
HAL Id: hal-04699264
https://hal.science/hal-04699264v1

Submitted on 16 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approaching Single-Episode Survival Reinforcement
Learning with Safety-Threshold Q-Learning
Filipo Studzinski Perotto, Melvine Nargeot, Aymane Ouahbi

To cite this version:
Filipo Studzinski Perotto, Melvine Nargeot, Aymane Ouahbi. Approaching Single-Episode Survival
Reinforcement Learning with Safety-Threshold Q-Learning. International Conference on Optimization
and Learning (OLA), May 2024, Dubrovnik, Croatia. �hal-04699264�

https://hal.science/hal-04699264v1
https://hal.archives-ouvertes.fr

Approaching Single-Episode
Survival Reinforcement Learning

with Safety-Threshold Q-Learning ⋆

Filipo Studzinski Perotto, Melvine Nargeot, and Aymane Ouahbi

ONERA, DTIS, Toulouse, France
filipo.perotto@onera.fr

Abstract. Survival Reinforcement Learning is a specific type of RL
problem constrained by a risk of ruin. The underlying stochastic sequential
decision process with which the agent interacts includes a budget that
evolves over time with the received rewards and must remain positive
throughout its entire lifetime. The goal is to find a good trade-off between
exploration, exploitation, and safety during a single learning episode,
maximizing rewards while managing the available budget to minimize
the probability of ruin. Existing approaches do not provide satisfactory
solutions to this problem. This paper introduces the safety-threshold
heuristic, which is used to extend the standard Q-Learning method. A
simulated grid environment is used to evaluate its performance.

Keywords: Safe Reinforcement Learning · Budgeted Stochastic Process
· Lifelong Learning · Safety-Threshold Q-Learning · Single-Episode RL

1 Introduction: Survival RL Problem

Reinforcement Learning (RL) and particularly Deep RL algorithms have achieved
great success in a wide range of applications in recent years. RL techniques enable
an agent to improve its behavior while interacting with an unknown environment,
only guided by reward signals. However, the baseline RL methods are not suitable
to be applied directly on expensive or safety-critical real-world systems due to
the lack of integrity guarantees during the learning process. This constitutes a
major difficulty in applying RL techniques in non-simulated environments since
the exploratory behavior of these algorithms can potentially lead the system to
catastrophic states or can cause unsustainable losses. In some cases, even an
apparently good initial policy learned from simulation cannot provide enough
guarantees to be correctly transferred to the real world. In other cases, reliable
simulators are simply not available.

Safe RL is the subdomain of RL focused on systems that can learn from
experience while being robust to strong disturbances, avoiding dangerous side-
effects of trial-and-error and satisfying safety constraints. Survival RL is a
⋆ This work is supported by a French government grant managed by the National

Research Agency under the France 2030 program with the reference ANR-23-DEGR-
0001 – The DEEPGREEN Project.

2 F. S. Perotto, M. Nargeot, A. Ouahbi

particular case of Safe RL in which the agent is constrained by a budget that
represents a vital, limited, and expendable resource, but that can be recharged
during running with the received rewards. The process terminates in failure if
the budget is over, requiring the agent to mitigate that risk of ruin during a
single run (i.e. without reset). Most RL methods rely on the episodic nature of
simulated environments, in which reaching a catastrophic state can be penalized
with a significantly bad reward, helping the agent to learn about what should
be avoided in subsequent episodes. That assumption is particularly important
for model-free methods, which suffer from high sample inefficiency. However, in
non-episodic scenarios, the agent must learn to avoid catastrophic states without
ever experiencing them.

In a Survival RL problem, the agent deals with a risk of ruin while facing a
single-life process. The objective is to find a strategy that prevents from being
ruined throughout that unique lifetime while still trying to learn an optimal
policy with minimal regret. Some practical applications corresponding to this
scenario include automated trading agents that want to learn better strategies
while effectively operating on the stock market with a limited bankroll, or drones,
rovers, and satellites, that want to learn how to better accomplish their mission,
but paying attention to the charge of their batteries. In fact, several real-world
problems as well as many bio-inspired mechanisms involve this kind of survival
concerns: robots and software agents must learn to improve their performance
while managing a finite amount of resources, avoiding ruin in the same way that
organisms in the nature act to escape from death.

The Survival RL problem, as defined in this paper, is illustrated in Figure 1
and can be formally stated as M = {S,A, P,R, S0, B0, h, γ}, where:

S = {s1, · · · , sn} is a finite set of n discrete states;
A = {a1, · · · , am} is a finite set of m discrete actions;
P = P(s′ | s, a) is a stationary distribution defining the probability of

state transition from s to s′ with action a;
R = P(r | s, a, s′) is a stationary distribution defining the probability of

reward r ∈ R after a transition from s to s′ with a;
S0 = P(s0) is the distribution for the initial state s0 ∈ S;
B0 = P(b0) is the distribution for the initial budget b0 ∈ R+;
h ∈ N+ ∪ {∞} is the maximal time-horizon of the process;
γ ∈ [0, 1] is a constant discount factor to the cumulated rewards.

