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Normalizing flows can transform a simple prior probability distribution into a more complex target
distribution. Here, we evaluate the ability and efficiency of generative machine learning methods
to sample the Boltzmann distribution of an atomistic model for glass-forming liquids. This is a
notoriously difficult task, as it amounts to ergodically exploring the complex free energy landscape of
a disordered and frustrated many-body system. We optimize a normalizing flow model to successfully
transform high-temperature configurations of a dense liquid into low-temperature ones, near the
glass transition. We perform a detailed comparative analysis with established enhanced sampling
techniques developed in the physics literature to assess and rank the performance of normalizing
flows against state-of-the-art algorithms. We demonstrate that machine learning methods are very
promising, showing a large speedup over conventional molecular dynamics. Normalizing flows show
performances comparable to parallel tempering and population annealing, while still falling far
behind the swap Monte Carlo algorithm. Our study highlights the potential of generative machine
learning models in scientific computing for complex systems, but also points to some of its current
limitations and the need for further improvement.

I. INTRODUCTION

One of the most important methodological revolution
in science in the last century is scientific computing [1].
Numerical simulations represent a way, complementary
to experiments, to study physical systems, thus provid-
ing a unique lens on the microscopic mechanisms under-
pinning macroscopic physical phenomena [1–4].

A major application of numerical simulations, from
the very beginning, has been sampling physical config-
urations at thermal equilibrium [5]. This was initially
done by using either Monte Carlo Markov chains [5, 6] or
molecular dynamics [7, 8]. Both methods can be viewed
as ways to implement some physical dynamics to ergodi-
cally explore the configuration space, just as the physical
system does. The basic challenge is to run those dynam-
ics long enough to be able to generate a large set of un-
correlated configurations to perform accurate ensemble
averages of physical observables [2].

When the system is characterized by large relaxation
times, for instance near phase transitions or in disordered
media, sampling can become so challenging that conven-
tional methods may fail [2, 4]. In such cases, the only
solution, so far, consists in devising alternative dynam-
ics that ensure equilibrium sampling while being charac-
terised by substantially smaller decorrelation times. Such
strategies are described in many standard textbooks on
computer simulations and statistical physics [3, 4, 9, 10].
In the context of off-lattice molecular simulations, we can

∗ Corresponding author: gerhard.jung.physics@gmail.com

mention non-local [11–13], lifting [14], or collective [15–
17] Monte Carlo algorithms, parallel tempering [18–21],
population annealing [22–24], or irreversible Langevin
dynamics [25].

However, there exist physical systems in which equi-
librium sampling remains a difficult open problem even
with enhanced sampling methods. Among them, glassy
systems [26] stand as one of the most difficult to sim-
ulate in condensed and soft-matter physics. Molecular,
colloidal and spin glasses are in fact known to display an
extremely slow physical dynamics, which creates a ma-
jor challenge to standard simulation algorithms [27, 28].
Glassy systems can in fact serve as a severe test of any
newly proposed method, and can be seen as a paradigm
for complex systems.

The recent discovery of generative models in artificial
intelligence (AI) able to generate large structured data
such as images, sound, 3D-video, and text has the po-
tential to induce a second revolution in scientific com-
puting [29–33]. These AI models are not only able to
accurately produce complex data, but are also very fast.
Speed is a central requirement in the realm of scientific
computing. Several applications appeared already. In
2019, Noé et al. proposed the usage of normalizing flows
(NF) [34], and independently Wu et al. variational au-
toregressive models [35], for Boltzmann sampling in sta-
tistical and condensed matter physics. These works have
found numerous applications for sampling [36–40] and
free energy calculations [41, 42]. However, despite these
interesting premises, a clear view on when, where and
how these methods work, and in particular their limi-
tations and efficiency against known algorithms, is cur-
rently lacking. For standard phase transitions, promis-
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ing results have been obtained in [43, 44]. However, for
hard computational problems such as complex and glassy
systems, it is unclear whether they can circumvent the
problem of large relaxation times. Positive results have
been reported in [45, 46] for spin-glasses. On the other
hand, theoretical and numerical analysis of mean-field
models for structural glasses [47, 48], related to other
hard problems in computer science [49], has shown that
several generative models do not, and sometimes can not,
have good performances. Worse, they sometimes per-
form less efficiently than conventional algorithms, such
as local Monte Carlo [47]. These results provide a rather
pessimistic view of the potentiality of machine learning
(ML) techniques in the field of glassy systems. A last
difficulty is that the performance of generative models is
generically expected to scale very badly with the size of
the system, so that applications to study phase transi-
tions and collective effects in many-body systems appear
out of sight.

Given the rapid progress made in ML studies [50–
54], we feel that there is room for hope and progress.
At the moment, there is a clear need of further stud-
ies to develop and test generative models in hard com-
putational problems, and benchmark their performances
against the ones of existing algorithms. The aim of this
work is to perform such analysis for atomistic models of
glass-forming liquids [27]. Contrary to [47, 48], we study
an off-lattice, finite-dimensional glassy model which dis-
plays an extremely slow dynamics, associated to a super-
Arrhenius evolution of relaxation and sampling times. It
is challenging to perform numerical simulations in realis-
tic experimental conditions for this model, as the physical
relaxation time increases by more than 14 orders of mag-
nitude towards the experimental glass transition temper-
ature [55].

We focus on a specific two-dimensional glass-forming
model that shows conventional signatures of glassy dy-
namics [56, 57], and represents therefore a relevant and
challenging test bench for enhanced sampling meth-
ods. At low temperatures, molecular dynamics becomes
rapidly unable to perform an equilibrium sampling of the
configuration space, even for modest system sizes. Given
the challenges mentioned above, we intentionally study
a relatively small system size to separate the capabilities
of NF to tackle complex landscapes from its potentially
problematic scaling with system size.

