
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2 Global Solution and Stationary Solution Analysis
2.1 Notations and assumptions
We introduce the notations to be used consistently in this study. Let I be an interval.

• The essential supremum is denoted by ∥ϕ∥∞,I := ess sup
y∈I

|ϕ(y)|, with ϕ ∈ L∞(I). When I is obvious, we

will just note ∥ϕ∥∞ = ∥ϕ∥∞,I . In particular, ∥ωi∥∞ = ∥ωi∥∞,[0,1] for 1 ≤ i ≤ N , and ∥ρ0∥∞ = ∥ρ0∥∞,[0,1].

• For any ω = (ω1, . . . , ωN ) ∈ (L∞(I)), we define ∥ω∥∞ :=
N∑

i=1
∥ωi∥∞.

• For any ϕ ∈ L1(I) and ω ∈ (L∞(I))N , we note
∫

I
ωϕ :=

(∫
I
ω1ϕ, . . . ,

∫
I
ωiϕ, . . . ,

∫
I
ωNϕ

)
∈ RN .

• A vector P ∈ RN is said nonnegative (denoted by P ≥ 0), if Pi ≥ 0 for all i = 1, . . . , N , and positive
(denoted by P > 0) if Pi > 0 for all i = 1, . . . , N .

We make the following assumptions throughout the paper, unless specified otherwise:
(H1) ρ0 ∈ L∞(0, 1) is nonnegative.
(H2) Λ : [0,+∞)N ×[0, 1] 7→ R∗

+ is strictly positive, continuously differentiable with respect to x, and Lipschitz
on every compact set K over [0,+∞)N × [0, 1], with Lipschitz constant LΛ,K .

(H3) µ : [0,+∞)N × [0, 1] 7→ R+ is nonnegative and Lipschitz continuous on every compact set K over
[0,+∞)N × [0, 1], with Lipschitz constant Lµ,K .

(H4) r : [0,+∞) × [0,+∞)N 7→ R+ is nonnegative and Lipschitz continuous on every compact set K over
[0,+∞) × [0,+∞)N , with Lipschitz constant Lr,K .
(H5) There exist (ri)0≤i≤N locally bounded functions, i.e. in L∞(0, T ) for all T > 0, such that for all t ≥ 0

and P ≥ 0,

|r(t, P )|≤ r0(t) +
I∑

i=1
ri(t)Pi . (3)

(H6) For all i ∈ [[1;N ]], ωi : [0, 1] 7→ R is nonnegative and Lipschitz continuous, with Lipschitz constant Lωi ,

and Lω :=
N∑

i=1
Lωi

.

In assumption (H1), the initial distribution ρ0 is considered in L∞ rather than L1. Given assumptions (H2)-(H6),
we ensure that the distribution remains L∞ at all times, and our stationary solution study is restricted to L∞

functions as well. Assumption (H1) is required for the contraction strategy employed to establish the existence-
uniqueness Theorem 2. In the case when the effect of P and x on the growth rate Λ are not interdependent, an
initial distribution in L1 is sufficient to get results entirely similar to those detailed in this section, due to the
time rescaling performed in subsection 3.1 and by following a similar strategy. Assumption (H2) implies that the
growth rate has a strictly positive infimum over any compact set, preventing mass concentration phenomena and
thereby justifying to work on L∞. Inequality Eq. (3) in assumption (H5) ensures that not too many individuals
enter the system simultaneously, which is essential for defining global-in-time solutions. By integrating Eq. (1)
over the spatial domain, it becomes evident that a quadratic recruitment term in P can lead to a finite-time
explosion of the total mass.
We do not claim that assumptions (H2)-(H6) are optimal, but they are rather generic and flexible enough to
cope with a range of applications.

2.2 Existence and uniqueness
From assumption (H2), we can define the classical notion of characteristic curves and the associated diffeomor-
phisms (see Figure 8 in A to aid in understanding the definitions and notations).

Definition-Proposition 1. For a given time T > 0, and P a nonnegative continuous function from [0, T ] to
RN , we define XP (s; t, x) as the characteristic curve at time s passing through x at time t. More precisely,
for any (t, x) ∈ [0, T ] × (0, 1), XP (s; t, x) is the unique maximal solution to the following ordinary differential
equation on [0, T ] × (0, 1):

Ẋ(s) = Λ(P (s), X(s)), X(t) = x . (4)

Let IP (t, x) = {s ∈ [0, T ], XP (s; t, x) ∈ (0, 1)} be the maximal interval definition of XP (·; t, x), and

αP (t, x) = inf IP (t, x) , βP (t, x) = lim
s→αP (t,x)

XP (s; t, x) = XP (αP (t, x); t, x) .
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Finally, we define

XP (s; t, 1) = lim
x→1

XP (s; t, x) , XP (s; t, 0) = lim
x→0

XP (s; t, x) , X0,P := XP (s; 0, 0).

For each t ∈ [0, T ], αP (t, ·) defines a C1-diffeormorphism from Dα(t) := (0, X0,P (t)) to (0, t) and βP (t, ·) defines
a C1-diffeormorphism from Dβ(t) := (X0,P (t), 1) to (0, βP (t, 1)). Furthermore, on domains Dα (respectively
Dβ), the derivatives of αP (respectively βP ) are given by

∂αP

∂t
(t, x) = Λ (P (t), x)

Λ (P (αP (t, x)), 0)e
−
∫ t

αP (t,x)
Λx(P (θ),XP (θ;t,x))dθ

,

∂αP

∂x
(t, x) = − 1

Λ (P (αP (t, x)), 0)e
−
∫ t

αP (t,x)
Λx(P (θ),XP (θ;t,x))dθ

,

∂βP

∂t
(t, x) = −Λ (P (t), x) e−

∫ t

0
Λx((P (θ),XP (θ;t,x))dθ

,

∂βP

∂x
(t, x) = e

−
∫ t

0
Λx(P (θ),XP (θ;t,x))dθ

.

(5)

Given P , the existence and uniqueness of an explicit solution through the characteristic formula is classical (see
beginning of A). The main technical challenge of this section is to show that it can be extended to the general
nonlinear case when P is given by Eq. (2).
The solutions considered here are functions that satisfy the variational formulation Eq. (6) of Eq. (1). Within
this framework, one can accommodate L∞ initial conditions that may be incompatible with the boundary
conditions, leading to discontinuous solutions along the first characteristic curve.

Definition 1. Considering T > 0, we say that ρ is a weak solution to Eq. (1) if ρ ∈ C0 ([0, T ];L1(0, 1)
)

∩
L∞ ((0, T ) × (0, 1)), and for all τ ∈ [0, T ] and φ ∈ C1 ([0, τ ] × [0, 1]) such that ∀x ∈ [0, 1], φ(τ, x) = 0, and
∀t ∈ [0, τ ], φ(t, 1) = 0, we have:∫ τ

0

∫ 1

0
ρ(t, x) [∂tφ(t, x) + Λ(P (t), x)∂xφ(t, x) − µ(P (t), x)φ(t, x)] dxdt

+
∫ τ

0
r(t, P (t))φ(t, 0)dt+

∫ 1

0
ρ0(x)φ(0, x)dx = 0 ,

(6)

where P is given by Eq. (2).

We now state the main result of this section, which guarantees the existence and uniqueness of a global weak
solution to Eq. (1), satisfying a quasi-explicit characteristic formula.

Theorem 2. Let T > 0. Under assumptions (H1)-(H6), Eq. (1) admits a unique weak solution ρ in the sense
of definition 1. Furthermore, ρ verifies: ρ(t, x) = ρ0(βP (t, x))FP (t; 0, βP (t, x)) ∂βP

∂x (t, x), if X0,P (t) ≤ x ≤ 1, 0 ≤ t ≤ T

ρ(t, x) = −r(αP (t, x), P (αP (t, x)))FP (t;αP (t, x), 0) ∂αP

∂t (t, x) otherwise
(7)

where P is given by Eq. (2), αP , βP defined in Definition-Proposition 1 and FP (s; t, x) is defined as the
probability that an individual of size x at time t is still alive at time s, that is

FP (s; t, x) := e
−
∫ s

t
µ(P (θ),XP (θ;,t,x))dθ

.

The principle of the proof follows Sec. 3 of [SW11]. Let t > 0 be a sufficiently small time such that X0,P (t) is
defined. If ρ is solution to Eq. (1), then, as shown in 23, ρ satisfies the characteristic formula Eq. (7) with P
given by Eq. (2). Therefore, by direct integration, we obtain for all i ∈ {1, . . . , N}:

Pi(t) =
∫ 1

0
ωi(y)ρ(t, y)dy

= −
∫ X0,P (t)

0
r(αP (t, y), P (αP (t, y)))FP (t;αP (t, y), 0)∂αP

∂t
(t, y)ωi(y)dy

+
∫ 1

X0,P (t)
ρ0(βP (t, y))FP (t; 0, βP (t, y))∂βP

∂y
(t, y)ωi(y)dy .
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Then, by making the change of variables u(y) = αP (t, y) and x(y) = βP (t, y) (see Eq. (5)), we define:

Fi(P )(t) :=
∫ t

0
r(u, P (u))FP (t;u, 0)ωi(XP (t;u, 0))du

+
∫ 1−

∫ t

0
Λ((P (θ),XP (θ;t,1))dθ

0
ρ0(x)FP (t; 0, x)ωi(XP (t; 0, x))dx

(8)

where P must satisfy Pi = Fi(P ), 1 ≤ i ≤ N . Conversely, it can be shown (see 25) that if P is a fixed point of
Eq. (8), then ρ defined by Eq. (7) is indeed a weak solution to Eq. (1).
Thus, the key point is to prove that Eq. (8) admits a unique fixed point, at least locally. Our strategy is to use
the Banach fixed-point Theorem for the mapping defined by Eq. (8). First, Lemma 3 allows us to control the
distance between two characteristic trajectories associated with different P values, leading to the contraction
property established in Lemma 4. Next, the local unique solution is extended globally in time. The latter step
requires a uniform in time control on the weighted averages of the density, which is obtained using Grönwall’s
Lemma and relies on the linear control on r provided by assumption (H5).
We use the Banach fixed-point Theorem on the space

Ωδ,M := {P ∈ C0([0, δ])N | ∀i ∈ [[1, N ]], Pi ≥ 0 and ∥Pi∥C0([0,δ]) = sup
t∈[0,δ]

Pi(t) ≤ M}

with the associated norm ∥P∥Ωδ,M
:=
∑N

i=1 ∥Pi∥C0([0,δ]), where δ and M will be chosen later. The space Ωδ,M

is a product of closed sets of C0([0, δ]) which is a complete metric space. Therefore, Ωδ,M is also complete.
We recall that, by (H2), Λ is Lipschitz on [0,M ]N × [0, 1] and denote LΛ,M := LΛ,[0,M ]N ×[0,1] the associated
Lipschitz constant.

Lemma 3. Let 0 < δ ≤ (2LΛ,M )−1. For all P,Q ∈ Ωδ,M , t ∈ [0, δ], and x ∈ [0, 1], we have:

∥XP (·; t, x) −XQ(·; t, x)∥∞,[0,δ] ≤ 2δLΛ,M ∥P −Q∥Ωδ,M
.

Proof. By the definition of characteristic curves Eq. (4), for all s ∈ [0, δ], we have:

XP (s; t, x) −XQ(s; t, x) =
∫ s

t

(Λ(P (θ), XP (θ; t, x)) − Λ(Q(θ), XQ(θ; t, x))) dθ ,

and thus by the Lipschitz property (H2) of Λ on [0,M ]N × [0, 1]:

|XP (s; t, x) −XQ(s; t, x)| ≤
∫ s

t

|Λ(P (θ), XP (θ; t, x)) − Λ(Q(θ), XQ(θ; t, x))|dθ

≤ δLΛ,M ∥P −Q∥Ωδ,M
+ δLΛ,M ∥XP (·; t, x) −XQ(·; t, x)∥∞ .

Taking the supremum over s ∈ [0, δ], we obtain:

∥XP (·; t, x) −XQ(·; t, x)∥∞ ≤δLΛ,M ∥P −Q∥Ωδ,M

+δLΛ,M ∥XP (·; t, x) −XQ(·; t, x)∥∞ .

Hence, with δ ≤
(
2LΛ,[0,M ]N ×[0,1]

)−1, we have:

∥XP (·; t, x) −XQ(·; t, x)∥∞ ≤ 2δLΛ,M ∥P −Q∥Ωδ,M
.

Lemma 4. For some δ > 0 and M > 0, the map F defined by:

F : Ωδ,M −→ Ωδ,M

P 7−→ (F1 (P ) , . . . , FN (P )) (9)

with for all i ∈ {1, . . . , N}, Fi defined by Eq. (8), is a contraction mapping.