The process starts at round t = 0, in which the agent observes the initial state
s0 ∼ S0 and the initial budget b0 ∼ B0. The process evolves round by round. At
each successive round t, the agent observes the current state st and chooses an
action at to perform, which provokes a state transition to st+1 and returns a
reward rt+1. The budget changes according to the received rewards, so as :

bt+1 = bt + rt+1 (1)

Survival RL with Safety-Threshold Q-Learning 3

where bt is the budget at round t and rt+1 is the reward received at round
t + 1. If the budget is depleted during running, the agent is ruined and the
process stops. Otherwise, the process stops at the maximal time-horizon h, with
bh = b0 +

∑h
t=1 rt. The agent disposes of an initial policy π0 that is improved

with the experiences by a learning function ψ, producing a new policy πt at each
time step, after observing st, rt, and bt. The evolving process is illustrated in
the Figure 1. An optimal policy π∗ maximizes the expected γ-discounted sum of
rewards over a given (potentially infinite) time-horizon h, for any initial state s0:

∀s0 ∈ S, ∀π ∈ Π : E

[
h∑

t=1

γt−1 rt | π∗

]
≥ E

[
h∑

t=1

γt−1 rt | π

]
. (2)

Environment
t← 0
s′ ∼ S0

start

Agent
π ← π0

b ∼ B0

a ∼ π(s′, b)

Environment
t← t+ 1
s← s′

s′ ∼ P (s, a)
r ∼ R(s, a, s′)

Agent
b← b+ r

π ← ψ(π, s, a, s′, r, b, γ)
a ∼ π(s′, b)

stopstop

s′

a

s′, r

a

if b ≤ 0if t > h

Fig. 1: In a Survival RL scenario, the agent-environment cycle includes a budget
that should remain positive throughout the entire process execution.

In an online context, with no previous separated training phase, the overall
performance of an RL algorithm is impacted by trial-and-error actions, increasing
a total regret, defined as the difference between the sum of actually perceived
rewards, and the expected sum of rewards the agent could have earned if following
an optimal policy π∗ from the beginning. In a classic episodic RL approach, the
budget could be assimilated to an additional observation variable, and being
ruined penalized with a strong negative reward. Since the objective is to learn
and survive during a single episode, budget and ruin must be used as additional
information at round by round decision-making time.

The contribution presented in this paper is an original heuristic to deal with
survival RL problems. The insight is to extend standard algorithms by making
the agent operate in two different modes, depending on the remaining budget:
a survival mode, which is activated when the budget is too low, making the
agent behave conservatively in order to recharge its budget, and a normal mode,
to which the agent switches back when a comfortable budget level is reached

4 F. S. Perotto, M. Nargeot, A. Ouahbi

again. The background concepts related to RL, and more specifically to the
classic Q-Learning algorithm, are presented in Section 2. An overview on the
Safe RL state-of-the-art is done in Section 3. The contribution of the paper, the
Safety-Threshold (ST) strategy used to modify the Q-Learning method giving rise
to ST-Q-Learning, is explained in Section 4. Preliminary experimental results are
described in Section 5, showing that the use of the proposed heuristic increases the
survival expectancy of the agent, and even reduces the regret due to the maintain
of a persistent but cautiousness exploratory behavior. Section 6 concludes the
paper and suggests some future work.

2 Background: RL and Q-Learning

Without considering safety or survival issues, an RL agent must learn from its
observations, exploring the environment and exploiting its knowledge to increase
its gain, eventually converging to a policy of actions that maximizes the expected
discounted sum of future rewards (an optimal policy). Classically, the RL loop
is characterized by an interleaved interaction between an agent that perceives
a state and executes an action, and an environment that returns a new state
and a reward [48]. The environment can be described as a stochastic Markovian
Decision Process (MDP) which evolves discretely over time [8, 46, 55].

When the “model” is known (i.e. when the functions R and P are given),
an MDP can be exactly solved with polynomial complexity using linear or
dynamic programming (DP) techniques [26]. Reinforcement Learning methods
are necessary when a model of the world is not available in advance, which is a
very common situation in practice. Model-based RL strategies try to estimate
the functions R and P from the observed samples, during interaction, then
extracting a policy of actions from them [28, 44], for example, using adaptive
dynamic programming [32]. In contrast, model-free RL algorithms have been more
effective [51] by trying to learn a policy directly from the experience, generally
relying on local approximations of the state-action utilities (Q-values), updated
after each observation.

Let R̄(s, a, s′) be the mean or expected reward of function R for s, a, s′. The
Bellman’s equation [6] defines the value for a policy π from state s as:

Vπ(s) =
∑
s′

[
P
(
s′ | s, π(s)

)(
R̄(s, π(s), s′) + γVπ(s

′)
)]
. (3)

The value of a given action a executed from state s, followed by policy π, is:

Qπ(s, a) =
∑
s′

[
P
(
s′ | s, a

)(
R̄(s, a, s′) + γVπ(s

′)
)]
. (4)

An optimal policy π∗ corresponds to:

∀s ∈ S : π∗(s) = argmax
a

{∑
s′

[
P
(
s′ | s, a

)(
R̄(s, a, s′) + γVπ∗(s′)

)]}
. (5)

Survival RL with Safety-Threshold Q-Learning 5

Q-learning [54] is a traditional model-free algorithm that implements an
off-policy immediate temporal-difference (TD) strategy for learning a policy on
environments with delayed rewards. The estimated Q function is stored in memory
as a table in the form S × A → R, where the entries represent the estimated
utility of each state-action pair at the given time, denoted by Q̂(s, a). The stored
Q-table is updated after each transition through a simple value-iteration step,
based on the equation 3, using the α-weighted average of the old and the new
values, where s, a, and s′ are the observed transition, r is the received reward,
and α is the learning rate:

Q̂′(s, a) ← Q̂(s, a) + α
(
r + γmax

a′
[Q̂(s′, a′)]− Q̂(s, a)

)
(6)

Since what can be learned depends on the agent’s behavior, a necessary trade-
off must be found between exploration (trying different actions) and exploitation
(choosing the action with best expected utility based on the current knowledge).
In Q-Learning, the ε-greedy technique is used to induce undirected exploration by
introducing some randomness to the decision-making process [48]. At each time
step, the agent either executes a random action with probability ε, or follows the
current estimated optimal policy with probability 1− ε. To avoid paying a linear
regret due to a constant exploration, a time-dependent exploration parameter εt
can be used, and gradually decreased while t evolves [4].