We optimise a ML technique based on normalizing
flows [33, 34], which we carefully benchmark against sev-
eral advanced techniques introduced in the physics lit-
erature, such as parallel tempering [19], population an-
nealing [23], and swap Monte Carlo [58]. By studying
and comparing their abilities to produce an ensemble
of equilibrated low-temperature configurations, we pro-
vide the first quantitative analysis of the performance of
ML methods to sample realistic supercooled liquids at
low temperatures. Surprisingly, our results demonstrate
the great potential of such method which turns out to
be much more efficient than conventional molecular dy-

namics and achieves performances comparable to parallel
tempering and population annealing. Finally, we assess
current limitations of these new methods and provide
guidelines for further studies, in particular to improve
the parametrization of the normalizing flow and to ex-
tend this technique to larger system sizes.
The paper is organised as follows. In Sec. II we define

the numerical glass-forming model and explain how to as-
sess the performance of sampling algorithms. In Sec. III
we benchmark various known algorithms: molecular dy-
namics, swap Monte Carlo, parallel tempering and popu-
lation annealing. In Sec. IV we introduce, optimize, and
study the performance of a NF model. Finally, in Sec. V
we collect our results, and discuss the implications for
future research.

II. SETTING THE STAGE: MODEL AND
SAMPLING TASK

A. A two-dimensional ternary Lennard-Jones
mixture

We study a two-dimensional (d = 2) model introduced
and developed in Ref. [56]. This is a variation of the
binary Lennard-Jones mixture introduced long ago by
Kob and Andersen [59] in which a third component is in-
troduced to both improve the glass-forming ability (i.e.
to prevent easy crystallization) and enable a more effi-
cient use of the swap Monte Carlo algorithm, a strategy
proposed in [58, 60]. We refer to [56, 57] for all details
regarding the model parameters and simulation details.

FIG. 1. Snapshot of a typical amorphous glassy configura-
tion of the two-dimensional model at temperature T = 0.205.
Colors indicate different types of particles. The goal of this
study is to produce a large number of independent configura-
tions drawn from the Boltzmann distribution in Eq. (1).
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We investigate systems with N = 43 particles using
periodic boundary conditions with box length L = 6.0,
in reduced units (see Fig. 1 for a snapshot). The unit
of length is σ, which corresponds to the diameter of
the large particles. When using molecular dynamics,
the unit of time is the Lennard-Jones timescale τ =√

mσ2/ϵ where m is the particle mass, and ϵ the in-
teraction strength between large particles. For different
algorithms, we express times in units of τ , in order to
carefully reflect the actual computational cost of each
method.

The relatively small system size is actually comparable
to previous studies using normalizing flows for sampling
in complex systems [34, 36, 39]. The total dimensionality
of the problem is D = Nd = 86. The main goal of this
work is to benchmark the efficiency of normalizing flows
in sampling such small glassy systems according to the
Boltzmann distribution,

ρ∗(x) = Z−1
∗ exp(−β∗U(x)). (1)

Here, Z∗ is a proportionality constant, β∗ is the target
inverse temperature and U(x) = Epot(x) is the total (po-
tential) energy. For each configuration, we measure the
total potential energy, Epot =

∑
i ̸=j V (rij), where V (r)

denotes the short-range repulsive pair interaction poten-
tial, as defined in the Supp. Mat. I of Ref. [56], and rij
the relative distance between particles i and j.
Results for a larger system size, N = 172, are presented

in Appendix C. Scaling to larger systems introduces ad-
ditional challenges that have to be considered separately
and are left for future work. While N = 43 seems a
small number of particles, we emphasize that this is large
enough to produce glassy dynamics and local structure
for this dense fluid that are nearly equivalent to those of
much larger systems [61] (see also Fig. 1). This implies in
particular that equilibrium sampling even for this modest
system size is already a difficult computational challenge.

B. The specific heat as a sampling task

In order to assess and compare the properties of various
algorithms, we first need to define a specific sampling
task to be able to test how well and how fast that task
is achieved by the various algorithms.

In supercooled liquids approaching their glass transi-
tion, changes in many structural quantities are typically
very modest, and deciding whether or not a given config-
uration is equilibrated is not straightforward. The stan-
dard solution is to measure time correlation functions,
as glassy dynamics is extremely sensitive to small tem-
perature changes, so that lack of equilibration, insuffi-
cient sampling, or small drifts are more easily detected
using dynamic quantities. This approach is however not
available to parallel tempering, population annealing and
normalizing flows which output a set of low-temperature
configurations that are not connected by any obvious dy-
namics.

To solve this problem we analyse the statistics of en-
ergy fluctuations measured in an ensemble of configura-
tions. We define the average potential energy over this
ensemble, ⟨Epot⟩, and the variance of its fluctuations,
which is directly connected to the specific heat as [3]

cV =
CV

N
=

⟨E2
pot⟩ − ⟨Epot⟩2
NkBT 2

. (2)