6



Proof. By regularity assumptions (H2) and (H3) on Λ and µ, and the dominated convergence Theorem, we can
easily check that for all P ∈ Ωδ,M , F (P ) is included in C0([0, δ])N . Let us show that the image of F is included
in Ωδ,M . For P ∈ Ωδ,M , i ∈ {1, . . . , N}, and t ∈ [0, δ], we have:

Fi(P )(t) ≤ ∥ω∥∞

∫ t

0

(
r0(u) +

N∑
i=1

ri(u)Pi(u)
)

du+ ∥ρ0∥∞ ∥ω∥∞

≤ ∥ω∥∞ δ

(
∥r0∥∞,[0,T ] +M

∑
i

∥ri∥∞,[0,T ]

)
+ ∥ρ0∥∞ ∥ω∥∞ .

Thus, for δ ≤ 1
∥ω∥∞(∥r0∥∞,[0,T ]+M

∑
i
∥ri∥∞,[0,T ])

and M ≥ 1 + ∥ρ0∥∞ ∥ω∥∞, ∥Fi(P )∥C0([0,δ]) ≤ M and F (P ) ∈

Ωδ,M . Now, let us show that F is a contraction mapping. Let P,Q ∈ Ωδ,M , i ∈ {1, . . . , N}, and t ∈ [0, δ]:

|Fi(P )(t) − Fi(Q)(t)| ≤∫ t

0
|r(u, P (u)) − r(u,Q(u))|FP (t;u, 0)ωi(XP (t;u, 0))du

+
∫ t

0
r(u,Q(u)) |FP (t;u, 0) − FQ(t;u, 0)|ωi(XP (t;u, 0))du

+
∫ t

0
r(u,Q(u))FQ(t;u, 0)|ωi(XP (t;u, 0)) − ωi(XQ(t;u, 0))|du

+
∣∣∣∣∣
∫ 1−

∫ t

0
Λ((P (θ),XP (θ;t,1))dθ

1−
∫ t

0
Λ((Q(θ),XQ(θ;t,1))dθ

ρ0(x)FP (t; 0, x)ωi(XP (t; 0, x))dx
∣∣∣∣∣

+
∫ 1−

∫ t

0
Λ((Q(θ),XQ(θ;t,1))dθ

0
ρ0(x) |FP (t; 0, x) − FQ(t; 0, x)|ωi(XP (t; 0, x))|dx

+
∫ 1−

∫ t

0
Λ((Q(θ),XQ(θ;t,1))dθ

0
ρ0(x)FQ(t; 0, x)|ωi(XP (t; 0, x)) − ωi(XQ(t; 0, x))|dx . (10)

By assumptions (H2),(H3),(H4),(H5) and (H6), all the terms on the right-hand side of Eq. (10) can be bounded
above by a term C(δ) ∥P −Q∥ with C a continuous function such that C(δ) −−−→

δ→0
0. For instance, for the fourth

term on the right-hand side, using Lemma 3:∣∣∣∣∣
∫ 1−

∫ t

0
Λ((P (θ),XP (θ;t,1))dθ

1−
∫ t

0
Λ((Q(θ),XQ(θ;t,1))dθ

ρ0(x)FP (t; 0, x)ωi(XP (t; 0, x))dx
∣∣∣∣∣

≤ ∥ρ0∥∞ ∥ω∥∞

∫ t

0
|Λ((Q(θ), XQ(θ; t, 1)) − Λ((P (θ), XP (θ; t, 1))| dθ

≤ ∥ρ0∥∞ ∥ω∥∞ LΛ,M

∫ t

0
∥Q(θ) − P (θ)∥RN + |XQ(θ; t, 1) −XP (θ; t, 1)| dθ

≤ t ∥ρ0∥∞ ∥ω∥∞ LΛ,M

(
∥P −Q∥Ωδ,M

+ ∥XP (·; t, 1) −XQ(·; t, 1)∥∞,[0,δ]

)
≤ δ ∥ρ0∥∞ ∥ω∥∞ LΛ,M

(
∥P −Q∥Ωδ,M

+ 2δLΛ,M ∥P −Q∥Ωδ,M

)
.

See A for the detailed calculations of all the terms in Eq. (10), which lead to the appropriate definitions of δ
and M . Finally, by choosing a sufficiently small δ such that C(δ) ≤ 1

2 < 1, the map F is a contraction mapping
on Ωδ,M .

Proof of Theorem 2. From Lemma 4 and by the Banach fixed-point Theorem, the mapping F admits a unique
fixed point in Ωδ,M . From that fixed point, we can construct a unique local solution to Eq. (1) up to time δ.
By iterating, we can extend the unique local solution on [0, δ0 := δ] to a unique solution on [0, δ0 + . . . + δn],
for all n. Time δn is then given by the same formula as δ, yet with ρ(δn−1) as initial data instead of ρ0. To
make sure that we can define a solution on [0, T ], we need to show that we can reach T in a finite number of
iteration steps. A lower bound to all the δ′

is can be deduced if one obtains an upper bound on ρ that is uniform
on τ ∈ [0, T ] (see condition (Cδ) in the A). Let τ such that the local solution ρ of Eq. (1) is well defined up to τ
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thanks to the iterative construction above. For all i ∈ {1, . . . , N}, Pi is a fixed point of Eq. (8) on time interval
[0, τ ]. Summing all the equations, we have:

N∑
i=1

Pi(t) =
N∑

i=1

∫ t

0
r(u, P (u))FP (t;u, 0)ωi(XP (t;u, 0))du

+
N∑

i=1

∫ 1−
∫ t

0
Λ((P (θ),XP (θ;t,1))dθ

0
ρ0(x)FP (t; 0, x)ωi(XP (t; 0, x))dx

≤ B + C

t∫
0

N∑
i=1

Pi(u)du ,

with B = N ∥ω∥∞ (∥ρ0∥∞ + T ∥r0∥∞) and C = N ∥ω∥∞ supi ∥ri∥∞.
Then by Grönwall’s Lemma, for all t ∈ [0, τ ] and i ∈ {1, . . . , N},

Pi(t) ≤
N∑

i=1
Pi(t) ≤ BeCT . (11)

Finally, by the quasi-explicit formula Eq. (7) we can express a bound on ρ that only depends on T :

∥ρ∥∞,[0,1]×[0,τ ] ≤ exp
(
T ∥λx∥∞,[0,M ]N ×[0,1]

)
max

(
∥ρ0∥∞ ,

∥r∥∞,[0,T ]×[0,M ]N

min[0,M ]N ×[0,1] Λ

)
.

2.3 Stationary solutions
From now on, unless otherwise stated, we will make the following assumption:
(H7) The recruitment rate r is autonomous, i.e. r(t, P ) = r(P ).

Stationary solutions to Eq. (1) are the functions ρ ∈ C1([0, 1],R+) verifying the following problem:
ρ ′(x) = − µ(P ,x)+Λx(P ,x)

Λ(P ,x) ρ(x), x ∈ [0, 1],

ρ (0) = r(P)
Λ(P ,0) ,

(12)

where

P =
(
P i

)
1≤i≤N

, P i =
1∫

0

ωi(x)ρ(x)dx .

In the same spirit as for the dynamic problem, we can limit the study of this differential Eq. (12) to an
equivalent integral equation on P . This is the statement of the following proposition, which directly comes from
the quasi-explicit formula verified by the solution to Eq. (12) and the regularity assumptions (H2),(H3), (H4).

Proposition 5. Stationary solutions ρ of Eq. (1) are defined by:

ρ(x) = r(P )
Λ(P , x)

e
−
∫ x

0
µ(P ,y)
Λ(P ,y)

dy on (0, 1) ,

where P is a fixed point of F : (R+)N 7→ (R+)N defined by:

Fi(P ) =
∫ 1

0
ωi(x) r(P )

Λ(P, x)e
−
∫ x

0
µ(P,y)
Λ(P,y) dydx, i ∈ {1, . . . , N} . (13)

Stationary solutions to Eq. (1) are in one-to-one correspondence with fixed points of F .

The number of stationary solutions can vary from zero to infinity, depending on the formulation of the growth,
death, and recruitment rates. Nevertheless, if we assume that the recruitment-to-growth ratio is bounded, then
we can show the existence of at least one stationary solution.
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Proposition 6. Assuming that:

∃M, ∀P ∈
(
R+)N

,∀x ∈ [0, 1], r(P )
Λ(P, x) ≤ M , (14)

then Eq. (12) has at least one solution.
Proof. Due to Proposition 5, we only have to show that, under the assumption given by Eq. (14), F defined
by Eq. (13) has at least one fixed point. First, note that, thanks to the regularity assumptions (H2), (H3), and
(H4) on Λ, µ and r, F is continuous. Let C := M × max

1≤i≤N
∥ωi∥∞, then for all i ∈ {1, . . . , N},

Fi(P ) =
∫ 1

0
ωi(x) r(P )

Λ(P, x)e
−
∫ x

0
µ(P,y)
Λ(P,y) dydx ≤ ∥ωi∥∞

1∫
0

r(P )
Λ(P, x)dx ≤ C .

The image of F is in [0, C]N , thus the restriction of F to [0, C]N is a continuous application from a compact
convex set to itself. By Brouwer’s fixed-point Theorem, F has at least one fixed point in [0, C]N .

To discuss stationary solutions in more details, the model needs to be refined. In the following section, under
the key assumption of a separable growth rate and in the absence of death, this refinement will enable us to
better characterize stationary solutions and study their stability.

3 Asymptotic analysis with a separable growth rate
In this section, we make three additional assumptions:
(H8) The growth rate is separable: Λ(P, x) = f(x)g(P ), with f and g strictly positive functions.
(H9) The death rate is negligible: µ(P, x) ≡ 0.
(H10)The ratio b := r

g is bounded on RN
+ , and g admits a strictly positive infimum on RN

+ . Furthermore, g
and r are continuously differentiable and globally Lipschitz continuous on RN

+ .
Then, under (H7)-(H10), Eq. (1) becomes:

∂tρ+ g(P (t))∂x (f(x)ρ(t, x)) = 0, x ∈ [0, 1], t ≥ 0
Λ(P (t), 0)ρ(t, 0) = r(P (t)), t ≥ 0
ρ(0, x) = ρ0(x), x ∈ [0, 1] .

(15)

The key additional assumption is (H8), as it allows us to perform a time-scaling transformation. Consequently,
studying Eq. (15) will become equivalent to studying an equation with a growth rate independent of P (actually
even a constant), namely a semilinear one. Let us note again that with assumption (H8), Theorem 2 of existence
and uniqueness of L1 solutions holds for initial solutions in L1.
Assumption (H9) aligns well with our main biological application. Indeed, in many fish species, oocyte death
is not readily apparent under normal physiological conditions. While not strictly needed, from a mathematical
perspective, assumption (H9) simplifies calculations, particularly the characterization of stationary solutions
(see prop. 5 against prop. 7) and their stability. Indeed without (H9), Proposition 12 is still true but with
a different characteristic equation which is a little bit harder to analyze (see for example [CS03] for a similar
model with death and growth rates that do not depends on x).
Assumption (H10) ensures the existence of at least one stationary solution (by Proposition 6), and guarantees
that function r

g is continuously differentiable and globally Lipschitz continuous on RN
+ . Moreover, this assump-

tion will be helpful for studying the stability of stationary solutions.
As a direct application of Proposition 5 under assumptions (H8) and (H9), we can provide a characterization
of stationary solutions to Eq. (15).
Proposition 7. Under assumptions (H1)-(H10), the stationary solutions ρ of Eq. (15) are defined by:

ρ(x) = b(P )
f(x) , x ∈ [0, 1], where P verifies P = b(P )T in RN

+ ,

and with T :=
∫ 1

0
ω
f ∈ RN

+ .

We emphasize that P = b(P )T can be rewritten P = r
(
P
) ∫ 1

0
ω(x)

f(x)g(P )
dx, where r

(
P
)

is the number of new

individuals per unit of time at equilibrium, and
∫ 1

0
ω(x)

f(x)g(P )
dx is the weighted lifetime of an individual. At

equilibrium, it is natural that the weighted population average P is equal to the number of new individuals
per unit of time multiplied by their weighted lifetime. Let us also point out that all the stationary solutions to
Eq. (15) have the same shape as 1

f .
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3.1 Time and space scaling transformation
We denote by Γ(x) :=

∫ x

0
1

f(y) dy the function that measures the time required for an individual to grow from
initial size 0 to size x in the absence of interaction terms. We further denote τ := Γ(1) as the entire lifetime of
an individual in the absence of interaction terms. Then the change of variables:

s =
∫ t

0
g(P (θ))dθ (16)

y = Γ(x) (17)

lead to the following problem:
∂sv(s, y) + ∂yv (s, y) +m(y)v(s, y) = 0, y ∈ (0, τ), s ≥ 0
v(s = 0, y) = v0(y), y ∈ (0, τ)
v (s, 0) = B(v(s, .)), s ≥ 0 ,

(18)

where m := f ′ ◦ Γ−1, α :=
(
ω ◦ Γ−1) (f ◦ Γ−1) and for all ϕ ∈ L1(0, τ), B(ϕ) := 1

f(0)b
(∫ τ

0 αϕ
)
. We use the

same notion of weak solution to Eq. (18) as that provided in Definition 1. By assumptions (H2), (H6), and
(H10) we note that α, m and B satisfy:
(H11) For all i ∈ [[1;N ]], αi : [0, τ ] 7→ R is nonnegative and Lipschitz continuous.
(H12) The function m : [0, τ ] 7→ R is continuous.
(H13) The map B : L1(0, τ) 7→ RN

+ is nonnegative, continuously differentiable and Lipschitz continuous.
Let T ≥ 0. For all ρ ∈ C([0, T ], L1(0, 1)), we define

sρ : [0, T ] → R
t 7→

∫ t

0 g(P (θ))dθ (19)

with P (θ) =
∫ 1

0 ω(x)ρ(θ, x)dx.
Let S ≥ 0. For all v ∈ C([0, S], L1(0, τ)), we define

tv : [0, S] → R
s 7→

∫ s

0
1

g(V (θ)) dθ (20)

with V (θ) =
∫ τ

0 α(x)v(θ, x)dx.
The following three propositions establish the link between Eq. (15) and Eq. (18).