A different approach to solve the exploration-exploitation dilemma is the
optimism in the face of uncertainty. The idea is to explore potentially good but
insufficiently frequented state-action pairs [36] (directed exploration). In tabular
methods, like Q-Learning, it can be done by simply initializing the Q-values
optimistically, and then following a completely greedy strategy. The more a state-
action pair will be tried, the closer its estimated utility will approach its true
value. Most exploration-exploitation trade-off strategies found in the literature
lean on the upper-confidence bound principle [10, 29, 5, 45].

3 State of the Art: Safe, Risk-Averse, and Lifelong RL

The baseline RL methods are not suitable to be applied directly on expensive or
safety-critical real-world systems due to the absence of integrity guarantees during
the learning process [18, 7, 14]. Particularly in the case of complex physically
embodied systems, even if the agent is able to previously learn a policy of actions,
either through offline RL using a database of experiences, or through online RL
into a simulated environment, in the real scenario the agent will eventually face
unexpected events, perhaps disastrous. Successful examples like the drone racing
agents [47] are extensively trained in simulation, coupled with physically informed
constraints, and fine-tuned with real-world data using off-line RL, before facing
the wild reality. For that reason, Safe RL is the object of an increasing number of
publications [33, 30, 17, 25, 49, 53, 19, 35, 23, 27, 52, 50, 57, 34, 21, 2, 14, 15, 16, 24],
attracting the attention of the AI community and giving rise to dedicated
workshops in prestigious conferences.

6 F. S. Perotto, M. Nargeot, A. Ouahbi

Safe RL is concerned with safety during the learning process, and is synonym
of “Risk-Averse” RL. Two distinct approaches appear in the literature do deal with
risk [24]: (a) modifying the optimality criterion (the classic expected discounted
cumulative reward) with a safety factor, or (b) incorporating external knowledge
during the exploration process. In the first approach, the agent takes into account
the expected variability on the utility of state-action pairs in order to identify
(and avoid) less predictable (thus considered risky) actions. The notion of safety
corresponds to reward and transition stability. The risk-reward trade-off is then
addressed by mean-variance metrics or value-at-risk metrics, based on the lower
quantiles of the estimated utility distribution for each state-action pair [35, 12,
15]. However, no notion of budget is considered in that approach, making it
incompatible with the survival RL problem proposed here. The risk is understood
as variability or unpredictability, and does not account for a risk of ruin.

In the second Safe RL approach, the idea is to use a standard RL mechanism,
but monitoring and eventually interfering in decision making whenever needed in
order to ensure safety. For example, a shield module can be introduced within the
sensorimotor loop of the agent, endowed with previous knowledge to prevent the
RL mechanism from choosing unsafe actions [2]. Another strategy is to gradually
improve an initial predefined baseline policy, which is assumed to be stable and
safe but suboptimal. The idea is to promote a controlled exploration in which
the agent deviates from the baseline behavior smoothly [7, 16, 23]. The baseline
policy works by delimiting a safe region, which is gradually extended by the
learning mechanism. In a similar approach called Conservative RL, the goal is to
perform at least as well as an existing baseline policy during the learning process
[22].

In another framework called Budgeted MDP [11, 9, 56], the goal is to maximize
the rewards constrained by a total budget, but with separated reward and cost
functions. The budget is consumed by the costs, which means that it can only
decrease at every round, until eventually being depleted. Solving this problem
involves searching for a good reward-cost ratio. The same strategy is not feasible in
the survival setting due to the fact that there is a single reward function returning
positive and negative values in a process that can possibly run infinitely.

In this paper we are interested in a class of problems that we call Survival
RL, which cannot be reduced to any of the previously cited Safe RL approaches,
and can be seen as the multi-state version of Survival Multi-Armed Bandits
[43, 42, 41]. A similar problem found in the literature is called Single-Life or
Lifelong RL [13], but it is more related to transfer learning techniques, where
an agent must adapt to a new scenario based on what was previously learned in
other scenarios, for example, by shaping rewards to stimulate staying within the
known region of the state space.

In the proposed problem, the agent aims to learn an optimal policy constrained
by a budget that can be increased or decreased at each round with the received
rewards, and which must remain positive all along the process. Since rewards can
be positive and negative, the agent can either increase the probability of running
the process indefinitely, becoming infinitely rich, or inversely, can increase the

Survival RL with Safety-Threshold Q-Learning 7

probability of ruin, until eventually getting broke. More generally, the underlying
Survival RL problem can be seen as a Constrained MDP [3, 19, 37, 1, 38],
where the rewards are to be maximized, subject to maintaining a positive budget
along the entire process lifetime. Another possible definition is a multi-objective
optimization problem, where the rewards are to be maximized, and the probability
of ruin is to be minimized.

4 Contribution: Safety-Threshold Q-Learning

In this section, the Safety-Threshold Q-Learning (STQ) method is introduced
(Algorithm 1), as the main contribution of the paper. It is designed to tackle
Survival RL problems using the original Safety-Threshold heuristic. The insight
is the following: when the budget is low, the risk of ruin is high, then the agent
should be pragmatic by exploiting its current knowledge to recharge the budget;
in contrast, when the budget is high, the risk of ruin is low, then the agent can
continue with exploratory actions. STQ distinguishes between a high and a low
budget based on two hand-tuned hyperparameters, wq and wk.

