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Abstract: ACAS-Xu is the future collision avoidance system for UAVs, responsible for generating evasive maneuvers
in case of imminent risk of collision with another aircraft. In this concept paper, we summarize drawbacks
of its current specification, particularly: (a) the fact that the resolution policy, calculated through dynamic
programming over a stochastic process, is stored as a huge Q-table; (b) the need of forcing a correspondence
between the continuous observations and the artificially discretized space of states; and (c) the consideration
of a single aircraft crossing the drone’s trajectory, whereas the anti-collision system must potentially deal with
multiple intruders. We suggest the use of recent deep reinforcement learning techniques to simultaneously
approximate a compact representation of the problem in their continuous dimensions, as well as a near-optimal
policy directly from simulation, in addition extending the set of observations and actions.

1 Introduction

ACAS-Xu is the new generation of Airborne Col-
lision Avoidance System for remotely piloted fixed-
wing aerial vehicles (UAVs – Figure 1). It must
generate and execute evasive maneuvers in the case
of imminent risk of mid-air collision. The resolu-
tion policy is calculated beforehand through Dynamic
Programming over a stochastic Markovian Decision
Process (MDP) representing an artificially discretized
space of states and actions. The resulting policy is
stored into immense tables of expected state-action
long-term costs. Considering horizontal and verti-
cal resolution maneuvers (which are defined sepa-
rately), these tables contain billions of parameters (q-
values). This high dimensionality constitutes an im-
portant practical issue for deploying the solution as
an industrial embedded system. In the literature, one
strategy to compress those tables is training a neural
network to approximate the Q-function.

In this concept paper, we suggest another ap-
proach: the use of recent Deep Reinforcement Learn-
ing (Deep RL) techniques, which can natively deal
with continuous dimensions and learn a policy of ac-
tions directly from simulation. Those techniques op-
timize the policy of actions at the same time than
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learning a compact and consistent representation of
the underlying process using Deep Neural Networks
(DNN).

Figure 1: A fixed-wing unmanned aerial vehicle (UAV) is a
large drone remotely operated.

Instead of trying to compress the standard table,
we would like to come back to the base problem
and learn an improved solution, both by considering
an extended set of observations and actions that can
be included in the system to enhance flight security,
as well as by taking into account encounters involv-
ing multiple aircraft. The original ACAS-Xu policy
considers only a single intruder crossing the drone’s
trajectory, and multi-threats are solved using ad-hoc
strategies. Furthermore, vertical and horizontal reso-
lutions are modeled separately, than combined in op-
eration time. Using Deep RL techniques, both action
dimensions can be assessed together.

Following the paper, Section 2 overviews Rein-
forcement Learning and Deep RL concepts, Section
3 overviews Collision Avoidance Systems, Section
4 presents our proposition and some discussion, and
Section 5 concludes the paper.



2 Reinforcement Learning

RL agents must learn from observation, explor-
ing the environment and exploiting their knowledge
to improve their performance, eventually converging
to a policy of actions that maximizes the expected fu-
ture rewards, or that minimizes the expected future
costs (an optimal policy). Since what can be learned
depends on the agent’s behavior, a necessary trade-off
must be found between exploration (trying different
actions) and exploitation (choosing the actions with
best expected return, given the actual knowledge).

Classically, the RL loop is characterized by an in-
terleaved interaction between an agent that perceives
a state and executes an action, and an environment
that returns a new state and a reward (Sutton and
Barto, 2018). The environment can be described as a
stochastic Markovian Decision Process (MDP) which
evolves discretely over time (Bertsekas, 2019; Puter-
man and Patrick, 2010; Wiering and Otterlo, 2012).

2.1 Tabular RL Methods

When the “model” is known (i.e. when R and P are
given), an MDP can be exactly solved using linear
or dynamic programming (DP) techniques (Howard,
1960), which generalize over graph search strate-
gies and classical planning, allowing to find optimal
sequential decisions for discrete rewarded stochas-
tic processes. This is the procedure used in the
ACAS-X definition, solved using the Value Itera-
tion method (Kochenderfer and Chryssanthacopou-
los, 2011; EUROCAE, 2020).