Proposition 8. Under assumptions (H1)-(H10), if ρ is the weak solution to Eq. (15) on [0, T ] × [0, 1], then
the only v ∈ C0([0, sρ(T )], L1(0, τ)) that verifies v(sρ(t),Γ(x)) = ρ(t, x) for all (t, x) ∈ [0, T ] × [0, 1] is the weak
solution to Eq. (18) on [0, sρ(T )] × [0, τ ] with initial condition v0 = ρ0 ◦ Γ−1.
Conversely, if v is the weak solution to Eq. (18) on [0, S] × [0, τ ], then the only ρ ∈ C0([0, tv(S)], L1(0, 1)) that
verifies ρ(tv(s),Γ−1(y)) = v(s, y) for all (s, y) ∈ [0, S]× [0, τ ] is the weak solution to Eq. (15) on [0, tv(S)]× [0, 1]
with initial condition ρ0 = v0 ◦ Γ.

The proof of Proposition 8 is given in B and relies on the change of variables Eq. (16)-(17) and assumption
(H2) on the growth rate.
Since we are interested in the asymptotic behavior of the solutions, we want to guarantee that stationary
solutions to Eq. (15) and Eq. (18) are mapped, and that stability is preserved. We recall the standard notion
of local and asymptotic stability in Definition 26.

Proposition 9. Under assumptions (H1)-(H10), ρ is a stationary solution to Eq. (15) if and only if v := ρ◦Γ−1

is a stationary solution to Eq. (18). In such a case, P =
∫ 1

0 ω(x)ρ(x)dx =
∫ τ

0 α(x)v(x)dx = V . Furthermore,
ρ is locally L1-stable (resp. locally L1-asymptotically stable) if and only if v is locally L1-stable (resp. locally
L1-asymptotically stable).

Proof. The first assertion is immediate by Proposition 8. Let us show that the second assertion holds, i.e. that
stability is preserved. Let us assume that ρ is a locally L1-stable stationary solution to Eq. (15). Let ϵ > 0. By
definition, there exists δρ > 0 such that

∀ρ0 ∈ L1(0, 1),
(

∥ρ− ρ0∥L1(0,1) ≤ δρ

)
⇒
(

∀t ≥ 0 , ∥ρ− ρ(t, ·)∥L1(0,1) ≤ ϵmin
[0,1]

f

)
. (21)
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Let v0 ∈ L1(0, τ) such that ∥v − v0∥L1(0,τ) ≤ δρ

max
[0,τ]

f◦Γ−1 . Define ρ0 = v0 ◦ Γ, then

∥ρ− ρ0∥L1(0,1) = ∥v ◦ Γ − v0 ◦ Γ∥L1(0,1) ≤ max
[0,τ ]

f ◦ Γ−1 ∥v − v0∥L1(0,τ) ≤ δρ .

Therefore, for s ≥ 0, using Eq. (21), we deduce:

∥v − v(s)∥L1(0,τ) =
∥∥ρ ◦ Γ−1 − ρ(tv(s),Γ−1(·))

∥∥
L1(0,τ)

≤ 1
min
[0,1]

f
∥ρ− ρ(tv(s), ·)∥L1(0,1) ≤ ϵ , (22)

and v is locally L1-stable. In such a case, the map θ 7→ V (θ) is bounded on [0,+∞), and by continuity, g ◦ V
has a strictly positive maximum, so that tv(s) ≥ Cs for some C > 0 (see Eq. (20)). Thus, tv(s) −→

s→+∞
+∞, and

the same calculus as in Eq. (22) shows that:

∥v − v(s)∥L1(0,τ) −→
s→+∞

0 ,

whenever ∥ρ− ρ(t, ·)∥L1 −→
t→+∞

0. The reciprocal works in the same way.

By directly applying Proposition 8, we can also state the following.

Proposition 10. If ρ is a T -periodic solution to Eq. (15), then the associated solution v of Eq. (18) given by
Proposition 8 is sρ(T )-periodic. Conversely, if v is a S-periodic solution to Eq. (18), then the associated solution
ρ of Eq. (15) given by Proposition 8 is tv(S)-periodic.

Furthermore, let us point out that with the same arguments as those used in the proof of Proposition 9 for the
stability part, we expect that orbital L1 − stability of periodic solutions is preserved by the transformation.
Propositions 9 and 10 allow us to study the stability of stationary solutions and the existence of periodic
solutions to Eq. (15) by analyzing these properties in Eq. (18), which is simpler than the original semilinear
equation. This will be the matter of the next section.

3.2 Asymptotic analysis via local linearization
Eq. (18) can be rewritten as a non-densely defined semilinear abstract Cauchy problem, in the framework of
[MR18]. We consider the Banach space X := R×L1(0, τ) endowed with the norm ∥(a, ϕ)∥X := |a| + ∥ϕ∥L1(0,τ).
Let us define the following linear operator A : D(A) ⊂ X → X by

A

(
0
ϕ

)
=
(

−ϕ(0)
−∂yϕ−mϕ

)
, D(A) = {0} × W1,1(0, τ) (23)

and the map G : D(A) → X by

G

(
0
ϕ

)
=
(
B(ϕ)

0

)
.

To simplify the notation, set v(t) =
(

0
v(t, .)

)
. Equation (18) can then be rewritten as the following abstract

Cauchy problem:
dv(t)
dt

= Av(t) +G (v(t)) , t ≥ 0, v(0) =
(

0
v0

)
∈ D(A) . (24)

Thanks to (H13), G is continuously differentiable and Lipschitz continuous. The linearized problem around

stationary solution
(

0
v

)
, abbreviated v for brevity, is then:

dw

dt
= Aw(t) +DG(v)w(t), t ≥ 0, w(0) = w0 ∈ D(A) ,

where DG(v) ∈ L(D(A), X) is the Fréchet derivative of G at v, and is given explicitly as:

DG(v)
(

0
ϕ

)
=
( 1

f(0) ∇b(V ) ·
∫ τ

0 αϕ

0

)
, ∀ϕ ∈ L1(0, τ) , (25)
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with V =
∫ τ

0 αv. Note that A is not-densely defined, since D(A) = {0} × L1(0, τ) ̸= X. To apply the results
of [MR18] on the stability of equilibria and Hopf bifurcation Theorem, we need to gather stability estimates on
A, and further need some control on the pertubation DG(v).
First of all, let us recall some usual notations from spectral theory (see Chap. 4 in [EN00] for further details).
Let L : D(L) ⊂ X → X a closed linear operator. We denote by ρ(L) := {λ ∈ C|λ− L is bijective} the resolvent
set of L, σ(L) := C \ ρ(L) its spectrum, and s(L) := {sup ℜ(λ)|λ ∈ σ(L)} its spectral bound.
The operator norm of L is defined by ∥L∥L(X) := sup

x∈D(L)\{0}

∥Lx∥X

∥x∥X
. Let Ω ⊂ X, we note LΩ the part of L in

Ω, defined by LΩx := Lx, ∀x ∈ D(LΩ) := {x ∈ D(L) : Lx ∈ Ω}.
Proposition 11. Let assumptions (H11)-(H13) hold. A, defined by Eq. (23), is a closed Hille-Yosida operator,

(−m,+∞) ⊂ ρ(A)

and ∥∥(λI −A)−n
∥∥

L(X) ≤ M

(λ+m)n , ∀λ > −m, ∀n ≥ 1 (26)

where m := inf
y∈[0,τ ]

m(y) > −∞.

Let v a stationary solution to Eq. (24), and DG(v) defined by Eq. (25). DG(v) is a compact operator from D(A)
to X. Furthermore, the essential growth bound of (A+DG(v))

D(A) is strictly negative, the spectral bound of
generator (A+DG(v))

D(A) equals the growth bound of its semigroup, and the spectrum of A + DG (v) is only
made up of eigenvalues, which can be determined by the zeros of a characteristic function, i.e.:

σ(A+DG (v)) = σp(A+DG (v)) = {λ ∈ C : ∆(λ) = 0} ,

with
∆(λ) := 1 − ∇b(V ) ·

∫ 1

0

ω(x)
f(x) e

−λΓ(x)dx , (27)

and · denotes the usual dot product of RN . Moreover, the characteristic function ∆ defined by Eq. (27) is
holomorphic on C, and for all n ∈ N∗,

dn∆(λ)
dλn

= (−1)n+1 ∇b(V ) ·
1∫

0

ω(x)
f(x) Γ(x)ne−λΓ(x)dx .

Finally, the roots of ∆ are isolated, and λ is a simple isolated eigenvalue of A+DG(v) if and only if d∆(λ)
dλ ̸= 0.

Proof. The properties on A are rather standard and the proof leading to Eq. (26) follows from a direct calculation
of the resolvent, which involves a first-order ordinary differential equation, and is given in C. As α is bounded,
the image of the unit ball of D(A) by DG is included in [−M,M ] ×

{
0L1(0,τ)

}
for some M , which is compact

in X. As A is a Hille-Yosida operator, and DG(v) is a compact operator, then for all t ≥ 0, (DG(v)) ◦TA0(t) is
compact (as the composition of a compact operator with a bounded linear operator is compact). We can thus
apply Theorem 1.2. in [DLM08] to get that the essential growth bound of (A+DG(v))

D(A) is less than or equal
to the essential growth bound of A0 := A

D(A), the part of A in D(A). Using a corollary of the Hille-Yosida
Theorem (see Lemma 3.4.2. in [MR18]), A0 generates a C0-semigroup TA0 of bounded linear operators on D(A),
with ∥TA0(t)∥L(D(A)) ≤ e−mt, ∀t ≥ 0. We can even specify TA0 directly from the definition of A0:

TA0(t)
(

0
ϕ

)
=
(

0
T̂A0(t)ϕ

)
where

T̂A0(t)ϕ(y) =
{

e
−
∫ y

y−t
m(x)dx

ϕ(y − t), if 0 ≤ t ≤ y ≤ τ

0 otherwise .
(28)

We deduce from Eq. (28) that for every t > τ , TA0(t) = 0. Hence TA0 is a nilpotent C0-semigroup and the
growth bound of TA0 is ω0(A0) = −∞. By [EN00] Proposition IV.2.10., the essential growth bound of A0 is
less than the growth bound of TA0 , so that the essential growth bound is equal to −∞ < 0.
Furthermore, it is well known (corollary IV.2.11 in [EN00]) that the growth bound of a C0-semigroup is the
maximum between the essential growth bound and the spectral bound of its generator. Finally, we determine
the spectrum of A+DG(v) by an explicit calculation of its resolvent, given in Appendix C.
Properties of ∆ follows from similar arguments as those used to derive Lemma 8.3.6. in [MR18].

12



We can now state the main result of this section, which enables us to study the stability of stationary solutions
to Eq. (15) by analyzing the roots of a characteristic function.

Proposition 12. Let ρ a stationary solution to Eq. (15). Under assumptions (H10)-(H13), if the complex roots
of the characteristic function Eq. (27) are all strictly negative, then ρ is locally asymptotically stable. If there
exists a complex root with a positive real part, then ρ is unstable.

Proof. The proof is a direct application to Eq. (24) of Propositions 5.7.1. and 5.7.4. in [MR18] together with
Proposition 11. Then Proposition 9 transfers the result to the stationary solutions to Eq. (15).

Under certain conditions, the location of the roots of the characteristic function Eq. (27) is easier to determine.
These results will be summarized in the following corollaries.

Corollary 13. Let ρ a stationary solution to Eq. (15). Under assumptions (H10)-(H13), and if b is locally
increasing near P , i.e.,

∇b(P ) ≥ 0 , (29)
then:

• ρ is locally asymptotically stable if T · ∇b(P ) < 1,

• ρ is unstable if T · ∇b(P ) > 1.

Proof. From Proposition 9, let v the stationary solution associated with Eq. (18). We show in C that if
∇b(V ) ≥ 0 (recall that P = V ), the C0-semigroup generated by A + DG (v) is positive. The positivity
of the semigroup implies that the spectral bound s (A+DG (v)) is real by direct application of Theorem
VI.1.10 in [EN00]. Hence the study of the characteristic function defined by Eq. (27) is greatly simplified and
proceeds as follows. The restriction to R of ∆, λ ∈ R 7→ ∆(λ) ∈ R is a strictly increasing function with
limλ→∞ ∆(λ) = −∞, limλ→∞ ∆(λ) = 1, so that it admits a unique root, which is strictly positive if and only
if ∆(0) = 1 − T · ∇b(P ) < 0. Then by appling Proposition 12, we get the result.