Here, T denotes the temperature of the system and kB
the Boltzmann constant (kB = 1 in our units). A cor-
rect estimate of the specific heat at a given tempera-
ture thus requires the production of several independent
equilibrium configurations in order to correctly assess the
fluctuations around the mean ⟨Epot⟩. We conclude that
the determination of the specific heat represents a well-
defined task that is able to probe the capability of a given
algorithm to (i) reach thermal equilibrium, (ii) sample a
large number of independent configurations x represen-
tative of the Boltzmann distribution. Another advantage
is that cV does not require knowledge of a dynamics be-
tween configurations, and is thus broadly applicable to
any sampling technique. Due to the generality of this
sampling task we therefore believe that it is similarly
suited to benchmark enhanced sampling techniques for
various different complex systems.
In practice, we additionally define a convergence

timescale which quantifies the computational time it
takes for a given algorithm to correctly approach the
equilibrium value of the energy at a given temperature.
This timescale will thus allow us to rank the different al-
gorithms by their efficiency to accomplish the requested
sampling task.
We also studied alternative, previously-proposed de-

termination of equilibration, such as different definitions
for the specific heat related by a fluctuation-dissipation
relation, the radial distribution function, histograms of
potential energies, and density of states. See Appendix
B for more details on these other approaches. We found
that none of these measures can reliably be used, as they
often overestimate the degree of equilibration and are
blind to small deviations from equilibrium. Therefore,
we focus on cV as our main observable.

III. BENCHMARKING KNOWN SAMPLING
ALGORITHMS

In this section we analyse the sampling performances
of four distinct algorithms: swap Monte Carlo (SMC),
molecular dynamics (MD), parallel tempering (PT) and
population annealing (PA).

A. Swap Monte Carlo (SMC)

Amajor problem for benchmarking enhanced sampling
techniques is usually the absence of a reference solution
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and therefore of a clear performance measure. Here,
this issue is easily settled by using swap Monte Carlo
(SMC) [13, 58, 62]. The algorithm adds non-local Monte
Carlo moves on top of conventional molecular dynam-
ics simulations [63]. The Monte Carlo moves are swap
moves, in which a pair of particles with different types
are randomly selected and their radii are swapped. This
swap move is accepted according to a Metropolis scheme.
This algorithm is extremely efficient and can be used to
equilibrate supercooled liquids at extremely low temper-
atures, including below the experimental glass transition
temperature [56, 58, 60]. A detailed introduction and
discussion of this algorithm can be found in Ref. [63].

Anticipating that SMC is the most efficient sampling
method, we therefore perform SMC simulations to pro-
vide a benchmark for the following analysis of other sam-
pling methods. In detail, we perform 105 swap attempts
every 50 MD steps. This is the highest swap frequency
that we could use without inducing small, but noticeable
energy shifts, which were then affecting the quality of the
benchmarking performed below. Since swap moves are
not frequent, it is pertinent to use the Lennard-Jones MD
time unit τ as the time unit also for the SMC method.

We first equilibrate the system for roughly 105 − 107 τ
starting from temperature Tinit = 0.5. During equili-
bration, we monitor the non-equilibrium potential en-
ergy, ⟨Epot(t)⟩neq. Here, the average, ⟨· · · ⟩neq, is taken
over Ns = 64 independent simulations, all starting from
different equilibrium configurations sampled at Tinit at
t = 0. Afterwards, we perform SMC sampling for an-
other tsamp = 107 − 108 τ (depending on the tempera-
ture) to extract the ensemble average as introduced in
Sec. II B. During sampling, we also extract the time-
dependent average ⟨X⟩t =

∑
ts<t X(ts), from which

we obtain the time-dependent specific heat cV (t) =
(⟨E2

pot⟩t − ⟨Epot⟩2t )/(NT 2). In the limit t → tsamp we
then recover the long-time average ⟨X⟩t → ⟨X⟩. We
have ensured that the measured timescale reflects the
actual computational cost for these SMC simulations to
enable quantitative comparison of equilibration and sam-
pling timescales.

Results for the time dependence of different observ-
ables during equilibration and then during sampling are
shown in Fig. 2. The potential energy ⟨Epot(t)⟩neq decays
strongly during equilibration until it reaches a plateau.
Only for temperatures significantly below the estimated
glass transition temperature (Tg ≈ 0.15) we observe that
the potential energy continues to decay even beyond
t > 107, suggesting that SMC falls out of equilibrium
at these temperatures.

We also investigate the time dependence of the specific
heat measured after the long equilibration run. Here and
in the following, error bars are calculated from the vari-
ance over several independent runs. Starting from a small
value at short time (when a single configuration has been
probed), cV (t) rapidly accumulates on short time scales
contributions from vibrations within one state (leading
to cV ≈ 1, since we work in d = 2 space dimensions). At
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FIG. 2. Sampling with swap Monte Carlo (SMC). (a)
Equilibration of the potential energy ⟨Epot(t)⟩neq (Tinit = 0.5
at t = 0). (b) Sampling of the specific heat cV (t), which no
longer reach a plateau for temperatures T < 0.12 < Tg. Hor-
izontal dashed lines show the long-time averages. (c) Long-
time average of the potential energy ⟨Epot⟩ and (d) the specific
heat cV . The vertical line marks TSMC = 0.12. which is the
temperature below which SMC sampling fails.

much later times, the system visits a manifold of differ-
ent states to eventually correctly sample the Boltzmann
distribution. Different from the equilibration discussed
above, reaching a plateau in cV (t) requires much longer
times for cV than for ⟨Epot⟩: it takes longer to explore
enough configurations to estimate cV than simply reach-
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ing an energy value close to the equilibrium one.
Explicitly, we can deduce from Fig. 2(b) that the sys-

tem does not reach a plateau anymore for temperatures
T < TSMC = 0.12 during sampling of cV (t). We there-
fore identify TSMC as the temperature below which SMC
is no longer able to perform the assigned sampling task.
Notice that near TSMC the energy can reach a plateau,
indicating that the system is very close to equilibrium,
but the simulations are nevertheless not sufficiently long
to sample a large enough number of independent config-
urations to provide the correct estimate of the specific
heat.