In contrast, model-free RL algorithms try to learn
a policy directly from the experience. Those meth-
ods rely on local approximations of the state-action
values (Q-values) after each observation based on the
Bellman’s equation (Bellman, 1952), which defines
the value for a policy π from state s:

Vπ(s) = R(s,π(s))+ γ∑
s′

P(s′|s,π(s))Vπ(s′) (1)

The value of an optimal policy π∗ is given by:

Vπ∗(s) = max
a

{
R(s,a)+ γ∑

s′
P(s′|s,a)Vπ∗(s′)

}
(2)

A simple trade-off between exploration and ex-
ploitation can be done by introducing some random-
ness into the decision-making process (undirected ex-
ploration). In the ε-greedy strategy (Sutton and Barto,
2018), at each time step, the agent either executes a
random action with probability ε, or follows the cur-
rent estimated optimal policy, otherwise, with prob-
ability 1− ε. To avoid a linear expected regret due

to a constant exploration, ε can be dynamically and
gradually decreased (Auer et al., 2002).

A smarter approach to solve the exploration-
exploitation dilemma is the optimism in the face of
uncertainty. The insight is to be curious about poten-
tially good but insufficiently frequented state-action
pairs (Meuleau and Bourgine, 1999). In tabular
methods, it can be done by simply initializing the
Q-values optimistically, and then following a com-
pletely greedy strategy. Actions that lead to less-
observed situations increase their chances of being
chosen. The more a state-action pair is tried, the
closer its estimated utility approximates its true value.
More rigorous strategies lean on the upper-confidence
bound principle to solve the exploration-exploitation
dilemma (Auer and Ortner, 2006; Poupart et al.,
2006).

Q-learning (Watkins and Dayan, 1992) is a tradi-
tional model-free algorithm that implements an off-
policy immediate temporal-difference (TD) strategy
for learning a policy on environments with delayed
rewards. The estimated Q function is stored in mem-
ory as a table in the form S× A → R , where the
entries represent the estimated utility of each state-
action pair {s,a}. The ε-greedy decision making tech-
nique is used to induce some random exploration. The
stored Q-table is updated after each transition through
a simple value-iteration step, based on the Bellman
equation, using, for ensuring learning stability, the α-
weighted average of the previous and the new values:

Q′s,a← Qs,a +α
(
r+ γmax

a′
[Qs′,a′ ]−Qs,a

)
(3)

Unfortunately, the need of storing a Q-table lim-
its the practical application of tabular RL methods to
complex real-world problems. The combinatorial na-
ture of an exhaustive enumeration of states can make
impossible to maintain a Q-table in memory, unless
of strongly limiting the number of observations and
imposing a rough discretization of continuous dimen-
sions. Furthermore, because no correlation exists be-
tween the state-action pairs, the learning experiences
cannot be generalized to similar states.

2.2 Deep Reinforcement Learning

Following remarkable results on learning to play
complex games (Mnih et al., 2013; Silver et al.,
2016), deep RL algorithms have been showing im-
pressive capabilities in learning robust solutions
for diverse applications, such as controlling au-
tonomous cars, drones, and airplanes (Liu et al., 2023;
Plasencia-Salgueiro, 2023; Razzaghi et al., 2022; Ki-
ran et al., 2022; Pankiewicz et al., 2021), robotics
(Singh et al., 2022; Polydoros and Nalpantidis, 2017),
multi-robot coordination (Orr and Dutta, 2023), etc.



The rise of Deep Neural Networks (DNN) pro-
vided new possibilities for function approximation
and representation learning (LeCun et al., 2015).
Deep RL combines deep learning algorithms with
classic RL methods, allowing to solve scalability and
complexity issues faced by tabular methods, and en-
abling decision making in high-dimensional state and
action spaces (François-Lavet et al., 2018). Deep RL
relies on approximating the state-action values Q∗, or
even directly approximating the optimal policy π∗,
using deep neural networks. The advantage is that,
when available, gradients provide a strong learning
signal that can be estimated through sampling.