Corollary 14. Let ρ a stationary solution to Eq. (15). Under assumptions (H10)-(H13), and if ω(x) ≡ ω ∈ RN

is constant, then:

• ρ is locally asymptotically stable if T · ∇b(P ) < 1,

• ρ is unstable if T · ∇b(P ) > 1, and the characteristic function admits a positive real root.

Also, if T · ∇b(P ) = 1, then the only root of ∆(λ) is 0.

Proof. From Eq. (27), we can establish that ∆(λ) = 0 if and only if(
λ = 0 and ∇b(P ) · ω = 1

τ

)
or
(
λ ̸= 0 and 1 − e−λτ

λ
∇b(P ) · ω = 1

)
.

Then, we can use Theorem 2 in [Hay50] to handle with the case λ ̸= 0, which is a well-known transcendental
equation in the field of delay differential equations.

The following result is derived from Corollaries 13 and 14:

Corollary 15. Under assumptions (H10)-(H13), and assuming that r(0RN ) > 0 (to ensure the existence of at
least one non-trivial stationary solution), and that Eq. (15) has a finite number of stationary solutions, then :

• If ω(x) ≡ ω ∈ RN is constant or if b is non decreasing with respect to all variables, then model Eq. (15)
has k unstable hyperbolic stationary solutions, and k+ 1 locally asymptotically stable hyperbolic stationary
solutions, with k ≥ 0 an integer which depends on b.

• If b is non increasing with respect to all variables, then there exists a unique stationary solution.

Proof. Let us define q(X) = T1b
(
X, T2

T1
X, . . . , TN

T1
X
)

− X for X ≥ 0. Then from Proposition 7, P =(
P 1, P 2, . . . , PN

)
=
(
P 1,

T2
T1
P 1, . . . ,

TN

T1
P 1

)
defines a unique stationary solution ρ̄(x) = b(P )

f(x) if and only if
q(P 1) = 0. Moreover, by composition q′(P 1) = T · ∇b(P ) − 1. Firstly, if ω(x) ≡ ω ∈ RN is constant and/or if
b is non decreasing with respect to all variables, the number of stationary solutions is given by the number of
roots of q in R+, and by Corollary 13 and 14, the stability is given by the sign of the derivative at the roots. As
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b is bounded, the function q is negative when X is large enough. Moreover, as r(0RN ) > 0, then b(0RN ) > 0 so
q(0) > 0. Thus, q crosses the abscissa line from the positive half plane to the negative half plane one time more
than in the opposite direction. The first result follows. If b is non increasing with respect to all variables, then
q is decreasing on R+, and as q(0) > 0 and q(X) < 0 when X is large enough, q has a unique root, so there is
a unique stationary solution.

To end with this section, let us note that when ω(x) ≡ ω ∈ RN is constant and/or if b is non decreasing with
respect to all variables, we do not expect oscillatory solutions. Indeed, when b is non decreasing, the leading
eigenvalue of the linearized operator is real (see Proof of Corollary 13), and, when ω is constant, transversality
conditions leading to Hopf bifurcation cannot be satisfied (see the end of Corollary 14). On the other side, when
ω is not constant and b is non increasing with respect to all variables, we can expect oscillatory solutions. This
behavior will be shown off in the next section.

4 Applications and numerical illustrations

VITELLOPREVITELLO POSTVITELLO+

- +

+-

-

AMH E DHP

Figure 1: Main steps of fish oogenesis with feedback loops. The color codes delineates the steps for which separate
models are designed. The horizontal arrows correspond to the growth rate, the circle arrows correspond to the
recruitment into each step. The + (resp. −) symbols discriminate positive against negative feedback loops
mediated by different hormonal signals.

In this section, we detail the application to fish oogenesis. We take advantage of the sequential progress of
oocyte maturation to consider three separate (sub)models illustrating three possible configurations of the model
given by Eq. (15), namely a double positive or negative feedback loop and a negative-positive feedback loop.
Fish (follicle-enclosed) oogenesis can indeed be divided into three main steps, the pre-vitellogenic phase (small-
sized oocytes), the vitellogenic phase (medium-sized oocytes) and the post-vitellogenic phase (large-sized oocytes).
These phases are named after the vitellogenesis process, during which the oocyte accumulates the lipopro-
tein vitellogenin that will later feed the embryo. Each phase is further characterized by the secretion of a
prominent hormonal signal, respectively AMH (Anti-Müllerian Hormone), Estradiol, and the progestagen DHP
(17α,20βDiHydroxy-4-Pregnen-3-one), which in turn either promotes or inhibits the recruitment into and growth
within the corresponding phase, as illustrated in Figure 1.
In this section, we can apply the theoretical results from Sec. 3 and exhibit oscillatory and bistable solutions in
a biologically-relevant context. We consider the case of a single interaction term P (t) =

∫ 1
0 ωi(x)ρ(t, x)dx. In

such a case, we can make the following comments on the model behavior. First, if the recruitment r decreases
with P (negative feedback) and g increases with P (positive feedback), then b = r/g decreases with P . From
Corollary 15, there is a unique stationary solution, whose stability remains to be determined. This situation is
investigated in the first application in subsection 4.1, which exemplifies the occurrence of a Hopf bifurcation.
Conversely, when b increases with P , there may be several stationary solutions as stated in Corollary 15. Fol-
lowing the proof of Corollary 15, we can provide a graphical interpretation of a multi-stationary behavior, as
presented in the second application in subsection 4.2.

4.1 A model of the spawning cycle (postvitello)
In teleost fish there is a variety of reproductive strategies. Some species (typically the salmonids) spawn only
once (and die thereafter) and the oocyte population is synchronous at any stage. Most other groups exhibit
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spawning cycles related to an asynchronous progress along oogenesis.[WS81] In the latter case, the most mature
follicles have a fast dynamics and the post-vitellogenic phase is completed within a spawning cycle.
For this application, the lower size boundary (x = 0) in Eq. (15) corresponds to the size of newly recruited
large-sized (postvitellogenic) oocytes, and the greater size boundary x = 1 to the size of large-sized oocytes
ready to be spawned. From available data on DHP expression pattern before spawning [Zho+07], we model
roughly ω(x) as a triangular function, with ω(0) = 0, ω(0.5) = M > 0, ω(1) = 0:

ω(x) = 2Mx, x ∈ [0, 0.5], ω(x) = 2M(1 − x), x ∈ [0.5, 1] . (30)

DHP promotes the growth of large-sized oocytes, which leads to a positive control on the growth rate g.
Furthermore, through an endocrine feedbackloop involving the central components of the reproductive axis (the
hypothalamus and pituitary gland), DHP prevents the recruitment of new large-sized oocytes. We model these
controls as Hill functions as follows:

Λ(x, P ) = g(P ) = 1 + cλP
n

1 + Pn
, r(Pr) = cr

1 + Pn
(31)

with cλ > 1, cr > 0, n > 0. Parameter cr represents the basal rate of newly recruited large-sized oocyte, and cλ

is the maximal growth rate of large-sized oocytes. From Eq. (31), the ratio b := r
g is decreasing with P :

b(P ) = cr

1 + cλPn
. (32)

In what follows, we will study the asymptotic behavior (stationary solution existence and stability, Hopf bifur-
cation) of the model, with respect to parameter cr.

4.1.1 Bifurcation analysis

By direct application of Proposition 7, we can derive a characterization of the model stationary solution.
Proposition 16. For each M > 0, cλ > 1, cr > 0 and n > 0, the spawning cycle model admits a unique
stationary solution ρ(x) = 2P

M on [0, 1], where P is the unique strictly positive solution to

P
n+1 + 1

cλ
P − Mcr

2cλ
= 0 . (33)

Note that, as we assume that the growth rate does not depend on oocyte size, the unique stationary solution
is uniform on [0, 1]. From now on, we will fix M > 0, cλ > 1, and n > 0 and consider the unique stationary
solution ρ = ρ(cr) (and P = P (cr)) as a function of the bifurcation parameter cr > 0.
Lemma 17. cr 7→ P (cr) is a strictly increasing function on (0,+∞), with lim

cr→0
P (cr) = 0 and lim

cr→+∞
P (cr) =

+∞. Moreover, cr 7→ P (cr)
cr

is strictly decreasing on (0,+∞), with lim
cr→0

P (cr)
cr

= M
2 , and P (cr) = o (cr) as

cr → +∞. Lastly, 0 < P
′(cr) < P (cr)

cr
for all cr > 0.

Proof. By the Implicit Function Theorem, P is differentiable with respect to cr, and by derivating Eq. (33)
with respect to cr, we get

P
′(cr)

(
cλ(n+ 1)P (cr)n + 1

)
= M

2 .

Multplying by P (cr), and using Eq. (33), we get

P
′(cr)

(
Mcr

2 + cλnP (cr)n+1
)

= M

2 ,

so
P

′(cr) = P (cr) 1
cr + 2cλnP (cr)n+1

M

<
P (cr)
cr

.

Hence P ′ > 0 so P is strictly increasing, and by Eq. (33), lim
cr→+∞

P (cr) = +∞. Moreover,(
P (cr)
cr

)′

= P
′(cr)
cr

− P (cr)
c2

r

= P (cr)
c2

r + 2cλcrnP (cr)n+1

M

− P (cr)
c2

r

< 0 ,

so the mapping cr 7→ P (cr)
cr

is strictly decreasing and positive, hence it admits a limit l ≥ 0 when cr goes to
+∞. Dividing Eq. (33) by cn+1

r and letting cr go to +∞, we get ln+1 = 0, so that l = 0. Then P (cr) = o(cr)
as cr goes to +∞. When cr goes to 0, by similar arguments, we get lim

cr→0
P (cr)

cr
= M

2 .
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Let us investigate the stability of this stationary solution. With some direct calculations detailed in D, we can
prove the following proposition.

Proposition 18. The characteristic function ∆ defined by Eq. (27) can be expressed as:

∆(λ, cr) = 1 − 2b′(P )(cr)M
λ2

(
e− λ

2 − 1
)2
, ∀λ ∈ C \ {0}

and ∆(0, cr) = 1 − 1
2b

′(P )(cr)M > 0 .

Then λ is a root of ∆(·, cr) if and only if λ ̸= 0 and

e− λ
2 − 1
λ

= ±i
√

−1
2b′(P )(cr)M

. (34)

Let k ∈ N and cr,k > 0 verifying

kπ + π

2 =
√
n

√
1 − 2

M

P (cr,k)
cr,k

, (35)

then ∆(·, cr,k) has a unique pair of conjugated purely imaginary roots (λk, λk) with λk = (4kπ + 2π) i. For all
cr ̸= cr,k, ∆(·, cr) does not admit any purely imaginary root.

Let us remark that by Lemma 17, cr 7→ 2
√
n

√
1 − 2

M
P (cr)

cr
is a strictly increasing continuous function on

(0,+∞), with lim
cr→0

2
√
n

√
1 − 2

M
P (cr)

cr
= 0, and lim

cr→+∞
2
√
n

√
1 − 2

M
P (cr)

cr
= 2

√
n. So, by Proposition 34, ∆

admits K + 1 purely imaginary roots (λk)0≤k≤K with K =
⌊√

n
π − 1

2

⌋
. In particular, for n ≤ π2

4 , ∆ does not
admit any purely imaginary root, whatever the value of cr, and, for n > π2

4 , it exists at least one cr such that
∆(·, cr) admits a pair of purely imaginary roots.
By propositions 11 and 18, we can easily deduce the next Lemma.

Lemma 19. The derivative of ∆ with respect to λ is given by

∂∆(λ, cr)
∂λ

= 2b′(P )(cr)M
λ2

(
e−λ − e− λ

2

)
+ 2
λ

(1 − ∆(λ)) .

If λ is a root of ∆, then

∂∆(λ, cr)
∂λ

= 2b′(P )(cr)M
λ2

(
e−λ − e− λ

2

)
+ 2
λ

= 1
1 − e

λ
2

+ 2
λ

̸= 0 .

In particular, all roots of ∆ are simple. If λ is a purely imaginary root, then

∂∆(λ)
∂λ

= 1
2 − i√

−2b′(P )(cr)M
.

Moreover, the derivative of ∆ with respect to cr at (cr, λ) where λ is a root of ∆ is given by

d∆(λ, cr)
dcr

= −db′(P )(cr)
dcr

1
b′(P (cr))

.

We can now state the main result of this subsection.

Proposition 20. Let us consider the spawning cycle model Eq. (15) with model parameters given by Eq. (30)-
(31). For any M > 0, cλ > 1, and n > π2

4 , there is a Hopf bifurcation at cr = cr,k, with k ∈
{

0, . . . ,
⌊√

n
π − 1

2

⌋}
,

where cr,k verifies Eq. (35). In particular, a periodic solution bifurcates from the stationary solution ρ(cr,k) =
2P (cr,k)

M when cr = cr,k, with P (cr,k) the unique positive solution to Eq. (33).
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Proof. We apply Theorem 6.2.7. in [MR18], which requires to prove transversality conditions on the real part
of roots of the characteristic equation. By Eq. (32) and Eq. (33),

b′(P (cr)) = − cλcrnP (cr)n−1

(1 + cλP (cr)n)2

= − 4cλn

M2cr
P (cr)n+1 = − 4cλn

M2cr

(
Mcr

2cλ
− P (cr)

cλ

)
= 4n
M2cr

P (cr) − 2n
M

.