In addition, STQ extends the classic Q-Learning by storing a second state-
action value table, called K-table, with the same dimensions than the Q-table.
Both tables are updated in the same way (Eq. 6) and at same time, after every
round. The only difference lies on their initialization: the Q-table is initialized
with zeros (neutral), i.e. ∀s, a : Q0(s, a) = 0, while the K-table is initialized
with a positive value k0 > 0, in order to create an optimistic behavior, so as
∀s, a : K0(s, a) = k0, where k0 is also a hand-tuned hyperparameter. In this way,
when the actions are chosen based on the K-table, the principle of optimism in
the face of uncertainty holds, and the agent will execute a directed exploration,
tending to navigate to promising few observed transitions.

In this way, beyond the exploration rate (ε), the learning rate (α), and the
discount factor (γ), STQ must be tuned with 3 additional hyperparameters: the
safety threshold (wq), the exploration threshold (wk), and the initial k-value (k0).
During running, the agent switches between two behavior modes: normal mode
and survival mode. When the budget falls under the safety threshold (bt < wq), the
agent enters in survival mode, becoming greedy (i.e. following the best estimated
action for the observed states, and canceling any random exploration), choosing
the actions based on the “neutral” Q-table, in order to recharge its budget. In
contrast, when the budget overpasses the exploration threshold (bt > wk), the
agent returns to normal mode, free to conduct exploration due to both the
undirected approach resulting from the use of ε-greedy action choice, and the
directed approach resulting from the use of the “optimistic” K-table for decision
making. The insight is that the safety threshold helps to keep the agent far from
ruin by making it conservative (greedy) in order to prioritize budget recharging
by following the estimated best actions according to the current experience.

To ensure a comfortable budget level for exploration, two thresholds are
necessary. Once activated, the survival mode is kept until the budget exceeds a
superior exploration threshold, then the agent reverts to its normal mode, at least

8 F. S. Perotto, M. Nargeot, A. Ouahbi

while it does not fall below the safety threshold again. The use of two separated
thresholds, like a thermostat, allows to avoid quick inefficient switches between
the two modes. For illustrating it, in the experience shown in the Figure 2, a
better exploration rate is obtained, for the same number of steps, when the agent
is using separated safety and exploration thresholds, than when it is using a
unique threshold. The STQ method is described in Algorithm 1.

Algorithm 1 - Safety Threshold Q-Learning (STQ)
Input: b0 {the initial budget}, s0 {the initial state}, wq {the safety threshold}, wk

{the exploration threshold}, k0 {the initial optimistic mean value}, ε {the random
exploration rate}, γ {the discount factor}, α {the learning rate}, h {the maximum
time-horizon}.

t← 0, s← s0, b← b0
∀s, a : Q(s, a)← 0, K(s, a)← k0
survival← false

while b > 0 and t ≤ h do

survival←

{
true if bt < wq

false if bt > wk

if survival is true then
at ← argmaxaQ(s, a) #greedy Q

else
either with probability ε
at ← argmaxaK(s, a) #greedy K

or with probability 1− ε
at ← U(A) #random action

end if

execute at
observe st+1, rt+1

bt+1 ← bt + rt+1

updateQ(s, a) andK(s, a) using Eq. 6

end while

 initialize

}
update mode

choose action

conclude cycle

}
learn

loop

In classic RL, an intuition involving the exploration-exploitation dilemma
is that the agent should have an initial exploratory tendency that is gradually
changed by a greedy behavior at the limit when time goes to infinity, and the
error on the estimated utilities is supposed to approach zero. In the survival
problem, however, that shift should be based on the budget instead of time
[41]. For this reason, when an STQ agent has enough budget to explore, it will
base its decisions on the optimistic K-table. However, if it is in survival mode, it
will use the neutral Q-table. As the update formula is the same for both tables,

Survival RL with Safety-Threshold Q-Learning 9

0 250 500 750 1000 1250 1500 1750 2000
time

25

50

75

100

125

150

175

200

bu
dg

et

STQ, q0 = 0, k0 = 200, = 0.1, w = {300, 300}
STQ, q0 = 0, k0 = 200, = 0.1, w = {300, 600}

(a) Evolution of the budget over time.

0 250 500 750 1000 1250 1500 1750 2000
time

0.0

0.2

0.4

0.6

0.8

ex
pl

or
at

io
n

STQ, q0 = 0, k0 = 200, = 0.1, w = {300, 300}
STQ, q0 = 0, k0 = 200, = 0.1, w = {300, 600}

(b) Exploration rate over time.

Fig. 2: Example of a typical execution with horizon h = 2000, and initial budget
b0 = 200. STQ using the same value (wq = wk = 100) for both safety and
exploration thresholds explores the environment less than the one using separate
thresholds (wq = 100, wk = 200).

they should both converge to similar values if the agent can dispose of enough
experience. Thus, after a sufficiently large number of time steps, whatever the
agent’s mode, it will finally make decisions following an exploitation logic.