Deep Q-Networks (DQN) (Mnih et al., 2013;
Mnih et al., 2015) is the deep version of Q-Learning.
DQN uses two DNNs in the learning process: the pol-
icy neural network, represented by the weight vector
θ, models the Q-function for the current state s and
action a, and is updated frequently; the target neural
network, represented by θ′, models the Q-function for
the upcoming state s′ and action a′. During a specific
number of iterations, the policy network is updated
while the target network remains frozen. Then, the
weights of the primary network are copied or merged
(using a soft update) into the target network, effec-
tively transferring the acquired knowledge. The use
of two networks helps to mitigate instability and di-
vergence issues by providing a stable target for the
Q-value updates. Training the policy and target net-
works corresponds to minimize the following loss
function:

L(θ) = E
[
(r+ γmax

a′
Q(s′,a′;θ

′)−Q(s,a;θ))2] (4)

A set of observed transitions {st , at ,st+1,rt+1} is
stored in memory to create a replay buffer, used to
sample and train the neural network in an offline man-
ner. By breaking temporal correlations, this experi-
ence replay technique reduces the learning updates
variance, ensuring a better stability of the learned
policy and improving the overall performance of the
agent. An improvement over DQN is the Double
DQN algorithm, which addresses the issue of overes-
timation bias by using separated networks for action
selection and for action evaluation. DQN and DDQN
can handle continuous state spaces, but require dis-
crete actions.

In contrast, policy search methods can deal with
continuous action spaces, constituting a class of tech-
niques that directly optimize the policy parameters in-
stead of relying on a value function to derive it. Most
of policy search methods compute the gradient of the
expected reward with respect to the policy parameters
and use this gradient to update the policy. It is the
case of REINFORCE (Koutnı́k et al., 2013), which

relies on Monte Carlo estimation. Trust Region Pol-
icy Optimization (TRPO) focuses on optimizing poli-
cies with a trust region to ensure stable updates, con-
straining their step size, then ensuring that the new
policy does not deviate excessively from the current
one. Proximal Policy Optimization (PPO) (Schulman
et al., 2017) proposes a more efficient stability method
by using a clipped objective function to maintain up-
dates within a trust region.

Actor-Critic methods mix policy search with value
function approximation. One of these methods is the
Deep Deterministic Policy Gradient (DDPG) (Silver
et al., 2014). Parallel computation techniques, includ-
ing asynchronous gradient updates, are employed to
enhancing learning efficiency. Building on DDPG,
the Twin Delayed Deep Deterministic Policy Gradi-
ent (TD3) algorithm further improves stability and
reduces overestimation bias by using two critics and
policy delay.

The use of an advantage function to update the
policy can reduce the variance of the gradient esti-
mates and provide a more reliable direction for pol-
icy improvement. The standard advantage function
is defined as the difference between the action-value
function Q(s,a) and the value function V (s), using the
average action. Advantage Actor-Critic (A2C) com-
bines advantage updates with actor-critic formulation,
using multiple agents to update a shared model. Asyn-
chronous Advantage Actor-Critic (A3C) updates the
policy and value function networks in parallel, using
multiple agents to update the model independently,
which enhance exploration (Mnih et al., 2016). Soft
Actor-Critic (SAC) is an off-policy actor-critic al-
gorithm that encourages exploration through entropy
regularization.

3 Collision Avoidance Systems

After a series of catastrophic mid-air collisions oc-
curred in the 1950s and 1960s, the American Federal
Aviation Administration (FAA) decided to support the
development of collision avoidance systems aiming to
introduce an additional safety resource for the cases in
which the Air Traffic Control (ATC) fails in ensuring
minimal aircraft separation during flight.

Early solutions, available in the 1960s and 1970s
and relying on radar transponders, were able to iden-
tify the surrounding traffic and alert the pilot to
their presence. However, the generation of exces-
sive unnecessary alarms compromised the usability
of those systems. Furthermore, passive and indepen-
dent systems (without communication between air-
craft) proved to be impractical for resolution advi-



Figure 2: ACAS protected volume.

sory due to the need for coordinated avoidance ma-
neuvers (FAA, 2011).