Then, by Lemma 17,
d

dcr
(b′(P )(cr)) = 4n

M2cr

(
−P (cr)

cr
+ P

′(cr)
)
< 0 .

Thanks to Lemma 19, we can apply the implicit holomorphic function Theorem to ∆ around (λk, cr,k). This
states the existence of ϵ > 0, and a continuously differentiable map λ̂ : (cr,k − ϵ, cr,k + ϵ) → C such that
∆(λ, cr) = 0 if and only if λ = λ̂(cr), for all (λ, cr) ∈ BC(λk, ϵ)×(cr,k − ϵ, cr,k + ϵ). Moreover, as ∆(λ̂(cr), cr) ≡ 0
for all cr ∈ (cr,k − ϵ, cr,k + ϵ), we have, by Lemma 19,

dλ̂(cr)
dcr

= − 1
∂∆(λ̂(cr),cr)

∂λ

∂∆(λ̂(cr), cr)
∂cr

= 1
∂∆(λ̂(cr),cr)

∂λ

db′(P )(cr)
dcr

1
b′(P )(cr)

.

In particular, at cr = cr,k, we obtain

dλ̂(cr,k)
dcr

= 1
1
2 − i

2kπ+π

1
b′(P )(cr,k)

db′(P )(cr,k)
dcr

,

so
dℜ
(
λ̂(cr,k)

)
dcr

> 0 .

4.1.2 Numerical simulations

We now provide a numerical illustration of the Hopf bifurcation Proposition 20 through direct simulations of
the spawning cycle model (see E for details on the numerical scheme). We set M = 1, n = 4, cλ = 2. From
Proposition 20, we have a unique Hopf bifurcation at c0

r ≈ 4.944, obtained by solving numerically Eq. (35) (see
the bifurcation diagram on Figure 3). On the top left panel of Figure 2, we have set cr = 4 < c0

r. The unique
positive solution to Eq. (33) is P ≈ 0.889, and the associated stationary solution is given by ρ(x) = 2P

M ≈ 1.778.
Starting from the initial condition ρ0(x) ≡ 0, we observe that P converges to P , so that the population of
large-sized oocytes converges to the associated stationary solution ρ, as expected. In the remaining panels, we
have set cr = 10 > c0

r. Still starting from ρ0(x) ≡ 0, we observe that the population of large-sized oocytes
converges to a periodic solution, which seems to be stable. Indeed, on the top right panel (P with respect to
time) and bottom left panel (heatmap of the density ρ), we can see the persistence of a periodic pattern. The
shape of the density is shown on the bottom right panel. We observe a single-peaked density that propagates
rightwards with time. It is worth noting that the shape of this periodic solution is similar to the large-sized
oocyte size distribution observed in experimental data (see, e.g., Figure 16 in [WS81]).
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Figure 2: Illustration of the Hopf bifurcation and a periodic solution to the spawning cycle model, with n =
4, M = 1, cλ = 2. Top left panel shows the dynamics of P with cr = 4 while top right panel shows the dynamics
of P with cr = 10. Bottom panels show the dynamics of the periodic solution ρ for cr = 10.

Figure 3: Hopf bifurcation diagram with respect to
cr, for the spawning cycle model with n = 4, M = 1,
cλ = 2. The stationary solution branch is computed
by solving Eq. (33) for several cr on a grid of cr values,
and the branches corresponding to the amplitude of
the periodic solution are determined numerically from
simulated solutions.
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We keep M = 1, n = 4, cλ = 2, but we now perform a numerical simulation with a non monotonous time-
dependent basal rate of newly recruited large-sized oocytes cr(t), such that:

cr(t) =
{

10
(
1 − e−0.1t

)
if t ≤ 60

10
(
1 − e−6) e−0.1(t−60) if t > 60 .

The expression of cr(t) roughly mimics the change in the basal recruitment rate along aging (see left panel of
Figure 4). The corresponding P dynamics (which fully characterizes ρ dynamics) are plotted on the right panel
of Figure 4. One can observe a 3 step pattern. For small t, hence in early (prepubertal) life, cr is lower than the
bifurcation value c0

r, there is a single stable stationary solution. Then, during the mid-life (reproductive) period,
the cyclic solution appears and is maintained till the value of cr drops below the critical value (senescence).
These results seem to indicate that there may be a threshold on the number of recruited oocytes to trigger and
maintain the spawning cycle. This could explain why some elder individuals are no longer able to spawn.
Note that we observe a delay to the bifurcation, which occurs as the current point lies in the vicinity of the
unstable stationary solution, as classically encountered in slow-fast dynamical systems.
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Figure 4: Simulation of the spawning cycle model with n = 4, M = 1, cλ = 2 (right panel), with a time-
dependent basal recruitment cr (left panel).

4.2 A model of small-sized oocyte dynamics (previtello)
We now focus on the population of small-sized (previtellogenic) oocytes, whose slower dynamics drive the whole
oocyte population dynamics on the lifespan. For this application, the lower size boundary (x = 0) in Eq. (15)
now corresponds to the size of newly recruited growing oocytes, and the greater size boundary x = 1 to the size
of oocytes entering the vitellogenic stage. In the previtellogenic phase, AMH both slows down oocyte growth
and exerts a critical inhibitory effect on oocyte recruitment, which appears to be associated with an upstream
inhibition of germline cell proliferation [Yan+19; Zha+20].
Accordingly, we formulate the recruitment and growth rates as follows:

Λ(P, x) = f(x)g(P ) = f(x)
1 + cλPn

, r(P ) = cr

1 + Pn
, n > 1 , (36)

so that b = r
g = cr(1+cλP n)

1+P n . The parameter cr > 0 is the basal rate of newly recruited growing (previtellogenic)
oocytes, and parameter cλ > 0 tunes the intensity of the feedback exerted onto the growth rate. The function f
is strictly positive continuously differentiable and ω is non negative Lipschitz continuous. Like for the spawning
cycle model, we will study the asymptotic behavior of ρ with respect to cr.
Let us note that this model has a similar asymptotic behavior as that with g(P ) = 1 + Pn, and r(P ) =
cr (1 + cλP

n), where there is a double positive feedback on the growth rate and recruitment rate. Such a
formulation would be well-suited for representing the estradiol-controlled dynamics of oocytes in the vitellogenic
phase (see Figure 1).

4.2.1 Bifurcation analysis

By application of Proposition 7, we know that the stationary solutions are given by ρ(cr)(x) = b(P )(cr)
f(x) where

P (cr) is a (not necessarily unique) positive solution to

P (cr) = T cr
1 + cλP (cr)n

1 + P (cr)n
, (37)

with T =
∫ 1

0
ω(x)
f(x) dx. We enunciate the stability properties of these stationary solutions in the next proposition,

which is illustrated in Figures 5 and 6.

Proposition 21. For each cr > 0, cλ > 0, n > 1, ω a nonnegative Lipschitz continuous function, f a strictly
positive continuously differentiable function, the small-sized oocyte model, Eq. (15) with model parameters given
by Eq. (36), has the following stationary solutions:

• If cλ < 1, then for each cr > 0 there is a unique stationary solution.

• If cλ ≥ 1 and the following condition is satisfied:

C := ((1 − n)cλ + 1 + n)2 − 4cλ > 0 , (38)

we define

P± =
(

(n− 1)cλ − 1 − n±
√
C

2cλ

) 1
n

,
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and
cr± = P∓

T
1 + Pn

∓
1 + cλPn

∓
. (39)

Then, we have the following:

– if cr < cr− there is a unique locally asymptotically stable stationary solution ρ1(cr),
– if cr = cr− there are two stationary solutions ρ1(cr) < ρ23(cr). ρ1(cr) is locally asymptotically stable,

and ρ3(cr) is non hyperbolic,
– if cr− < cr < cr+, then there are three stationary solutions ρ1(cr) < ρ2(cr) < ρ3(cr). ρ1(cr) and
ρ3(cr) are locally asymptotically stable, and ρ2(cr) is unstable,

– if cr = cr+, there are two stationary solutions ρ12(cr) < ρ3(cr). ρ12(cr) is non hyperbolic, and ρ3(cr)
is locally asymptotically stable,

– if cr > cr+, then there is a unique locally asymptotically stable stationary solution ρ3(cr) .

To sum up, when cλ ≥ 1 is fixed and Eq. (38) is satisfied, two successive saddle-node bifurcations occur at
cr = cr− and cr = cr+ .

• If cλ ≥ 1 and condition (38) is not satisfied, then for each cr there is a unique locally asymptotically stable
stationary solution.

Condition Eq. (38) implies that b is an increasing Hill function with a sufficient steep slope (see Figure 5).

Proof. If cλ < 1, then b is strictly decreasing, so that Eq. (37) admits a unique positive solution. Else, we can
easily check that Eq. (37) can admit 1,2 or 3 positive solutions, depending on the shape of b (see Figure 5). If
Eq. (38) is satisfied, then the critical values of cr (transition from 1 to 3 stationary solutions), for which we
have two stationary solutions, are given by the following equations:

P = T cr
1 + cλP

n

1 + P
n and 1 = T b′(P ) = T cr

nP
n−1 (cλ − 1)(

1 + cλP
n
)2 . (40)

Positive solutions P± to Eq. (40) can be determined with few calculations, as in [MTY11], and used to deduce
cr± given by Eq. (39). Finally, when cλ ≥ 1 and Eq. (38) is not satisfied, Eq. (40) has no solution, hence
Eq. (37) admits always one unique positive solution.
Now, concerning stability results, when cλ ≥ 1, b is an increasing function with respect to P , so that we can
use corollary 13 to deduce the local stability of stationary solutions. More precisely, corollary 13 implies that
ρ (associated with P ) is locally asymptotically stable if the slope of the tangent to the sigmoid P 7→ T b(P ) at
point P is strictly greater than the slope of P 7→ P/cr (which is 1/cr). Conversely, if the slope of the tangent
curve is strictly smaller than 1/cr, then ρ is unstable. Therefore, we can easily deduce the stability of stationary
solutions (see Figure 5 for an illustration of the proof).

It should be noted that when cλ < 1, then b is decreasing, leading possibly to qualitatively similar phenomena
as in the spwaning cycle application (subsection 4.1).
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Figure 5: Illustration of Proposition 21, with n = 6, f(x) = 1 + 2x2, ω(x) = x. Dotted lines are graphical
representations of P 7→ P

cr
, black curves of P 7→ T b(P ), and black points are intersection points. In A,B,C

panels, cλ = 5, such that we are in the case cλ ≥ 1 and condition Eq. (38) holds true. In A cr < cr−, in B
cr− < cr < cr+, and in C cr > cr+. In panel D, cλ = 1.8, such that condition Eq. (38) is not satisfied.

Figure 6: The left panel shows the bifurcation diagram with respect to cλ and cr of the small-sized oocyte
model Eq. (36) with n = 6, f(x) = 1 + 2x2, ω(x) = x. Captioned areas A, B, C, D correspond to the cases
illustrated in Figure 5. The right panel represents the bifurcation diagram with respect to cr of the small-sized
oocyte model Eq. (36) with n = 6, f(x) = 1 + 2x2, ω(x) = x, and with cλ fixed to 5.

4.2.2 Numerical simulation with a time-dependent recruitment rate

Let us consider the small-sized oocyte model with n = 6, f(x) = 1 + 2x2, ω(x) = x, and cλ = 5. The choice of
ω is based (roughly) on literature about AMH expression,[Rod+05]. f is an increasing quadratic function with
respect to x, accounting for the acceleration of the intrinsic grow rate in this size range. n is fixed arbitrarily
and cλ as well, but in such a way that b is increasing. The basal recruitment rate cr is slowly increasing, and
then slowly decreasing with respect to time (top left panel of Figure 7), as it can be expected at the scale of a
whole fish life:

cr(t) =
{

0.75 + 1.5 sin
(

πt
10000

)
if 0.75 + 1.5 sin

(
πt

10000
)
< 2,

2 if 0.75 + 1.5 sin
(

πt
10000

)
≥ 2.

We observe an hysteresis loop (bottom panel of figure 7), with first the transition from a stationary solution
branch with few oocytes to a stationary solution branch with significantly more oocytes when cr increases, and
then the reverse transition when cr decreases. We recall that the stationary solutions have all the same shape
(proportional to 1/f(x)), so that the transition from one branch to another simply corresponds to a change in
the size of the population, not to a change in the shape of the density.
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Figure 7: Simulation of the small-sized oocyte model with n = 6, f(x) = 1 + 2x2, ω(x) = x, cλ = 5 and
a time-dependent basal recruitment rate cr as shown in the top left panel. The top right panel shows the
corresponding dynamics of P with respect to t. On the bottom panel, the trajectory P (t) (orange curve) is
overlaid on the bifurcation diagram (black curve).