5 Experimental Results on a Grid World

A survival reinforcement learning problem is non-episodic, forcing the agent to
use its knowledge and exploit non-optimal rewards to keep its budget strictly
positive (i.e. to survive). To evaluate the proposed method in a survival context,
a 2D grid problem is defined. The agent is positioned into a corner of a grid
map, corresponding to a matrix with size X × Y , where X = 25 is the number of
columns and Y = 5 the number of rows in the grid. The reward distribution R is
defined in function of the cost of movement, the influence of reward spots into a
set R, and a variance factor σ2. A big reward spot (rbig = +10) is positioned at
the opposite diagonal corner in relation to the agent’s initial position. Two small
positive reward spots (rsmall = +1 and rmid = +2) are placed in the diagonal
between the agent and the big reward, around 1/3 and 2/3 of the total distance,
respectively. A spreading factor η ∈ [0, 1] make adjacent cells inherit part of the
rewards, exponentially decreasing with the distance to the respective spots. That
reward function, represented as a relief on the grid, is shown in the Figure 3.

The agent can choose between 4 actions: north, south, east, or west, with
deterministic effect of moving the agent to the corresponding direction. But
moving is costly, and the cost becomes bigger in the region near to the big
reward. In fact, a linear variation is applied in function of the distance to the
opposite corner in relation to the agent’s initial position, from rcost(s) = −0.5
when coordinate xs = 1, to rcost(s) = −1.0, when xs = 25. If the agent tries to
go outside of the map, it remains in the same state, receiving the corresponding
reward. Let N be a Gaussian distribution with mean µ and variance σ2, and d

10 F. S. Perotto, M. Nargeot, A. Ouahbi

Fig. 3: At the top, the reward map for the survival experience with rectangular
map of size 25× 5, γ = 0.95, one reward spot of +10 and two reward spots of
+1 and +2, combined with costs varying from −0.5 to −1.0, from one side to
another, and a reward spreading η = 0.2. At the bottom, the true Q-Values for
the designed survival experience, obtained through dynamic programming.

be the distance (the number of necessary steps) between the cell represented by
state s at coordinates (xs, ys) and the spot position at coordinates (xspot, yspot),
defined as dspot(s) = |xs − xspot|+ |ys − yspot|. The effective reward distribution
when the agent steps into a cell is:

R(s) = N
(
µ(s), σ2

)
with µ(s) = rcost(s) +

∑
spot∈R

ηdspot(s)rspot (7)

The consequence is that, for the cells of the grid far from the reward spots,
any movement executed by the agent will return a negative reward, reducing
its budget. A good strategy should be using the small reward spots to recharge
the budget, and then be able to explore the environment until reaching the big
reward, without being ruined before. This “reward desert” makes exploration
difficult, and to make things worse, the moving costs are smaller near to the
initial position, which can potentially inhibits exploration in the opposite side of
the grid, where the big reward is placed. Whereas a conventional agent would take
the risk of dying by exploring the environment without taking the budget into
account, or, inversely, would accept to survive using a sub-optimal strategy, lying
on the small positive rewards, STQ explores the environment while managing its
budget, exploiting positively rewarded actions, although sub-optimal, in order to
ensure a sufficiently frequent budget recharging, then continuing exploration to
discover an optimal policy. The true Q-values of the problem are presented in
the Figure 3 (bottom).

Different scenarios with initial budgets {100, 150, 200, 250, 300, 350, 400} have
been tested into a 25× 5 grid-world, with discount factor γ = 0.95. Each simu-
lation ran until a maximal time-horizon h = 5000 steps, and was repeated 500
times to allow some statistical analysis. Three different variations of the classical
Q-Learning method have been tested: a greedy one, another that explores based

Survival RL with Safety-Threshold Q-Learning 11

on the optimism in the face of the uncertainty, with Q-tables initialized with
value q0 = 200, and ε-greedy with exploration rate fixed to 0.1. Those classi-
cal Q-Learning instances have been compared to Safety-Threshold Q-Learning,
with Q-table values initialized to 0 and K-table values initialized to k0 = 200.
Different combinations of safety and exploration thresholds have been tested:
{100, 200}, {200, 400}, {50, 800}. The parameter α (learning rate) was set to 0.5
for all algorithms. The experimental results have been produced into a Intel core
i7 CPU. All the algorithms have been implemented in Python from scratch.

100 150 200 250 300 350 400
Initial budget

0

1000

2000

3000

4000

5000

Av
er

ag
e

su
rv

iv
al

 ti
m

e

Average survival time in function of initial budget with horizon 5000
 repeated 500 times for map of size 25x5

QLearning, q0 = 0, = 0.1
QLearning, q0 = 0, = 0 (greedy)
QLearning, q0 = 200 (optimistic), = 0 (greedy)
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {50, 800}
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {100, 200}
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {200, 400}
STQ, q0 = 0, k0 = 200, = 0.1, w = {50, 800}
STQ, q0 = 0, k0 = 200, = 0.1, w = {100, 200}
STQ, q0 = 0, k0 = 200, = 0.1, w = {200, 400}

Fig. 4: Average survival time as a function of the initial budget b0 from 100 to
400, with maximal time-horizon h = 5000. Simulation repeated 500 times in a
grid map with dimensions 25× 5.