The corresponding long-time averages of ⟨Epot⟩ and
cV are shown in Fig. 2. We observe that the potential
energy decays monotonically for decreasing temperature.
Furthermore it can be seen that above T > TSMC the re-
sults for cV are monotonically increasing with decreasing
temperature. Once the system falls out of equilibrium
near TSMC ≈ 0.12, there is a strong decrease of cV , as
found previously in many experiments and simulations
in cases where the system falls out of equilibrium [64].

In the following, we will consider the SMC results down
to TSMC as reflecting the correct equilibrium behavior,
in order to test and benchmark the performance of the
alternative techniques.

B. Molecular dynamics (MD)

Molecular dynamics (MD) simulations consist in solv-
ing Newton’s equations of motion with an added ther-
mostat to control the temperature [3]. Consequently, the
dynamic relaxation proceeds through realistic dynamics.
Our simulations use a Nose-Hoover thermostat with re-
laxation time τNH = 1.0 and time step of ∆t = 0.005.
Identical to SMC we create high temperature configura-
tions at Tinit = 0.5 and then quench the temperature to
the desired value T to monitor the relaxation of the po-
tential energy towards equilibrium. After thermalization
for t > 107 τ , we investigate ⟨Epot⟩t and its fluctuations
to measure cV (t). In order to perform a fair comparison,
we use the same range of timescales and report the same
averaged quantities for MD, SMC and all other sampling
methods.

Results for MD dynamics are shown in Fig. 3. Since
SMC provides equilibrium measurements down to low
temperatures, we can study the difference ∆Epot =
⟨EMD

pot ⟩ − ⟨ESMC
pot ⟩ to better quantify differences to the

established SMC results which are equilibrated down to
TSMC. For MD, the potential energy starts to systemat-
ically deviate from the expected SMC result already for
temperatures T < 0.3, see Fig. 3(a). This is confirmed in
Fig. 3(b) which shows that the specific heat measured by
MD simulations shows a peak near TMD = 0.3, indicating
lack of sampling for lower temperatures.

While equilibrium dynamics can easily be measured
for MD using for instance time correlation functions, we
show instead how the energy decay after a quench from
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FIG. 3. Benchmarking MD dynamics. (a) Difference to
the SMC potential energy, ∆Epot = ⟨EMD

pot ⟩ − ⟨ESMC
pot ⟩, where

⟨EMD
pot ⟩ is the long-time average of the MD dynamics. (b)

Long-time average of the specific heat cV . The vertical lines
mark TMD = 0.3, below which MD sampling fails. (c) Equili-
bration of the potential energy characterized by the quantity
∆Epot(t) = ⟨EMD

pot (t)⟩neq − ⟨ESMC
pot ⟩. (d) Sampling of the spe-

cific heat cV (t). cV (t) does not reach a plateau anymore for
temperatures T < TMD. Dashed horizontal lines mark the
long-time SMC results. Color code in (c, d) as in Fig. 2.

Tinit = 0.5 and the time dependence of the specific heat
measured during equilibrium sampling in Figs. 3(c,d).
Compared to SMC, we show a narrower regime of tem-
peratures down to T = 0.205. In Figs. 3(c) we observe
an increasing time scale to reach the correct value of the
energy which becomes impossible for T < TMD over the
simulated time window. The lack of sampling becomes
more severe when considering the specific heat which can
only reach its plateau value for T = 0.32 but not below.
Our data confirm that MD is much less efficient than
SMC, as expected. More importantly perhaps, since MD
follows the physical dynamics of the system, the data in
Fig. 3 in fact serve as a benchmark in order to assess
how much gain over the physical dynamics any enhanced
algorithm can achieve [17].
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C. Monte Carlo in temperature space: Parallel
tempering (PT)

Parallel tempering [20], also known as replica exchange
[19, 21], is a popular enhanced sampling technique ap-
plied in a wide range of fields, including spin glasses
[19, 21], protein folding [65, 66], polymer melts [67], and
solid state physics [68]. In the field of glass-forming liq-
uids, it has been used to create equilibrium structures
of deeply supercooled liquids [69, 70], characterize point-
to-set length scales [71, 72], and analyze the physics of
randomly pinned systems [73].

The key idea is to perform several MD simulations
in parallel, each using the same MD parameters as ex-
plained in Sec. III B but running with a set of n different
temperatures T0, . . . Tn−1. Each of these simulations is
called a replica. In addition to MD steps, every Nex MD
steps we attempt to exchange the configurations between
two replicas with adjacent temperatures. The exchange
of the configuration in replica j with the one in the neigh-
bor j ± 1 is accepted according to a Metropolis scheme,

Pacc(j ↔ j ± 1) = exp(−(βj − βj±1)∆U), (3)

with energy difference ∆U = Epot(xj) − Epot(xj±1) be-
tween the two configurations and inverse temperatures
βj = (kBTj)

−1. An extended derivation of this equa-
tion and efficient implementation can be found in Chap-
ter 14.1 of Ref. [2]. Using this algorithm configura-
tions evolve both by the physical MD dynamics but
also by performing a random walk in temperature space.
Low-temperature configurations can therefore follow an
“easy” relaxation path by being exchanged with replicas
from higher temperatures, then evolving faster at these
high temperatures and subsequently being exchanged
back to the low temperature. This may avoid configura-
tions being stuck for extremely long times in deep minima
at low temperatures. Physically, if the basins relevant at
low temperature are also sampled at high temperature,
PT can become a very efficient method [27].