3.1 ACAS

In the 1980s, FAA launched the research and develop-
ment of the current generation of onboard instruments
designed to prevent mid-air collisions, called TCAS
(Traffic alert and Collision Avoidance System), later
included in the International Civil Aviation Organi-
zation (ICAO) recommendations as ACAS (Airborne
Collision Avoidance System). For this reason, the
term ACAS generally is used to refer to the standard
or concept, and TCAS to refer to the equipment actu-
ally implementing the corresponding standard (ICAO,
2014; EUROCONTROL, 2022).

ACAS operates autonomously and independently
of other aeronautical navigation equipment or ground
systems used in air traffic coordination. It replaced
the previous BCAS (Beacon Collision Avoidance Sys-
tem). Using the antennas of the Secondary Surveil-
lance Radar (SSR), already deployed on the aircraft
skin, ACAS interrogates the transponders of other
nearby aerial vehicles using modes C and S to ob-
tain their altitude (normally sent in the answer) and
to estimate their slant range (distance) and relative
bearing based, respectively, on the delay and angle
of response reception. In mode S, the two aircraft can
exchange messages to coordinate non-conflicting ma-
neuvers (Sun, 2021).

Once an aircraft is detected in the surrounding
airspace, ACAS tracks its displacement and velocity.
For near threats, it interrogates the intruder transpon-
der every second. The ACAS alarm logic is based on
minimal vertical and horizontal separation, combined
with the time to reach the CPA (Closest Point of Ap-
proach), given by the slant range divided by the hori-
zontal closure rate, and the time to co-altitude, given
by the altitude separation divided by the vertical clo-
sure rate. Those boundaries create a protection enve-
lope around the airplane (Figure 2). ACAS is con-
figured with different sensitivity levels, depending on
the ownship altitude.

Three categories of ACAS have been defined by
ICAO: ACAS I only gives Traffic Advisories (TA),
ACAS II recommends, in addition, vertical Resolu-
tion Advisories (RA), and ACAS III should give res-
olution advisories in both horizontal and vertical di-
rections. In Europe, the TCAS II v7.1 implementa-
tion (FAA, 2011) is mandatory since 2015 for all civil
turbine-powered aircraft above 5700 kg or with ca-
pacity for more than 19 passengers (EU, 2011). In
contrast, the study concerning ACAS III was sus-
pended, initially because estimating the horizontal
position of the intruder based on the directional radar
antenna was considered too inaccurate to define hor-
izontal resolutions without the risk of inducing new
conflicts, then definitively abandoned after the rising
of ACAS-X concept.

3.2 ACAS-X

ACAS-X (Kochenderfer et al., 2008; Kochenderfer
and Chryssanthacopoulos, 2011; Kochenderfer et al.,
2012; Holland et al., 2013; EUROCONTROL, 2022)
is the New Generation Airborne Collision Avoidance
System, still in development and not yet operational.
In this new approach, instead of using a set of scripted
rules, a table of expected long-term costs, called look-
up table (LUT), is calculated beforehand using Dy-
namic Programming over a Markovian Decision Pro-
cess (MDP), which is a discrete probabilistic dynamic
model that represents the near airspace and traffic evo-
lution.

In the underlying ACAS-X model, immediate
costs are associated to specific events, implement-
ing the desired operational and safety considerations,
making it possible to adapt the obtained resolution
strategy to particular procedures or configurations of
the airspace. That optimization method is able to de-
termine the preferable sequences of actions for differ-
ent types of encounters. For each particular context,
the expected long-term costs of each possible evasive
action is calculated, following different possible sce-
narios and their probabilities. This method produces
a large LUT containing all state-action Q-values.

Figure 3: The ACAS-X family.