The obtained results indicate that STQ highly improves the performance of
classic Q-learning in terms of exploration (Figure 5). The agent is persistently
exploratory when the budget is greater than the exploration threshold, allowing a
very good approximation between the learned Q-function and the true Q-function
for the entire state-action space. It can be surprising that, in terms of survival
rates, the proposed heuristic is not significantly better than classic greedy or
ε-greedy (Figure 4). It is because those methods are able to survive using the
small rewards, which allows positive rewarded trajectories, even if not-optimal.
But STQ presented a better average reward return in the long-term (Figures 6
and 7) thanks to the systematic exploration that allows to discover the big reward
earlier. Figures 4− 7 present the average survival time, average exploration rate,
average final budgets, and the average budget evolution, for Greedy (ε = 0),

12 F. S. Perotto, M. Nargeot, A. Ouahbi

100 150 200 250 300 350 400
Initial budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ex
pl

or
at

io
n

Ra
te

Rate of explored state-action pairs, in function of initial budget, with horizon 5000
 repeated 500 times for map of size 25x5

QLearning, q0 = 0, = 0.1
QLearning, q0 = 0, = 0 (greedy)
QLearning, q0 = 200 (optimistic), = 0 (greedy)
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {50, 800}
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {100, 200}
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {200, 400}
STQ, q0 = 0, k0 = 200, = 0.1, w = {50, 800}
STQ, q0 = 0, k0 = 200, = 0.1, w = {100, 200}
STQ, q0 = 0, k0 = 200, = 0.1, w = {200, 400}

Fig. 5: Exploration rate (visited state-action pairs) as a function of the initial
budget b0 from 100 to 400, with maximal time-horizon h = 5000. Simulation
repeated 500 times in a grid map with dimensions 25× 5.

Classic Q-learning (ε = 0.1), Optimistic-Greedy (ε = 0, q0 = 200), and the
combinations of STQ with ε = 0.1 or greedy, thresholds {100, 200}, {200, 400}
and {50, 800}, with k0 = 200, α = 0.5, and γ = 0.95.

6 Discussion, Conclusion, and Future Work

Survival RL is still a class of understudied problems, with diverse open questions.
In this paper, we propose a first heuristic approach to deal with Survival RL.
Safety-Threshold Q-Learning introduces three new meta-parameters: wq, wk, and
k0, and allows the agent to change between two behaviors: in survival mode it
uses a neutral Q-table, which has been initialized with 0, and follows a greedy
policy, trying to exploit the most positive decisions given its current knowledge;
in normal mode, the agent follows the policy suggested by a second, optimistic, K-
table (“K” for knowledge), which had been initialized with highly positive values,
defined by the parameter k0. The double threshold works like a thermostat: when
the budget goes under wq, the agent enters in survival mode and becomes greedy,
trying to make the budget increase again using its best current policy, even if
not optimal. Then, when the budget becomes sufficiently high, greater than wk,
it comes back to the normal mode, which is very explorative at the beginning,
converging to the optimal policy with high probability when the K-table and
Q-table approximate the true Q-values.

Survival RL with Safety-Threshold Q-Learning 13

100 150 200 250 300 350 400
Initial budget

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e

fin
al

 b
ud

ge
t

Average final budget in function of initial budget with horizon 5000
 repeated 500 times for map of size 25x5

QLearning, q0 = 0, = 0.1
QLearning, q0 = 0, = 0 (greedy)
QLearning, q0 = 200 (optimistic), = 0 (greedy)
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {50, 800}
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {100, 200}
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {200, 400}
STQ, q0 = 0, k0 = 200, = 0.1, w = {50, 800}
STQ, q0 = 0, k0 = 200, = 0.1, w = {100, 200}
STQ, q0 = 0, k0 = 200, = 0.1, w = {200, 400}

Fig. 6: Average final budgets as a function of the initial budget b0 from 100 to
400, with maximal time-horizon h = 5000. Simulation repeated 500 times in a
grid map with dimensions 25× 5.

0 1000 2000 3000 4000 5000
time

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

bu
dg

et

Average budget in function of time with horizon 5000
 repeated 500 times for map of size 25x5

QLearning, q0 = 0, = 0.1
QLearning, q0 = 0, = 0 (greedy)
QLearning, q0 = 200 (optimistic), = 0 (greedy)
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {50, 800}
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {100, 200}
STQ, q0 = 0, k0 = 200, = 0 (greedy), w = {200, 400}
STQ, q0 = 0, k0 = 200, = 0.1, w = {50, 800}
STQ, q0 = 0, k0 = 200, = 0.1, w = {100, 200}
STQ, q0 = 0, k0 = 200, = 0.1, w = {200, 400}

Fig. 7: Average budget evolution over time, until horizon h = 5000. Simulation
repeated 500 times in a grid map with dimensions 25× 5 with b0 = 300.

14 F. S. Perotto, M. Nargeot, A. Ouahbi

Experiments in a grid world show that STQ executes a kind of systematic
exploration on the first rounds of the simulation, eventually finding a small
reward, to which it returns when necessary to recharge the budget. The random
exploration actions used by the classic Q-Learning makes more difficult to go to
the other side of the board. At the same time, since Q-Learning is not aware
about the risk of ruin, it depletes the budget more often.

Finally, even if most of the classic (tabular) RL methods have proven inter-
esting theoretical guarantees, the need of storing a Q-table limits their practical
application to complex real-world problems. The combinatorial nature of an
exhaustive enumeration of states would make impossible to maintain a Q-table
in memory. In addition, the discrete representation of states and actions can
be inappropriate to domains that could be naturally represented by continuous
dimensions. In recent years, the rise of Deep Neural Networks (DNNs) provided
new possibilities for function approximation and representation learning [31].
Deep RL combines DNNs with classic RL methods, allowing to improve scalabil-
ity and to solve the complexity issues faced by tabular methods, thus enabling
decision making and learning in high-dimensional state and action spaces [20].
When available, gradients provide a strong learning signal that can be estimated
through sampling, offering great generalization capacities. Powerful open-source
frameworks are available today allowing to implement and test new Deep RL
algorithms easily, like PyTorch, TensorFlow, Keras, and AIDGE.