5 Conclusion
In this manuscript, we have introduced a fairly general quasilinear size-structured population model defined by
Eq. (1)-(2) and established the existence and uniqueness of global solutions in Theorem 2. The originality of
the model mainly comes from the inflow boundary condition, which is formulated as a recruitment term rather
than as a birth term. Our main mathematical contribution lies in the long-time analysis of the model under
some specific assumptions. As a general theory for generic quasilinear size-structured population models seems
out of reach, we have limited our study to model Eq. (15)-(2), assuming that the growth rate is separable (the
feedback onto the growth of individuals is homogeneous across the population), and that there is no death. We
have shown that this model is asymptotically equivalent to the semilinear model defined by Eq. (18).
The long-time analysis has revealed the richness of the model, which exhibits monostability, multistability (see
Corollary 15 and Proposition 21) and oscillatory solutions (see Proposition 20), depending on the recruitment-
to-growth ratio. When the ratio is a decreasing function of the population weighted average (which typically
indicates the presence of negative feedback onto recruitment and/or positive feedback on growth rate), we have
shown the existence of a Hopf bifurcation, and confirmed numerically the stability of the oscillatory solution.
When the ratio is an increasing sigmoidal function of the population weighted average, we have demonstrated
the existence of two successive (supercritical and subcritical) saddle-node bifurcations leading to possible bista-
bility. However, as we considered only one interaction term (i.e. N = 1) in Sec. 4, we did not investigate the
case of a recruitment-to-growth ratio involving different directions of variation in the different interaction terms.
It could be the matter of future work.
From an application perspective, this work represents a first step towards understanding the mechanisms con-
trolling oocyte dynamics in fish, particularly the dynamics of small-sized oocyte recruitment, which remains
only partially understood. In future works, it would be interesting to embed the models representing separately
the main steps of oogenesis into a comprehensive model encompassing all stages of oocyte growth, and to study
the influence of the recruitment on the whole population dynamics. The model coupling can be achieved either
through the flux boundary conditions, or through the design of a single PDE with a velocity that depends both
on x and P (quasilinear PDE). To study the behavior of such a model, numerical methods such as the pseu-
dospectral approximation coupled with numerical tools for bifurcation analysis of ordinary differential equations
would be useful. [Sca+21]
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A (Local) Existence and Uniqueness

It is easy to see that Eq. (1) with a given P ∈ C
(

[0, T ], (R+)N
)

admits a unique (weak) solution given by the
following explicit formula on [0, T ] × [0, 1]: ρ(t, x) = ρ0(βP (t, x))FP (t; 0, βP (t, x)) ∂βP

∂x (t, x), (t, x) ∈ Dβ

ρ(t, x) = −r(αP (t, x), P (αP (t, x)))FP (t;αP (t, x), 0) ∂αP

∂t (t, x) (t, x) ∈ Dα .

This standard result can be obtained by the method of characteristics. Next propositions 22-25 will ensure that
the corresponding result holds true in the nonlinear case (see Theorem 2), i.e. for P (t) =

∫ 1
0 ω(x)ρ(t, x)dx.

(x1, t1)

X0,P

XP (·; t1, x1)

XP (·; t2, x2)

x = 1 x

t

αP (t1, x1)

(0, 0) βP (t2, x2)

(x2, t2)

x = 1 x

Figure 8: The characteristic X0,P starting from the origin split the domain in two parts: Dα (in salmon) and
Dβ (in blue). Characteristics in Dα intersect the time axis at time α, while characteristics in Dβ intersect the
size axis at size β.

To ease the formulation of stability estimates, we introduce the following notations, where T > 0 is a fixed time:

M := max
(

1 + ∥ρ0∥∞ ∥ω∥∞ ,

N ∥ω∥∞ (∥ρ0∥∞ + T ∥r0∥∞) exp
(
N ∥ω∥∞ sup

1≤i≤N
∥ri∥∞

))
,

(CM )
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and

δ := min
(
T,

1
∥ω∥∞

(
∥r0∥∞,[0,T ] +M

∑
i ∥ri∥∞,[0,T ]

) ,
1

2LΛ,[0,M ]N ×[0,1]
,

1
c1 + c2 ∥ρ0∥∞

)
.

(Cδ)

where constants c1, c2, depend on T , ∥r∥∞,[0,T ]×[0,M ]N , ∥λ∥∞,[0,M ]N ×[0,1], and Lipschitz constants Lr,[0,M ]N ×[0,1],
LΛ,[0,M ]N ×[0,1], Lµ,[0,M ]N ×[0,1], Lω, and can be explicitly deduced from Eq. (43).

Proposition 22. Let T > 0, and ρ a weak solution to Eq. (1) up to time T . Therefore, for all τ ∈ [0, T ] and
φ ∈ C1([0, τ ] × [0, 1]) such that φ(t, 1) = 0 for all t ∈ [0, τ ], we have:∫ τ

0

∫ 1

0
ρ(t, x) [∂tφ(t, x) + Λ(P (t), x)∂xφ(t, x) − µ(P (t), x)φ(t, x)] dxdt

+
∫ τ

0
r(t, P (t))φ(t, 0)dt+

∫ 1

0
ρ0(x)φ(0, x)dx−

∫ 1

0
ρ(τ, x)φ(τ, x)dx = 0 .

Proof. The proof of this proposition is similar to that provided for Lemma 2.2. in [CKW10].

Proposition 23. Let ρ be a weak solution to Eq. (1) up to δ, with δ verifying (Cδ). Then ρ verifies the
quasi-explicit formulation Eq. (7).

Proof. We consider 0 ≤ τ ≤ δ, and ψ the solution to the following (linear) dual problem:
∂tψ(t, x) + Λ(P (t), x)∂xψ(t, x) − µ(P (t), x)ψ(t, x) = 0, x ∈ [0, 1], t ∈ [0, τ ]
ψ(t, 1) = 0, t ∈ [0, τ ]
ψ(τ, x) = ψ0(x), x ∈ [0, 1]

with ψ0 ∈ C1
c (0, 1). By the characteristic method, ψ verifies: ψ(t, x) = ψ0(XP (τ ; t, x))FP (τ ; t, x), 0 ≤ x ≤ XP (t, τ, 1), 0 ≤ t ≤ τ

ψ(t, x) = 0, XP (t, τ, 1) ≤ x ≤ 1, 0 ≤ t ≤ τ .
(41)

As ψ0 ∈ C1
c (0, 1), we have ψ0(1) = ψ′

0(1) = 0, and thus ψ ∈ C1([0, τ ] × [0, 1]). Then by applying Proposition 22
with ϕ = ψ, we get: ∫ 1

0
ρ(τ, x)ψ0(x)dx =

∫ 1

0
ρ0(x)ψ(0, x)dx+

∫ τ

0
r(t, P (t))ψ(t, 0)dt .

With (41) and by doing the change of variables y = XP (τ ; 0, x) (see Proposition 1), the first r.h.s. (right-hand
side term) becomes:∫ 1

0
ρ0(x)ψ(0, x)dx =

∫ 1

X0,P (τ)
ρ0(βP (τ, y))F(t; 0, βP (τ, y))∂βP

∂x
(τ, y)dy .

Additionnaly, with (41) and the change of variables x = XP (τ ; t, 0) (see Proposition 1), the second r.h.s.
becomes:

τ∫
0

r(t, P (t))ψ(t, 0)dt =
X0,P (τ)∫

0

−r(αP (t, x), P (αP (t, x)))FP (t;αP (t, x), 0)∂αP

∂t
(t, x)dx .

Since these equalities are verified for every ψ0 ∈ C1
c (0, 1) and 0 ≤ τ ≤ δ, then ρ verifies the quasi-explicit

formulation Eq. (7) on [0, 1] × [0, δ].

The following result is a corollary of Proposition 23.

Proposition 24 (Local uniqueness). Let δ > 0 verifying (Cδ), then Eq. (1) admits at most one weak solution
up to time δ.
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Proof. Let us suppose that there exist two weak solutions ρ and ρ̃. Thanks to Proposition 23, we know that
ρ verifies the quasi-explicit formulation Eq. (7) with P =

∫ 1
0 ω(x)ρ(t, x)dx, and ρ̃ verifies the quasi-explicit

formulation Eq. (7) with P replaced by P̃ =
∫ 1

0 ω(x)ρ̃(t, x)dx. P and P̃ are both fixed points of the mapping
F defined by Eq. (9). By Lemma 4, we know that F admits a unique fixed point on Ωδ,M = {P ∈ C0([0, δ])N :
∀ 1 ≤ i ≤ N, Pi ≥ 0 and ∥Pi∥C0([0,δ]) = sup

t∈[0,δ]
Pi(t) ≤ M}, with M defined by (CM ). With the same calculations

that led to Eq. (11), we can state (by keeping the same notations of constants B and C), that

sup
t∈[0,δ]

Pi(t) ≤ BeCδ ≤ BeCδ ≤ M and sup
t∈[0,δ]

P̃i(t) ≤ BeCδ ≤ BeCδ ≤ M .

Hence P and P̃ belong to Ωδ,M , and by uniqueness of the fixed point P ≡ P̃ on [0, δ], and thus ρ = ρ̃.

Proposition 25 (Local existence). Let 0 < δ < T with δ verifying (Cδ), M > 0 verifying (CM ) and P a fixed
point of F defined by Eq. (9). Then ρ defined by Eq. (7) up to time δ is a weak solution to Eq. (1).

Proof. Firstly, let us verify that ρ defined by Eq. (7) up to time δ > 0 is in C0([0, δ];L1(0, 1))∩L∞((0, δ)×(0, 1)).
With Eq. (7) and regularity assumptions (H2)-(H6) combined with the fact that P ∈ Ωδ,M , we obtain the
following upper bound:

sup
(t,x)∈[0,1]×[0,δ]

|ρ(t, x)| ≤ eT ∥∂xλ∥∞,[0,M]N ×[0,1] max

∥ρ0∥∞ ,
∥r∥∞,[0,T ]××[0,M ]N

inf
[0,M ]N ×[0,1]

Λ

 . (42)

It remains to show that ρ ∈ C0([0, δ];L1(0, 1)). Let 0 ≤ t ≤ t̃ ≤ δ, and let us prove that lim
t̃→t+

∥∥ρ(t̃, ·) − ρ(t, ·)
∥∥

L1(0,1) =

0. The case t̃ ≤ t works in the same way.
For sake of legibility, we will note XP (θ) := XP (θ; t, x), X̃P (θ) := XP (θ; t̃, x), and αP := αP (t, x), α̃P :=
αP (t̃, x), βP := βP (t;x), β̃P := βP (t̃;x).
Let x ∈ [0, X0,P (t)], then with Eq. (7) and as t ≤ t̃:

ρ(t̃, x) = −r(α̃P , P (α̃P ))FP (t̃; α̃P , 0)∂αP

∂t
(t̃, x)

= r(α̃P , P (α̃P ))e−
∫ t̃

α̃P
µ(P (θ),XP (θ,α̃P ,0))dθ ∂αP

∂t
(t̃, x) .

We recall that P is a fixed point of F and in particular P ∈ Ωδ,M . Additionally, Definition-Proposition 1 gives
regularity properties on αP , ensuring that α̃P −−−→

t̃→t+
αP and ∂tαP (t̃, x) −−−→

t̃→t+
∂tαP (t, x). By combining these

results with regularity assumptions (H2)-(H6), one can easily check that ρ(t̃, ·) converges pointwise to ρ(t, ·) on
[0, X0,P (t)]. Thanks to Eq. (42), we can apply the dominated convergence Theorem which leads to:

lim
t̃→t+

∥∥ρ(t̃, ·) − ρ(t, ·)
∥∥

L1(0,X0,P (t)) = 0 .

Furthermore, still with Eq. (7)∫ 1

X0,P (t̃)

∣∣ρ(t̃, x) − ρ(t, x)
∣∣dx ≤

∫ 1

X0,P (t̃)

∣∣ρ0(β̃P ) − ρ0(βP )
∣∣FP (t̃, 0, β̃P )

∣∣∂xβP (t̃, x)
∣∣dx

+
∫ 1

X0,P (t̃)
ρ0(βP )

∣∣FP (t, 0, βP )∂xβP (t, x) − FP (t̃, 0, β̃P )∂xβP (t̃, x)
∣∣ .