ACAS-X can access the information communi-
cated periodically by the surrounding traffic through
Automatic Dependent Surveillance-Broadcast (ADS-
B), without the need for interrogation. Those mes-
sages typically include the aircraft position, de-
termined by Global Navigation Satellite Systems
(GNSS) and air data systems, the velocity, derived
from the GNSS and the inertial measurement system,
and the barometric altitude. ACAS-X constitutes a
family of specific collision avoidance systems, which
includes ACAS-Xa for civil aviation, ACAS-Xr for
helicopters and rotorcrafts, ACAS-Xu for fixed-wing
remotely piloted UAVs, ACAS-sXu for small drones,
and others (Figure 3).

3.3 ACAS-Xu

The ACAS-Xu (Airborne Collision Avoidance Sys-
tem for Unmanned Aircraft) is the specific version
of the ACAS-X designed for fixed-wing remotely pi-
loted drones (RPASs or UAVs) (Manfredi and Jestin,
2016; Holland and Kochenderfer, 2016; Owen et al.,
2019; Cleaveland et al., 2022; EUROCAE, 2020). It
can take into account non-cooperative sources, cus-
tomized logic for drone performance, horizontal and
vertical resolutions, coordination adapted to the in-
truder’s equipment, and the automation of resolution
advisory implementation.

The immediate configuration of the airspace, rel-
ative to an encounter constitutes the state of the envi-
ronment (Figure 4). For the horizontal resolution, that
state is defined by the combination of 7 observations:

ρ the horizontal distance to the intruder (ft),
vown the own horizontal speed (ft/s),
vint the horizontal speed of the intruder (ft/s),
θ the angle at which the intruder is seen,
ψ the heading angle difference,
τ the time before vertical intrusion (s),
aprev the previous resolution advisory.

In the standard implementation, that input space
was discretized as follows: 39 values for horizontal
distance (ρ), arranged non-linearly between 499 and
185,318 ft; 12 values for speeds (vown and vint) ar-
ranged non-linearly, between 0 and 1200 ft/s; 41 val-
ues for angles (θ and ψ), arranged linearly between
−π rad and +π rad; 10 values for altitude separation
time, arranged non-linearly between 0 and 101 s. It
makes 5×12×12×41×41×39×10= 472,024,800
states to represent the horizontal problem.

The kernel of the ACAS-Xu strategy is presented
in the form of a large tables (LUTs - look-up tables)
containing the q-costs Q(s,a) associated with each

Figure 4: ACAS-Xu is a collision avoidance system for re-
motely piloted aircraft, developed using an MDP

possible resolution advice a for each discrete state s of
the system. Those tables have been calculated offline
through optimization of the corresponding MDP, and
are used online for the selection of the optimal reso-
lution advice by choosing the action which minimizes
the q-cost given the probabilities associated with the
different possible discrete states of the system at the
current time.

In fact, ACAS-Xu must find a correspondence be-
tween the current state, given in continuous dimen-
sions for the seven observation variables, and the dis-
crete states represented into the LUT, in order to get
the relevant q-costs. For the vertical resolution, those
values are estimated using multilinear interpolation
over the surrounding table points. For the horizontal
resolution, it is done by getting the values associated
to the nearest neighbor (EUROCAE, 2020).

In the horizontal plan, for each state, five possible
actions (evasive maneuvers) can be executed by the
drone:

- SL: strong left turn (−3◦/s),

- WL: weak left turn (−1.5◦/s),

- COC (Clear of Conflict): no action (0◦/s) ,

- WR: weak right turn (+1.5◦/s),

- SR: strong right turn (+3◦/s).

In the vertical plan, the observations are not the
same, and correspond to the vertical separation, the
rate of loss of vertical separation, and the time to loss
of horizontal separation. Other actions are consid-
ered, representing different options for climbing or
descending. Horizontal and vertical resolutions are
chosen separately, then combined afterwards.