The most important factor to optimize PT simulations
is the choice of the replica temperatures. On the one
hand, large temperature differences will significantly re-
duce the acceptance rate for exchange events and there-
fore slow down the exploration of the temperature space.
On the other hand, a large number of replicas implies
a larger computational effort. After trial and error, we
finally use n = 8 replicas with temperatures T = 0.4,
0.359, 0.32, 0.287,0.256,0.229, 0.205, 0.183. To arrive
at this choice, we have started with a small number of
replicas and systematically increased their number until
we found the optimal result in the given computational
time. This choice is rationalized by a significant over-
lap between energy distributions at neighboring temper-
atures and therefore a large acceptance rate ⟨Pacc⟩ > 0.25
for all replicas. We also checked that smaller tempera-
ture steps do not improve the results. We optimized the
maximal and minimal temperatures in the above range
to finally settle on this list of n = 8 replicas. We also
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FIG. 4. Benchmarking parallel tempering (PT) sim-
ulations. The description is the same as for Fig. 3. The
vertical dashed line in (b) represents TPT = 0.23 below which
PT sampling fails.

choose Nex = 5000 which is a reasonable choice between
too frequent or too infrequent temperature swaps, but
the results are not very sensitive to this specific choice.
The results for the benchmarking of PT are shown in

Fig. 4 using the same organization as for MD. Compar-
ing to Fig. 3 shows that PT is superior to MD. Within
errorbars, PT predicts the correct potential energy in a
temperature regime in which MD is already substantially
out of equilibrium. Using the specific heat as a sharper
test for sampling in Fig. 4(b), we conclude that PT suc-
ceeds in the sampling task down to TPT = 0.23, below
which cV decreases as a result of insufficient sampling.
This temperature is considerably lower than TMD = 0.3,
but much higher than TSMC = 0.12.
To understand better the efficiency and limits of the

PT sampling we turn to the energy decay after a quench
from an initial condition where all n replicas are initial-
ized at a high temperature Tinit = 0.5, see Fig. 4(c). In-
terestingly, the relaxation time of ∆Epot(t) is only weakly
dependent on the temperature. This behavior is qualita-
tively different from the MD results. Therefore, while PT
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accelerates dynamics at low temperatures, it also slows
down the dynamics at higher temperatures compared to
MD. This is the direct result of the nature of PT exchange
events: since replicas travel across the entire temperature
spectrum, there is a nearly unique emerging timescale
controlling the approach to equilibrium of the entire sim-
ulation composed of n replicas. In other words, differ-
ent temperatures are no longer independent when using
PT, and the relaxation is in effect slaved to the slowest
replica. This conclusion also explains why we did not in-
clude replicas with even lower temperatures into the PT
dynamics as it negatively impacts the performance of the
PT simulations.

The time dependence of the specific heat, cV (t), is
more interesting, see Fig. 4(d). Here, the equilibrium
plateau in cV is reached faster for higher temperatures,
and the corresponding timescale becomes longer than our
simulation time for T < TPT, explaining the spurious
peak in the measured specific heat in Fig. 4(b). The
time dependent relaxation can thus be used to quantify
the speedup offered by PT simulations over MD, and this
will be discussed in Sec. VA.

D. Population annealing (PA) and reweighting
(RW)

Population annealing (PA) is deeply rooted in the
reweighting (RW) technique known from statistical me-
chanics, which we recap first.

Given a set of R configurations, {xi}, with i = 1, ..., R
taken from the Boltzmann NV T ensemble at tempera-
ture T1, it is possible to reweight these configurations to
perform an equilibrium average at a different tempera-
ture T2 [74]. To this end, one assigns a new Boltzmann
weight Wi = exp(−(β1−β2)U(xi)) to each configuration
i. The ensemble average of an observable A(x) at T2 is
given by

⟨A⟩T2 =

∑
i WiA(xi)∑

i Wi
. (4)

Reweighting is used extensively for free energy calcula-
tions in molecular simulations [75, 76]. The method, how-
ever, only works efficiently for small enough temperature
steps so that the weights Wi remain meaningful.
In PA, a large set of configurations is used to perform

small temperature steps to gradually anneal the temper-
ature to the target low-temperature, while reweighting
their Boltzmann weights at each step [22, 23, 77–80]. In
practice, the PA algorithm works as follows. We first
create R configurations at an initial, high temperature
β1 = (kBT1)

−1 and evaluate the Boltzmann weight of
each configuration xi as Wi = exp(−(β1 − β2)U(xi)).
Here, T2 should be slightly smaller than T1. We then
create on average τi copies of each configuration i, where
τi is given by

τi = R
Wi∑R

k=1 Wk

. (5)

Recently, different schemes were compared to numerically
implement Eq. (5) [80]. We apply the “systematic resam-
pling” scheme, which was the most efficient for a constant
population size R. Following resampling, we finally per-
formM MD steps on each copy at temperature T2 to help
thermalize the configurations at the new temperature T2.
This ends the annealing from T1 to T2. This annealing
step T1 → T2 is then repeated several times until the
final target temperature T is reached. Each annealing
step consists in (i) resampling the population (ii) a small
number of M MD steps for each configuration. More ex-
tended derivations of the technique and algorithms can
be found in Ref. [23].