The next steps of this research involve the extension of the proposed heuristic
to other methods, including Deep RL algorithms. The algorithm Deep Q-Networks
(DQN) [40, 39], for example, is a deep version of Q-Learning and relies on
approximating the state-action values Q∗ using DNNs. The problem is that
STQ implemented optimism by initializing a K-table optimistically. This kind of
initialization is not possible in DNN, since the parameters of the network impact
multiple states at once, and the relation between neurons and states changes
during learning. A second improvement can be replacing the fixed thresholds by
some adaptive function, making the agent changing between survival and normal
mode smarter and smoothly.

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
Proc. of the 34th ICML. p. 22–31. PMLR (2017)

2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proc. of 32nd AAAI. pp. 2669–2678 (2018)

3. Altman, E.: Constrained Markov Decision Processes. Chapman & Hall (1999)
4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed

bandit problem. Mach. Learn. 47(2-3), 235–256 (2002)
5. Auer, P., Ortner, R.: Logarithmic online regret bounds for undiscounted rein-

forcement learning. In: Advances in Neural Information Processing Systems 19,
Proceedings of the 20th NeurIPS (2006). pp. 49–56. MIT Press (2007)

6. Bellman, R.: On the theory of dynamic programming. Proc. Natl. Acad. Sci. USA
38(8), 716–719 (1952)

Survival RL with Safety-Threshold Q-Learning 15

7. Berkenkamp, F., Turchetta, M., Schoellig, A., Krause, A.: Safe model-based rein-
forcement learning with stability guarantees. In: Proc. of the 30th NeurIPS (2016).
pp. 908–918. Curran (2017)

8. Bertsekas, D.: Reinforcement Learning and Optimal Control. Athena (2019)
9. Boutilier, C., Lu, T.: Budget allocation using weakly coupled, constrained markov

decision processes. In: Proc of 32nd UAI. p. 52–61. AUAI Press (2016)
10. Brafman, R., Tennenholtz, M.: R-max - a general polynomial time algorithm for

near-optimal reinforcement learning. J. Mach. Learn. Res. 3, 213–231 (2002)
11. Caramanis, C., Dimitrov, N., Morton, D.: Efficient algorithms for budget-constrained

markov decision processes. IEEE Trans. Automat. Contr. 59(10), 2813–2817 (2014)
12. Carpin, S., Chow, Y., Pavone, M.: Risk aversion in finite markov decision processes

using total cost criteria and average value at risk. In: Proc. of ICRA. pp. 335–342.
IEEE (2016)

13. Chen, A.S., Sharma, A., Levine, S., Finn, C.: You only live once: Single-life reinforce-
ment learning via learned reward shaping. In: Decision Awareness in Reinforcement
Learning Workshop at ICML 2022 (2022)

14. Cheng, R., Orosz, G., Murray, R., Burdick, J.: End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In:
Proc. of 33rd AAAI. pp. 3387–3395 (2019)

15. Chow, Y., Ghavamzadeh, M., Janson, L., Pavone, M.: Risk-constrained reinforce-
ment learning with percentile risk criteria. JMLR 18(167), 1–51 (2018)

16. Chow, Y., Nachum, O., Duenez-Guzman, E., Ghavamzadeh, M.: A lyapunov-based
approach to safe reinforcement learning. In: Proc. of NeurIPS. v.31. pages 8103–8112.
Curran (2018)

17. Du, Y., Wang, S., Huang, L.: Provably efficient risk-sensitive reinforcement learning:
Iterated cvar and worst path. In: The 11th Int. Conf. on Learning Representations,
ICLR 2023 (2023)

18. Dulac-Arnold, G., Levine, N., Mankowitz, D.: Challenges of real-world reinforcement
learning: definitions, benchmarks and analysis. Mach Learn 110, 2419–2468 (2021)

19. Efroni, Y., Mannor, S., Pirotta, M.: Exploration-exploitation in constrained mdps.
ArXiv abs/2003.02189 (2020)

20. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An
introduction to deep reinforcement learning. Foundations and Trends in Machine
Learning 11(3-4), 219–354 (2018)

21. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence (2018)

22. Garcelon, E., Ghavamzadeh, M., Lazaric, A., Pirotta, M.: Conservative exploration
in reinforcement learning. In: Proceedings of the 23rd Int. Conf. on Artificial
Intelligence and Statistics (AISTATS). Proceedings of Machine Learning Research,
vol. 108, pp. 1431–1441. PMLR (2020)

23. García, J., Shafie, D.: Teaching a humanoid robot to walk faster through safe
reinforcement learning. Engineering Applications of Artif. Intel. 88 (2020)

24. García, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
JMLR 16, 1437–1480 (2015)

25. Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J., Yang, Y., Knoll, A.: A
review of safe reinforcement learning: Methods, theory and applications (2023)

26. Howard, R.: Dynamic Programming and Markov Processes. MIT Press, Cambridge,
MA (1960)

16 F. S. Perotto, M. Nargeot, A. Ouahbi

27. Jansen, N., Könighofer, B., Junges, J., Serban, A., Bloem, R.: Safe reinforcement
learning using probabilistic shields. In: 31st Int. Conf. on Concurrency Theory
(CONCUR 2020). LIPICS: Schloss Dagstuhl (2020)

28. Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R.H., Czechowski,
K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R.,
Tucker, G., Michalewski, H.: Model based reinforcement learning for atari. In: 8th

Int. Conf. on Learning Representations, ICLR 2020. OpenReview.net (2020)
29. Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial time.