Since the generated Q-table (LUT) is significantly
large, there is an issue concerning their practical, in-
dustrial, deployment into a drone. Several works in
the literature use machine learning to compress those



tables using neural networks, reducing the mem-
ory footprint of the embedded code and even poten-
tially improving the anti-collision behavior through
smoothing, typically (in the horizontal case) using a
fully connected neural network with 7 inputs corre-
sponding to the state observations and 5 outputs cor-
responding to the Q-values for the 5 possible actions,
with a compression in an order of 1/1000 (Damour
et al., 2021; Julian et al., 2016; Katz et al., 2017).

4 Discussion

Creating a robust collision avoidance system is
difficult: the sensors available to the system are im-
perfect and noisy, resulting in uncertainty in the cur-
rent positions and velocities of the aircraft involved,
variability in pilot behavior and aircraft dynamics
makes it difficult to predict the evolution of sur-
rounding traffic trajectories, and the system must bal-
ance multiple objectives (Kochenderfer et al., 2012),
avoiding to pass dangerously near to other aircraft,
but not deviating unnecessarily, always considering a
possible imprecision in the positioning data, and an
uncertainty in the intruder’s behavior. The increase
of air traffic density, the inclusion of unmanned aerial
vehicles, and the intention of making flight routes less
constrained for future airspace operations requires
trustful and performing collision avoidance methods.
There is also a need to enhance safety but consider-
ing the economical acceptability of the proposed so-
lutions by the industry.

The contribution of this paper, beyond the
overview concerning reinforcement learning methods
(Section 2) and onboard collision avoidance systems
(Section 3), is to propose the idea of using Deep RL
techniques on the ACAS-Xu problem. To do so, a
simulator must be used as the training environment
for learning robust policies. At least one implemen-
tation of the ACAS-Xu simulator is publicly avail-
able1 and was used for realizing the experiments in
(Bak and Tran, 2022). That simulator can be modi-
fied to comply with the standard Gymnasium2 envi-
ronments (Brockman et al., 2016), widely used to im-
plement RL problems, and compatible with several
RL libraries such as SB33 (Raffin et al., 2021).

Technically, a Near Mid-Air Collision (NMAC)
incident occurs when two aircraft fly closer than 100
feet vertically and 500 feet horizontally. In the stan-
dard implementation of the ACAS-Xu problem, the
immediate reward function corresponds to:

1https://github.com/stanleybak/acasxu closed loop sim
2https://gymnasium.farama.org/
3https://github.com/DLR-RM/stable-baselines3

• Clear of Conflict: +0.0001,

• Strengthen: −0.009,

• Reversal: −0.01,

• NMAC: −1.0.

However, a modified reward function could be imag-
ined, considering, for example, the distance to the in-
truders, the smoothness of the maneuvers, and the de-
viation of the original trajectory, i.e. positive rewards
for maintaining the aircraft in its original trajectory,
reducing deviations, and negative rewards that grows
up when the drone approximates to a conflict (inter-
ception zone with the intruder).

Furthermore, we could consider an integrated ac-
tion space, where horizontal resolutions (turning left
or right) and vertical resolutions (climbing or de-
scending) are taken together, and in their native con-
tinuous dimensions. An extended set of actions can
also be imagined, including the possibility of chang-
ing the ownship velocity (accelerating or decelerat-
ing). The set of observations can also be extended
to provide more detailed information about other air-
craft current actions and intentions, for example, the
next scheduled waypoint or maneuver.

Finally, the use of RL techniques to solve the
ACAS-Xu problem can allow to handle its complex-
ity, taking into account the drone performance, facing
episodes with multiple aircraft, in different configura-
tions, and where the avoidance of a first intruder can
occasionally create a new conflict with another one,
and including the need to avoid terrain obstacles.

5 Conclusion

The idea of using of Deep RL to build a policy
for the ACAS-Xu problem is technically sound. The
next steps of this research include developing a mod-
ified ACAS-Xu simulator implementing the rewards,
actions and observations imagined in this paper, us-
ing the Gym architecture. Then, using this simula-
tor as environment, experiment training the modified
problem with different state-of-the-art Deep RL algo-
rithms, and verify their effective capability to improve
flight safety and collision avoidance efficiency com-
pared to TCAS II and to the standard ACAS-Xu im-
plementation.
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