Like before, with Definition-Proposition 1, regularity assumptions (H2)-(H6) and the dominated convergence
Theorem, one can check that the second right-hand side term goes to 0 when t̃ goes to t. It remains to show that
the first right-hand side term also vanishes. As C1([0, 1]) is dense in L1(0, 1), there exists (ρn

0 )n≥0 ∈ C1([0, 1])N

such that ρn
0

L1(0,1)−−−−−→
n→+∞

ρ0. By doing an upper bouding analogously to Eq. (42) and denoting C a constant that
does not depend on neither t nor x, we have∫ 1

X0,P (t̃)

∣∣ρ0(β̃P ) − ρ0(βP )
∣∣FP (t̃, 0, β̃P )

∣∣∂xβP (t̃, x)
∣∣dx

≤ C

∫ 1

X0,P (t̃)

∣∣ρ0(β̃P ) − ρ0(βP )
∣∣dx ,
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and ∫ 1

X0,P (t̃)

∣∣ρ0(β̃P ) − ρ0(βP )
∣∣ dx ≤

∫ 1

X0,P (t̃)

∣∣ρ0(β̃P ) − ρn
0 (β̃P )

∣∣ dx
+
∫ 1

X0,P (t̃)

∣∣ρn
0 (β̃P ) − ρn

0 (βP )
∣∣dx+

∫ 1

X0,P (t̃)
|ρn

0 (βP ) − ρ0(βP )| dx

≤ 2 ∥ρn
0 − ρ0∥L1(0,1) + ∥(ρn

0 )′∥∞,[0,1]

∫ 1

X0,P (t̃)

∣∣β̃P − βP

∣∣dx .
By the continuity of βP associated with the dominated convergence Theorem,

∫ 1
X0,P (t̃)

∣∣β̃P − βP

∣∣dx −−−→
t̃→t+

0. So
by taking n large enough and then t̃− t small enough, the right-hand side of the last inequality can be smaller
than any given positive constant, so:

lim
t̃→t+

∥∥ρ(t̃, ·) − ρ(t, ·)
∥∥

L1(X0,P (t̃),1) = 0 .

Hence, as ρ ∈ L∞((0, δ) × (0, 1)), we can write:∫ X0,P (t̃)

X0,P (t)

∣∣ρ(t̃, x) − ρ(t, x)
∣∣dx ≤ 2 ∥ρ∥∞,(0,δ)×(0,1)

∣∣X0,P (t̃) −X0,P (t)
∣∣ .

Now, ∣∣X0,P (t̃) −X0,P (t)
∣∣ =

∣∣∣∣∣
∫ t̃

t

Λ(P (θ), X0,P (θ))dθ
∣∣∣∣∣ ≤

∣∣t̃− t
∣∣ ∥Λ∥∞,[0,M ]N ×[0,1] .

Therefore,
lim

t̃→t+

∥∥ρ(t̃, ·) − ρ(t, ·)
∥∥

L1(X0,P (t),X0,P (t̃)) = 0 .

Hence, by linearity of the integral:
lim

t̃→t+

∥∥ρ(t̃, ·) − ρ(t, ·)
∥∥

L1(0,1) = 0 .

To end this proof, let us show that ρ verifies the weak formulation Eq. (1).
By definition of the mapping F (see Eq. (9)) and the candidate ρ, we have directly that for all i ∈ {1, . . . , N}
and t ∈ [0, δ], Pi(t) =

∫ 1
0 ρ(t, x)ωi(x)dx.

Let τ ∈ [0, T ] and φ ∈ C1 ([0, τ ] × [0, 1]) such that ∀x ∈ [0, 1], φ(τ, x) = 0, and ∀t ∈ [0, τ ], φ(t, 1) = 0. We
define:

⋆ :=
∫ τ

0

∫ 1

0
ρ(t, x) [∂tφ(t, x) + Λ(P (t), x)∂xφ(t, x) − µ(P (t), x)φ(t, x)] dxdt

=
∫ τ

0

∫ X0,P (t)

0
ρ(t, x) [∂tφ(t, x) + Λ(P (t), x)∂xφ(t, x) − µ(P (t), x)φ(t, x)] dxdt

+
∫ τ

0

∫ 1

X0,P (t)
ρ(t, y) [∂tφ(t, y) + Λ(P (t), y)∂xφ(t, y) − µ(P (t), y)φ(t, y)] dydt .

By using the explicit formula of ρ, and then doing the change of variables u(x) = αP (t, x) and x(y) = βP (t, y),
we obtain:

⋆ =
∫ τ

0

∫ t

0
r(u, P (u))FP (t;u, 0) [∂tφ+ Λ∂xφ− µφ] (t,XP (t;u, 0))dudt

+
∫ τ

0

∫ βP (t,1)

0
ρ0(x)FP (t; 0, x) [∂tφ+ Λ∂xφ− µφ] (t,XP (t; 0, x))dxdt

=
∫ τ

0

∫ t

0
r(u, P (u))d [FP (t;u, 0)φ(t,XP (t;u, 0)]

dt
dudt

+
∫ τ

0

∫ βP (t,1)

0
ρ0(x)d [FP (t; 0, x)φ(t,XP (t; 0, x)]

dt
dxdt .
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And by Fubini Theorem:

⋆ =
∫ τ

0
r(u, P (u))

∫ τ

u

d [FP (t;u, 0)φ(t,XP (t;u, 0)]
dt

dtdu

+
∫ βP (τ,1)

0
ρ0(x)

∫ τ

0

d [FP (t; 0, x)φ(t,XP (t; 0, x)]
dt

dtdx

+
∫ 1

βP (τ,1)
ρ0(x)

∫ (βP (·,1))−1(x)

0

d [FP (t; 0, x)φ(t,XP (t; 0, x)]
dt

dtdx .

Finally, as ∀x ∈ [0, 1], φ(τ, x) = 0, and ∀t ∈ [0, τ ], φ(t, 1) = 0, we get:

⋆ = −
∫ τ

0
r(u, P (u))φ(u, 0)du−

∫ βP (τ,1)

0
ρ0(x)φ(0, x)dx−

∫ 1

βP (τ,1)
ρ0(x)φ(0, x)dx

= −
∫ τ

0
r(u, P (u))φ(u, 0)du−

∫ 1

0
ρ0(x)φ(0, x)dx ,

so ρ verifies the weak formulation Eq. (1).

End of the proof of Lemma 4 . Let us take a closer look at the calculations to show that F is a contraction
map, starting from inequality Eq. (10). For the first r.h.s. term, using in particular (H4) and (H6), we have:∫ t

0
|r(u, P (u)) − r(u,Q(u))|FP (t;u, 0)ωi(XP (t;u, 0))du

≤ ∥ω∥∞

∫ t

0
Lr,[0,T ]×[0,M ]N ∥P (u) −Q(u)∥RN du

≤ δ ∥ω∥∞ Lr,[0,T ]×[0,M ]N ∥P −Q∥Ωδ,M
.

For the second r.h.s. term, using (H3),(H4),(H6):∫ t

0
r(u,Q(u)) |FP (t;u, 0) − FQ(t;u, 0)|ωi(XP (t;u, 0))du

≤ ∥ω∥∞ ∥r∥∞,[0,T ]×[0,M ]N

∫ t

0
|FP (t;u, 0) − FQ(t;u, 0)| du .

And for all 0 ≤ u ≤ t ≤ δ,

|FP (t;u, 0) − FQ(t;u, 0)| =
∣∣∣∣e−
∫ t

u
µ(P (θ),XP (θ;,u,0))dθ − e

−
∫ t

u
µ(Q(θ),XP (θ;,u,0))dθ

∣∣∣∣
≤
∣∣∣∣∫ t

u

µ(P (θ), XP (θ; , u, 0))dθ −
∫ t

u

µ(Q(θ), XQ(θ; , u, 0))dθ
∣∣∣∣

≤
∫ t

u

Lµ,M (∥P (θ) −Q(θ)∥RN + |XP (θ; , u, 0) −XQ(θ; , u, 0)|) dθ

≤ δLµ,M ∥P −Q∥Ωδ,M
+ δ ∥XP (·, 0;x) −XP (·, 0;x)∥∞,[0,δ] ,

with Lµ,M := Lµ,[0,M ]N ×[0,1]. By Lemma 3,

|FP (t;u, 0) − FQ(t;u, 0)| ≤ δLµ,M ∥P −Q∥Ωδ,M
+ 2δ2LΛ,M ∥P −Q∥Ωδ,M

,

so, ∫ t

0
r(u,Q(u)) |FP (t;u, 0) − FQ(t;u, 0)|ωi(XP (t;u, 0))du

≤ ∥ω∥∞ ∥r∥∞,[0,T ]×[0,M ]N

(
δLµ,M + 2δ2LΛ,M

)
∥P −Q∥Ωδ,M

.

For the third r.h.s. term, with (H4),(H6) and Lemma 3:∫ t

0
r(u,Q(u))FQ(t;u, 0) |ωi(XP (t;u, 0)) − ωi(XQ(t;u, 0))| du

≤ ∥r∥∞,[0,T ]×[0,M ]N

∫ t

0
|ωi(XP (t;u, 0)) − ωi(XQ(t;u, 0))| du

≤ ∥r∥∞,[0,T ]×[0,M ]N Lω2δ2LΛ,M ∥P −Q∥Ωδ,M
.
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We have already shown that∣∣∣∣∣
∫ 1−

∫ t

0
Λ((P (θ),XP (θ;t,1))dθ

1−
∫ t

0
Λ((Q(θ),XQ(θ;t,1))dθ

ρ0(x)FP (t; 0, x)ωi(XP (t; 0, x))dx
∣∣∣∣∣

≤ δ ∥ρ0∥∞ ∥ω∥∞ LΛ,M (1 + 2δLΛ,M ) ∥P −Q∥Ωδ,M
.

Furthermore, in a similar way to what we did for the second r.h.s. term:∫ 1−
∫ t

0
Λ((Q(θ),XQ(θ;t,1))dθ

0
ρ0(x) |FP (t; 0, x) − FQ(t; 0, x)|ωi(XP (t; 0, x))|dx

≤ ∥ρ0∥∞ ∥ω∥∞
(
δLµ,M + 2δ2Lµ,MLΛ,M

)
∥P −Q∥Ωδ,M

.

Finally, as for the third r.h.s. term:∫ 1−
∫ t

0
Λ((Q(θ),XQ(θ;t,1))dθ

0
ρ0(x)FQ(t; 0, x)|ωi(XP (t; 0, x)) − ωi(XQ(t; 0, x))|dx

≤2δ ∥ρ0∥∞ LωLΛ,M ∥P −Q∥Ωδ,M
.

Hence, by adding up all these inequalities:

∥F (P ) − F (Q)∥Ωδ,M
≤ δN

[
∥ω∥∞ Lr,[0,T ]×[0,M ]N

+ ∥ω∥∞ ∥r∥∞,[0,T ]×[0,M ]N (Lµ,M + 2TLΛ,M )
+ ∥r∥∞,[0,T ]×[0,M ]N Lω2TLΛ,M

+ ∥ρ0∥∞ ∥ω∥∞ LΛ,M (1 + 2TLΛ,M )
+ ∥ρ0∥∞ ∥ω∥∞ (Lµ,M + 2TLµ,MLΛ,M )
+ 2 ∥ρ0∥∞ LωLΛ,M ] ∥P −Q∥Ωδ,M

.

(43)

Therefore, by taking δ small enough, F is a contraction map.

B Time and Space Scaling Transformation
Definition 26 (L1 − stability). A stationary solution ρ of Eq. (15) is locally stable if

∀ϵ > 0 , ∃δϵ > 0 : ∀ρ0 ∈ L1(0, 1), (∥ρ− ρ0∥L1 ≤ δϵ) ⇒ (∀t ≥ 0 , ∥ρ(t, ·) − ρ∥L1 ≤ ϵ) .

Furthermore, ρ is locally asymptotically stable if

∃δ > 0 : ∀ρ0 ∈ L1(0, 1), (∥ρ− ρ0∥L1 ≤ δ) ⇒
(

∥ρ(t, ·) − ρ∥L1 −→
t→+∞

0
)
.

If ρ is not locally stable, it is said unstable.

Proof of Proposition 8. Let ρ be a weak solution to Eq. (15) up to time T . By regularity assumption (H2) and
positivity assumption (H8), Γ : x 7→

∫ x

0
1

f(y) dy and sρ defined by Eq. (19) are C1 bijective functions respectively
from [0, 1] to [0, τ = Γ(1)] and from [0, T ] to [0, sρ(T ) := S]. Therefore, we can define v ∈ C0([0, S], L1(0, τ))
such that v(s, y) = ρ(s−1

ρ (s),Γ−1(y)). Furthermore, it is easy to check that s−1
ρ = tv, with tv defined by Eq. (20).

Now, let σ ∈ [0, S], and ϕ ∈ C1([0, σ] × [0, τ ]) such that ϕ(σ, y) = 0 for all y ∈ [0, τ ] and ϕ(s, τ) = 0 for all
s ∈ [0, σ]. Let us define.