Mach. Learn. 49(2-3), 209–232 (2002)
30. Lam, T., Verma, A., Low, B.K.H., Jaillet, P.: Risk-aware reinforcement learning

with coherent risk measures and non-linear function approximation. In: The 11th

Int. Conf. on Learning Representations, ICLR 2023. OpenReview.net (2023)
31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
32. Liu, D., Wei, Q., Wang, D., Yang, X., Li, H.: Overview of Adaptive Dynamic

Programming, pp. 1–33. Springer, Cham (2017)
33. Liu, Z., Guo, Z., Cen, Z., Zhang, H., Tan, J., Li, B., Zhao, D.: On the robustness

of safe reinforcement learning under observational perturbations. In: The 11th Int.
Conf. on Learning Representations, ICLR 2023. OpenReview.net (2023)

34. Lütjens, B., Everett, M., How, J.P.: Safe reinforcement learning with model un-
certainty estimates. In: 2019 Int. Conf. on Robotics and Automation (ICRA). pp.
8662–8668. IEEE (2019)

35. Majumdar, A., Pavone, M.: How should a robot assess risk? towards an axiomatic
theory of risk in robotics. Robotics Research 10, 75–84 (2020)

36. Meuleau, N., Bourgine, P.: Exploration of multi-state environments: Local measures
and back-propagation of uncertainty. Mach. Learn. 35(2), 117–154 (1999)

37. Miryoosefi, S., Brantley, K., Daume, H., Dudik, M., Schapire, R.: Reinforcement
learning with convex constraints. In: Proc. of NeurIPS. v.32. pages 14093–14102.
Curran (2019)

38. Miryoosefi, S., Jin, C.: A simple reward-free approach to constrained reinforcement
learning. In: Int. Conf. on Machine Learning (ICML). vol. 162, pp. 15666–15698
(2022)

39. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

40. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Ried-
miller, M.: Playing atari with deep reinforcement learning. CoRR abs/1312.5602
(2013)

41. Perotto, F.S., Pucel, X., Farges, J.: Time is budget: A heuristic for reducing the risk
of ruin in multi-armed gambler bandits. In: Bramer, M., Stahl, F. (eds.) Artificial
Intelligence XXXIX - 42nd SGAI Int. Conf. on Artificial Intelligence, AI 2022,
Proceedings. LNCS, vol. 13652, pp. 346–352. Springer (2022)

42. Perotto, F.S., Vakili, S., Gajane, P., Faghan, Y., Bourgais, M.: Gambler bandits
and the regret of being ruined. In: Dignum, F., Lomuscio, A., Endriss, U., Nowé, A.
(eds.) AAMAS ’21: 20th Int. Conf. on Autonomous Agents and Multiagent Systems.
pp. 1664–1667. ACM (2021)

43. Perotto, F., Bourgais, M., Silva, B., Vercouter, L.: Open problem: Risk of ruin in
multiarmed bandits. In: Proc. of COLT. pp. 3194–3197 (2019)

44. Polydoros, A.S., Nalpantidis, L.: Survey of model-based reinforcement learning:
Applications on robotics. J. Intell. Robotic Syst. 86(2), 153–173 (2017)

Survival RL with Safety-Threshold Q-Learning 17

45. Poupart, P., Vlassis, N., Hoey, J., Regan, K.: An analytic solution to discrete
bayesian reinforcement learning. In: Proc. of the 23rd ICML. pp. 697–704. ACM
(2006)

46. Puterman, M., Patrick, J.: Dynamic programming. In: Encyclopedia of Machine
Learning, pp. 298–308. Springer (2010)

47. Song, Y., Steinweg, M., Kaufmann, E., Scaramuzza, D.: Autonomous drone racing
with deep reinforcement learning. In: IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, IROS, 2021. pp. 1205–1212. IEEE (2021)

48. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, 2
edn. (2018)

49. Thomas, G., Luo, Y., Ma, T.: Safe reinforcement learning by imagining the near
future. Advances in Neural Information Processing Systems 34, 13859–13869 (2021)

50. Turchetta, M., Kolobov, A., Shah, S., Krause, A., Agarwal, A.: Safe reinforcement
learning via curriculum induction. Advances in Neural Information Processing
Systems 33, 12151–12162 (2020)

51. Valencia, D., Jia, J., Li, R., Hayashi, A., Lecchi, M., Terezakis, R., Gee, T.,
Liarokapis, M., MacDonald, B.A., Williams, H.: Comparison of model-based and
model-free reinforcement learning for real-world dexterous robotic manipulation
tasks. In: 2023 IEEE Int. Conf. on Robotics and Automation (ICRA). pp. 871–878
(2023)

52. Wachi, A., Sui, Y.: Safe reinforcement learning in constrained markov decision
processes. In: Int. Conf. on Machine Learning. pp. 9797–9806. PMLR (2020)

53. Wagener, N.C., Boots, B., Cheng, C.A.: Safe reinforcement learning using advantage-
based intervention. In: Int. Conf. on Machine Learning. pp. 10630–10640. PMLR
(2021)

54. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)
55. Wiering, M., Otterlo, M.: Reinforcement learning and markov decision processes.

In: Reinforcement Learning: State-of-the-Art, pp. 3–42. Springer (2012)
56. Wu, D., Chen, X., Yang, X., Wang, H., Tan, Q., Zhang, X., Xu, J., Gai, K.: Budget

constrained bidding by model-free reinforcement learning in display advertising. In:
Proc. of 27th CIKM. p. 1443–1451. ACM (2018)

57. Yang, Y., Vamvoudakis, K.G., Modares, H.: Safe reinforcement learning for dy-
namical games. Int. Journal of Robust and Nonlinear Control 30(9), 3706–3726
(2020)