For the choice of annealing temperatures in PA, we use
the same series T1, . . . , Tn−1 used for PT in Sec. III C.
This is reasonable since the PT temperatures were op-
timized to provide good overlaps between the probabil-
ity distributions of potential energy, which also controls
the quality of the reweighting in Eq. (4). Contrary to
PT, the annealing procedure in PA is unidirectional as
the population flows from T1 to Tn−1 but no information
is carried backwards. As a result, including lower tem-
peratures is harmless (at worse, PA sampling fails) and
so we include two lower temperatures Tn = 0.164 and
Tn+1 = 0.148. We perform high temperature MD simu-
lations at T1 = 0.359 and save configurations every 104 τ,
which corresponds roughly to the MD structural relax-
ation time at this T1. This choice ensures that within a
similar computational effort invested into PT we can cre-
ate an initial set of R = 2× 105 statistically independent
configurations. In addition, this comparison enables us
to assign a computational time t = R × 104τ to the PA
task, as the annealing steps themselves can be efficiently
performed. None of the above choices critically affects
the result when reasonably changed. The most critical
parameter is the number M of MD relaxation steps. A
too small number M < 103 leads to tiny but systematic
differences in the observed ⟨Epot⟩ and cV . We therefore
choose M = 5 × 103. Since the creation of the initial
set of R configurations is the computational bottleneck,
such a large M value does not significantly increase the
computational effort.

It is instructive to compare the gradual population an-
nealing from T1 to a given target temperature T with
a direct reweighting performed in a single step T1 → T
directly using Eq. (4) applied to the entire initial pop-
ulation of configurations created at T1, see Fig. 5. We
observe that RW is already much more efficient than MD
dynamics with correct energy and specific heat obtained
down to TRW = 0.25. The effect of the gradual anneal-
ing and resampling performed within PA improve the
RW results dramatically, and nearly-correct energy val-
ues are predicted down to the lowest temperature. A
more careful inspection of the cV data shows however
that PA sampling fails below TPA = 0.19.

Different from MD and PT, there are no separate equi-
libration and sampling procedures within PA. Neverthe-
less, it is possible to provide an equivalent time depen-
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FIG. 5. Benchmarking population annealing (PA) and
reweighting (RW). The description is the same as for Fig. 3.
The time dependence shown in panels (c) and (d) is obtained
by using different numbers of initial configurations R. The
vertical dashed line in (b) represents TPA = 0.19 below which
PA sampling fails.

dence to both ∆Epot(t(R)) and cV (t(R)) by following
the evolution of the PA performance as a function of the
population size R produced at the initial temperature
T1, because by definition correct sampling is obtained in
the limit R → ∞, just as correct sampling is performed
in the large time limit for any of the other algorithms.
Convergence in the large time or population limit is ob-
vious, since system size and thus energy barriers are fi-
nite. However, our problem is to reach convergence in a
tractable computational timescale. We can then convert
the population size R into a computational timescale us-
ing the dictionary t = 104R, which corresponds to the
effective computational time invested into creating the
set of R configurations.
The results are shown in Figs. 5(c,d) which illustrate

the convergence of the energy and its fluctuations to
the correct values as R is increased. Differently from
PT, we see that the equilibration of the potential en-
ergy slows down with temperature, see Fig. 5(c). We
can still observe the relaxation of cV (t) towards its equi-
librium plateau value. In fact the R dependence of cV ,

and its eventual convergence to a plateau at large R,
serves as a stringent test of the quality of sampling with
PA. In particular, we confirm that PA sampling fails be-
low TPA = 0.19. This result shows that PA performs
slightly better than the two previous sampling methods:
TPA < TPT < TMD, a result that could not be anticipated
based on previous efforts. An additional advantage of PA
is that the task of sampling an initial set of R indepen-
dent samples at the high temperature T1 can be easily
parallelized, by running several independent simulations
in parallel.

IV. SAMPLING BY NORMALIZING FLOWS

In Sec. III we established benchmarks for enhanced
sampling techniques known from physics. This sets the
stage for a thorough analysis of the performance of the
ML method of normalizing flows (NF) [33, 81]. Since NF
are relatively new methods, we first provide a general
introduction before describing our implementation and
the main results.

A. Continuous normalizing flows (NF)

The general idea of normalizing flows is to learn an in-
vertible mapping between two probability distributions:
a prior distribution ρP (x), from which we can sample
easily (Gaussian random numbers, high temperature liq-
uids), and a target distribution, ρ∗(x), in our case the
Boltzmann distribution [34]. The mapping is in general
only approximate, so one needs to reweight the configu-
rations obtained by the NF. A more accurate mapping
leads to lower rejection. Normalizing flows found ap-
plications in computer vision [82], sampling via Markov
Chain Monte Carlo [37, 83, 84], lattice field theories [85]
and condensed matter physics [34, 40].
Boltzmann generators are the first application of nor-

malizing flows for sampling of complex systems in con-
densed matter [34]. Compared to applications such as
image generation, a specific property of Boltzmann gen-
erators is that the target distribution is known and cor-
responds to the Boltzmann distribution (see Eq. 1). The
challenge for Boltzmann generators in statistical physics
is to efficiently sample from this distribution using the
learned NFs. For a general introduction to Boltzmann
generators see Refs. [34, 39].
Here, we use equivariant, continuous normalizing

flows [86]. This specific NF has the advantage of being
equivariant to translations, rotations and permutations
and thus mirrors the fundamental symmetries of the un-
derlying physical system. In Ref. [86] detailed bench-
marking compared to discrete NF layers and gradient
flows has been performed on a similar problem showing
the superiority of the equivariant continuous NF for par-
ticle systems over discrete ones. Continuous NFs trans-
form the prior distribution into the target distribution
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by learning a time- and space-dependent vector field,
v(xv(t), t), t ∈ [0, 1], which can be interpreted as force
field,

d

dt
xv(t) = v(xv(t), t), xv(0) = x0 drawn from ρP (x).