♢ :=
∫ σ

0

∫ τ

0
v(s, y) [∂sϕ(s, y) + ∂yϕ(s, y) −m(y)ϕ(s, y)] dyds

+
∫ tv(σ)

0

1
f(0)b (V (s))ϕ(s, 0)ds+

∫ τ

0
ρ0(Γ−1(y))ϕ(0, y)dy .
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With the changes of variables t = tv(s), and x = Γ−1(y), we define ψ(t, x) := ϕ(sρ(t),Γ(x)). By composition,
ψ ∈ C1([0, tv(σ)] × [0, 1]), ∂tψ(t,Γ(x)) = g(P (t))∂sϕ(sρ(t),Γ(x)), and ∂xψ(t, x) = 1

f(x)∂yϕ(sρ(t),Γ(x)). Thus,

♢ =
∫ tv(σ)

0

∫ 1

0
ρ(t, x)

[
∂tψ(t, x)
g(P (t)) + f(x)∂xψ(t, x) − f ′(x)ψ(t, x)

]
g(P (t))
f(x) dxdt

+
∫ σ

0

1
f(0)r (P (t))ψ(t, 0)dt+

∫ 1

0
ρ0(x)ψ(0, x)

f(x) dx

=
∫ tv(σ)

0

∫ 1

0
ρ(t, x)

[
∂t

(
ψ(t, x)
f(x)

)
+ f(x)g(P (t))

(
∂xψ(t, x)
f(x) − f ′(x)

f2(x)ψ(t, x)
)]

dxdt

+
∫ σ

0

ψ(t, 0)
f(0) r (P (t)) dt+

∫ 1

0
ρ0(x)ψ(0, x)

f(x) dx

=
∫ tv(σ)

0

∫ 1

0
ρ(t, x)

[
∂t

(
ψ(t, x)
f(x)

)
+ f(x)g(P (t))∂x

(
ψ(t, x)
f(x)

)]
dxdt

+
∫ σ

0

ψ(t, 0)
f(0) r (P (t)) dt+

∫ 1

0
ρ0(x)ψ(0, x)

f(x) dx .

As ρ is a weak solution to Eq. (15) and (t, x) 7→ ψ(t, x)/f(x) is actually a test function, ♢ = 0 hence v is a
weak solution to Eq. (18). The reciprocal works in the same way.

C Spectral Properties of A + DG (v)
Proof details of Proposition 11, part 1. Firstly, we can observe that A can be decomposed as the sum of two
operators A = A1 +A2, where

A1

(
0
ϕ

)
=
(

−ϕ(0)
−∂yϕ

)
, is closed (direct calculations), and

A2

(
0
ϕ

)
=
(

0
−mϕ

)
is bounded as m ∈ C0(0, τ).

Then A is closed as the sum of a linear closed operator and a bounded operator.
Consider λ > −m, and (a, ψ) ∈ R × L1(0, τ):

(λI −A)−1
(
a
ψ

)
=
(

0
ϕ

)
⇔

{
ϕ(0) = a

ϕ′ + (m+ λ)ϕ = ψ

⇔ ϕ(y) = ae
−

y∫
0

λ+m(x)dx

+
∫ y

0
ψ(s)e

−
y∫

s

λ+m(x)dx

ds, y ∈ [0, τ ].

We can compute∥∥∥∥(λI −A)−1
(
a
ψ

)∥∥∥∥
X

=
∥∥∥∥(0
ϕ

)∥∥∥∥
X

= |0| + ∥ϕ∥L1(0,τ)

≤
∫ τ

0
|a| e−

∫ y

0
λ+m(x)dxdy +

∫ τ

0

∫ y

0
|ψ(s)|e

−
y∫

s

λ+m(x)dx

dsdy

≤ |a|
∫ τ

0
e−(λ+m)ydy +

∫ τ

0
|ψ(s)|

∫ τ

s

e
−
∫ y

s
λ+m(x)dxdyds

≤ |a| 1 − e−(λ+m)τ

λ+m
+
∫ τ

0
|ψ(s)|

∫ τ

s

e−(y−s)(λ+m)dyds

≤ |a| 1 − e−(λ+m)τ

λ+m
+
∫ τ

0
|ψ(s)|1 − e−(τ−s)(λ+m)

λ+m
ds

≤ 1
λ+m

(
|a| +

∫ τ

0
|ψ(s)|ds

)
= 1
λ+m

∥∥∥∥(aψ
)∥∥∥∥

X

.

Then ∥∥∥(λI −A)−1
∥∥∥

L(X)
≤ 1
λ+m

,
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hence, for all n ≥ 1, ∥∥∥(λI −A)−n
∥∥∥

L(X)
≤
∥∥∥(λI −A)−1

∥∥∥n

L(X)
≤ 1

(λ+m)n
,

and λ ∈ ρ(A).

The following Lemma will be useful for studying the spectrum of A+DG (v).
Lemma 27. Let λ ∈ C, λI−A−DG (v) : D(A) → X is invertible if and only if I−DG (v) (λI−A)−1 : X → X
is invertible, and in this case,

(λI −A−DG (v))−1 = (λI −A)−1 (I −DG (v) (λI −A)−1)−1
.

The proof is straightforward. We now turn to the second part of the proof of Proposition 11.

Proof details of Proposition 11, part 2. It remains only to determine the spectrum of A+DG(v) and its prop-

erties. Let us note that σ(A+DG(v)) = σ
(

(A+DG(v))
D(A)

)
(see Lemma 2.2.10. in [MR18]). Let

(
a
ϕ

)
∈ X,

then (
λI −A)−1)(a

ϕ

)
=

 0

y 7→ ae
−

y∫
0

λ+m(x)dx

+
∫ y

0 ϕ(s)e
−

y∫
s

λ+m(x)dx

ds

 ,

hence (
I −DG (v) (λI −A)−1)(a

ϕ

)

=

a− 1
f(0) ⟨∇xb(γ, vγ)

τ∫
0
α(y)

ae−
y∫

0

λ+m(x)dx

+
∫ y

0 ϕ(s)e
−

y∫
s

λ+m(x)dx

ds

dy⟩

ϕ



=

a∆(γ, λ) − 1
f(0) ⟨∇xb(γ, vγ)

τ∫
0
α(y)

∫ y

0 ϕ(s)e
−

y∫
s

λ+m(x)dx

dsdy⟩

ϕ


with

∆(γ, λ) := 1 − ⟨∇xb(γ, vγ),
∫ 1

0

ω(x)
f(x) e

−λΓ(x)dx⟩

= 1 − 1
f(0) ⟨∇xb(γ, vγ),

∫ τ

0
α(y)e

−
y∫

0

λ+m(x)dx

dy⟩ .

So it is easy to see that if ∆(γ, λ) ̸= 0, then I −DG (v) (λI −A)−1 is invertible, hence by Lemma 27, λI −A−
DG (v) is invertible, i.e. λ ∈ ρ(A+DG (v)).
By contraposition,

σ(A+DG (v)) ⊂ {λ ∈ C : ∆(γ, λ) = 0} .

Now, let us consider λ ∈ C such that ∆(γ, λ) = 0. We set
(

0
ϕ

)
∈ D(A) \ {0} such that:

(
0
ϕ

)
:= (λI −A)−1

(
a
0

)
=

 0

y 7→ ae
−

y∫
0

λ+m(x)dx


with a ̸= 0. Then

(λI −A−DG (v))
(

0
ϕ

)
= (λI −A−DG (v)) (λI −A)−1

(
a
0

)
=
(
I −DG (v) (λI −A)−1

)(a
0

)
=
(
a∆(γ, λ)

0

)
=
(

0
0

)
,
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so
(

0
ϕ

)
is an eigenvector of A+DG (v) associated with the eigenvalue λ, and then

{λ ∈ C : ∆(γ, λ) = 0} ⊂ σp(A+DG (v)) ⊂ σ(A+DG (v)) .

Finally,
σ(A+DG (v)) = σp(A+DG (v)) = {λ ∈ C : ∆(γ, λ) = 0} .

Proof details of Corollary 13. The C0-semigroup generated by A+DG (v) is positive if and only if the resolvent
of R(λ,A+DG (v)) is positive for all sufficiently large λ (see [EN00] Theorem VI.1.8.).
First at all, notice that

lim
λ→+∞

∆(γ, λ) = 1 ,

so for any sufficiently large λ, ∆(γ, λ) ̸= 0 and R(λ,A+DG (v)) is well defined.
Let us consider λ ∈ C such that ∆(γ, λ) ̸= 0. Then, thanks to Lemma 2.5., we have

R(λ,A+DG (v)) = (λI −A)−1 (I −DG (v) (λI −A)−1)−1
.

Yet, (
I −DG (v) (λI −A)−1)−1

(
a
ϕ

)
=
(

a+η(ϕ,λ)
∆(γ,λ)
ϕ

)
where

η(ϕ, λ) := 1
f(0) ⟨∇x, b(γ, vγ)

τ∫
0

α(y)
∫ y

0
ϕ(s)e

−
y∫

s

λ+m(x)dx

dsdy⟩.

Let us suppose that a ≥ 0 and ϕ ≥ 0. Then, it is easy to see that if Eq. (29) is satisfied, then η(ϕ, λ) ≥ 0 and
a+η(ϕ,λ)

∆(γ,λ) ≥ 0. So I −DG (v) (λI − A)−1 is positive for all sufficiently large λ. Furthermore, always with a ≥ 0
and ϕ ≥ 0, we have directly

(
λI −A)−1)(a

ϕ

)
=

 0

y 7→ ae
−

y∫
0

λ+m(x)dx

+
∫ y

0 ϕ(s)e
−

y∫
s

λ+m(x)dx

ds

 ≥ 0.

Thus R(λ,A) is positive too. Finally, by composition of positive operators, R(λ,A+DG (v)) is positive for any
sufficiently large λ, and then the C0-semigroup generated by A+DG (v) is positive.

D Characteristic Equation of the Spawning Cycle Model
Proof of Proposition 18. From Eq. (27), and Proposition 9, we recall that the characteristic function is given
by

∆(λ) = 1 − b′(V )
∫ 1

0

ω(x)
f(x) e

−λΓ(x)dx

= 1 − b′(P )
∫ 1

0

ω(x)
f(x) e

−λΓ(x)dx .

In the context of the spawning cycle, f(x) ≡ 1, so for all x ∈ [0, 1], Γ(x) =
∫ x

0
1

f(x) dx = x, and ω(x) = 2Mx for
all x ∈ [0, 1/2], ω(x) = 2M(1 − x) for all x ∈ [1/2, 1]. Then we have:

∆(λ) = 1 − 2Mb′(P )
[∫ 1/2

0
xe−λxdx+

∫ 1

1/2
(1 − x)e−λxdx

]

= 1 − 2Mb′(P )
[∫ 1/2

0
xe−λxdx+ e−λ

∫ 1/2

0
yeλydy

]
.
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If λ ̸= 0, by integration by parts

I(λ) :=
∫ 1/2

0
xe−λxdx = 1

λ2

(
1 − λ

2 e
−λ/2 − e−λ/2

)
and if λ = 0, then

I(0) =
∫ 1/2

0
xdx = 1

8 .

So

∆(λ) = 1 − 2Mb′(P )
[
I(λ) + e−λI(−λ)

]
=
{

1 − 2Mb′(P ) (1−e−λ/2)2

λ2 if λ ̸= 0 ,
1 − 1

2Mb′(P ) if λ = 0 .

Therefore the roots λ of ∆ verify
e− λ

2 − 1
λ

= ±i
√

−1
2b′(P )M

.

Let us assume that λ is a non trivial purely imaginary root, i.e. λ = ix with x ∈ R∗, and let us denote
c :=

√
−1

2b′(P )M
. Then x verifies

e−ix/2 ± cx = 1,

so

cos(x/2) = 1 ∓ cx , (44)
sin(x/2) = 0 . (45)

From Eq. (45), we deduce that x = 2qπ, q ∈ Z∗, and Eq. (44) becomes:

(−1)q − 1 = ∓2qπc .

If q is even, then q = 0 which is a contradiction. If q is odd, i.e. q = 2k + 1,

kπ + π

2 = ± 1
2c .

Now, by derivating Eq. (32)

b′(P ) = −crcλnP
n−1(

1 + cλP
n
)2

and using Eq. (33), we find:

c :=
√

−1
2b′(P )M

= 1
2
√
n

√
Mcr

Mcr − 2P
.

Finally, the characteristic function admits a pair of (non trivial) conjugated purely imaginary roots (λ, λ = −λ)
given by λ = 2qπi = (4kπ + 2π) i, k ∈ N∗, if and only if k verifies

kπ + π

2 = 1
2c =

√
n

√
1 − 2

M

P (cr,k)
cr,k

.

E Numerical Scheme
Numerical simulations are performed with an implicit finite difference scheme inspired from [AI97], where a
convergence proof for the scheme is provided. However, it is important to note that the boundary condition
used in the current work is slightly different from that in [AI97].
We use a uniform discretization in both space and time, over the domain [0, 1] × [0, T ], with T = M∆t and
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1 = K∆x. The discrete approximation of the solution is denoted as ρn
k ≈ ρ(tm, xk) for 0 ≤ m ≤ M and

1 ≤ k ≤ K. The scheme is initialized as follows:

ρ0
k = 1

∆x

xk∫
xk−1

ρ0(x) dx, k ∈ {1, . . . ,K} ,

with ρ0
0 = ρ0

1. Moreover, for all m ∈ {1, . . . ,M − 1}: λm
0 ρ

m+1
0 = rm,

ρm+1
k = ρm

k − ∆t

∆x

[
λm

k ρ
m+1
k − λm

k−1ρ
m+1
k−1

]
− ∆tµ

m
k ρ

m+1
k , k ∈ {1, . . . ,K} .

The discretized rates are defined by:

λm
k = λ(Pm, xk), µm

k = µ(Pm, xk), rm = r(tm, Pm) ,

with

Pm
j = ∆x

K∑
k=1

ωj(xk)ρm
k , ∀j ∈ {1, . . . , N} .
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