(6)
We define the invertible transformation F, as xv(t = 1) ≡
Fx0[87]. Importantly for the calculation of the loss func-
tion for training, we can evaluate the transformation of
the prior probability distribution [86],

log ρF (Fx0) = log ρP (x0)−
∫ 1

0

dt div v(xv(t), t). (7)

For a given transformation F , the NF thus produces a
“push-forward” probability distribution ρF (x) given by
Eq. (7), which is different from the target ρ∗(x) if the
transformation is not perfect. Similarly, ρF̄ (x) emerges
from the inverse transformation F̄ when applied on the
true distribution ρ∗(x).
The model used for the force field is a sum of pairwise

potentials which depend on the distance between particle
pairs [86],

v(x(t), t) = ∇xΦ(x(t), t), (8)

Φ(x(t), t) =
∑
ij

Φ̃(dij(t), t), (9)

with dij(t) = |xi(t)−xj(t)|. The learnable weights {w} of
the NF are the parameters of the potential field Φ̃(d, t),
which is parameterized using Gaussian radial basis func-
tions in both distance d and time t. The calculation of
the divergence terms is numerically exact and stable, as
detailed in Ref. [86]. Our implementation is based on
the public code bgflow provided by the authors of this
publication. In the following, our goal is to transform an
easy-to-sample high-temperature distribution, ρP , at in-
verse temperature βP into a low-temperature target dis-
tribution.

B. Loss function and training

Normalizing flows can be trained using the Kuhlback-
Leibler divergence as minimizable loss function L, which
quantifies the similarity between the target distribu-
tions and the transformed NF distributions, L =
αDKL(ρF ||ρ∗) + (1− α)DKL(ρ∗||ρF̄ ). We differentiate in
L between two different training contributions. The first
term [86],

DKL(ρF ||ρ∗) =
∫
Ω

[β∗U(x) + log ρF (x)] ρF (x)dx, (10)

is based on having provided a set of high-temperature
configurations, {x0}, which are transformed using F,
x = Fx0. A loss based on DKL(ρF ||ρ∗) is called “vari-
ational” or “energy-based” training. This equation can

be discretized as a sum over individual configurations i,

DKL(ρF ||ρ∗) =
∑
i

[
β∗U(xi)−

∫ 1

0

dt div v(xi
v(t), t)

]
,

(11)
where we have dropped βPU(xi

0) from Eq. (7) since it is
a constant that does not influence the loss function.
It has been found in many studies that the training can

be improved using a small set of low temperature config-
urations, {x∗} sampled from ρ∗(x). The second term [86],

DKL(ρ∗||ρF̄ ) =
∫
Ω

[−β∗U(x∗)− log ρF̄ (x∗)] ρ∗(x∗)dx∗

(12)
quantifies the similarity between the transformed low-
temperature configurations, x = F̄ x∗, and the prior dis-
tribution. This second contribution is also known as
“maximum likelihood” training. We also discretize this
equation to use it for training the NF.,

DKL(ρ∗||ρF̄ ) =
∑
i

[
βPU(F̄ x∗)−

∫ 1

0

dt div v(xi
v(t), t)

]
.

(13)
We have systematically analyzed the optimal value for α,
as discussed in detail in App. A. We find that α = 0.5
leads to the most stable training procedure and the best
final result (see Fig. 9). In particular, this figure also
highlights the importance of including the maximum-
likelihood training. We also tested protocols in which
α changes during the training procedure as suggested in
Ref. [86], but this did not affect the results qualitatively.
Using a set of high- and low temperature configura-

tions, {x0} and {x∗}, enables the optimization of the
learnable parameters {w}, which quantify the strength
of the force field v(x(t), t). This step is achieved us-
ing the above-defined loss function and stochastic gra-
dient decent. The errors are backpropagated using au-
tomatic gradient differentiation of the discretized NF in
Eq. (6) implemented by PyTorch, which replaces the typ-
ical backpropagation known from artificial neural net-
works [86].

In our case, however, we face the problem that we do
not have access to any low temperature configurations,
because generating them is the whole purpose of the NF.
We bypass this contradiction by using an iterative proce-
dure. We use reweighting to generate some approximate
low-temperature configurations. Using these configura-
tions, we train a NF in the first iteration and apply it
to create an improved set of low-temperature samples.
In a second iteration we then utilize this improved set
for the training of a second NF, which finally produces
the low-temperature configurations that are analysed be-
low. We can iteratively improve the performance of the
NF with this iterative procedure but using more than
two iterations did not lead to significant changes. In
fact, we have tested that using low-temperature configu-
rations prepared with SMC for training only marginally
improved the performance of the NF, which thus con-
firms the efficiency of the proposed iterative procedure.

https://github.com/noegroup/bgflow
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In fact, our approach is similar in spirit to Ref. [88] which
also avoids the usage of target configurations by applying
annealed importance sampling.

There are many hyperparameters that can be tuned
to parameterize the NF and optimize the training
procedure, including the number, location and time-
discretization of the radial basis functions, training pa-
rameters and batch sizes. However, we found that the
results are not very sensitive to the explored choices of
these parameters. See Appendix A for more details.

C. Unbiasing the NF distribution

After training the NF, we obtain a transformation F ,
which is used to transform all available high-temperature
configurations, xi = Fxi

0. Because the mapping per-
formed by the NF is only approximate, the resulting set
of configurations are biased, i.e. they do not exactly sam-
ple the Boltzmann distribution at temperature T . This
can be corrected by performing an unbiasing step. We
calculate the statistical weight of each transformed con-
figuration as

Wi = exp

[
βPU(xi

0)− β∗U(xi) +

∫ 1

0

dt div v(xi
v(t), t)

]
.

(14)
Similar to RW, we then use the weights Wi to create a
set of low temperature configurations that can sample
the Boltzmann distribution. The NF therefore not only
provides transformed configurations, but also their statis-
tical weights Wi, which describe the effective weights of
each configuration i at the low temperature β∗. In direct
RW, only the second step is performed, and thus NF has
the potential to provide a large improvement over RW by
first transforming the original configurations, resulting in
larger statistical weights in Eq. (14).

D. Results: Sampling efficiency of NF

We now show the performance of the NF in Fig. 6 us-
ing the same metrics introduced for the other sampling
methods, comparing long-time averages for the energy
and the specific heat to SMC results. Regarding effi-
ciency and timescales, we can analyze NF in much the
same way as we did for PA in Sec. IIID. In particular,
NF inherits the computational time t = R × 104τ of PA
since it uses the same initial samples. Just as for PA,
the sampling part of NF is computationally significantly
more expensive than the subsequent transformation and
unbiasing steps.

We first compare NF to conventional MD results. From
Fig. 6(a,b), we conclude that the results for NF are much
closer to the SMC groundtruth than what is achieved by
MD simulations (see Fig. 3). From Fig. 6(b) we con-
clude that NF produces an equilibrium ensemble down to
TNF = 0.2, which is significantly smaller than TMD = 0.3.
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FIG. 6. Benchmarking machine-learned normalizing
flows (NF). Description is the same as for Fig. 5. For long-
time averages in (a, b) we also show results for the combina-
tion of population annealing and normalizing flow (NF/PA).
The vertical dashed line in (b) represents TNF = 0.2 below
which NF sampling fails.

Thus, the NF generative modeling approach is indeed an
enhanced sampling method, in the sense that it works
better than the physical dynamics in sampling low tem-
perature configurations of the glassy system under study.
Given published results regarding generative models for
atomistic [39] or glass [47] models, this is an interesting
result.
It is interesting to compare NF also with the direct

RW approach studied in Sec. IIID as both methods use
the same high-temperature configurations to predict low-
temperature properties. The key step distinguishing the
two methods is the NF transformation in Eq. (6) itself.
The fact that NF performs much better than RW im-
plies that the NF is able to efficiently transform the
high-temperature configurations so that the transformed
configurations are much closer to equilibrium than the
original ones.
As for PA, we can follow the approach to equilibrium

of the potential energy, see Fig. 6(c), and the specific
heat, see Fig. 6(d) when the size of the initial population
R is increased, which can be translated into timescale.
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These data allow us to define and measure a growing
timescale for equilibration and sampling which becomes
longer than the simulated time for T < TNF.
Since NF outperforms MD simulations, it is pertinent

to compare its performances with known enhanced tech-
niques, which justifies our efforts to carefully benchmark
various methods in Sec. III. Broadly speaking we find
that all techniques (PA, PT, NF) perform nearly simi-
larly, with NF and PA being slightly better than PT with
the rough hierarchy, TPA ≲ TNF < TPT. This detailed
comparison and ranking of several techniques is one of
the main results of this work: it provides evidences of
the usefulness of NF for the difficult sampling problem
of finite dimensional glassy systems.

Given the success of NF over direct RW, it is tempt-
ing to combine the NF method with the successful PA
approach in Sec. IIID, in order to possibly improve the
performance of both these methods. In this combined
approach, we use the global framework of PA, but we re-
place the second step in the PA algorithm (where copies
are created from weights Wi calculated using the Boltz-
mann distribution) by the usage of a trained NF to trans-
form the configuration and calculate the new weights Wi.
We refer to this mixed method as “NF/PA”.

The results shown in Fig. 6 are however disappoint-
ing. Although they are slightly better than NF, show-
ing that multiple small steps are better handled than a
large one, they are not better than PA. This is surpris-
ing, since NF clearly performs better than RW in the
one-shot annealing procedure and PA is based on con-
secutive RW steps. Our interpretation is that for very
small temperature steps, RW becomes actually superior
to NF, presumably because it uses the exact expression
of the Boltzmann distribution.

E. Analysis of the effective sample size

Different from population annealing and parallel
tempering, NFs have the capacity to produce low-
temperature configurations in one shot, without the in-
troduction of a large number of intermediate temperature
steps.

One practical consequence of such one-shot annealing
is the possibility to define an interpretable effective sam-
ple size based on Kish’s formula [89],

Reff =

(∑R
i=1 Wi

)2

∑R
i=1 W

2
i

, (15)

using the statistical weights Wi introduced in Eq. (14).
The effective sample size describes roughly how many in-
dependent configurations have been produced during the
annealing procedure. The physical idea behind Eq. (15)
is clear: the effective sample size Reff ≈ R if all weights
Wi are comparable, whereas Reff ≪ R when a few sam-
ples have a much larger weight than all others, indicating
poor sampling.
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FIG. 7. Effective sample size Reff, as defined in Eq. (15), for
the PA and NF results shown in Fig. 5 and Fig. 6, respectively.
The corresponding symbols on the x-axis mark the temper-
atures at which the sampling of each given method starts to
fail.

Starting from an initial set of R = 2 × 105 samples
we observe for NFs an exponential decay of the effective
sample size with temperature T in Fig. 7. At the temper-
ature TNF = 0.2, identified before as the temperature at
which NF sampling starts to fail, the effective sample size
is 102 < Reff < 103. This order of magnitude is consistent
with our empirical findings that at least 100 independent
samples are required for a proper representation of the
equilibrium ensemble at temperature T . This analysis
suggests that the effective sample size Reff can be used
as an independent and easy tool to check for equilibration
when using NF as an enhanced sampling technique.
In Fig. 7, we show the evolution of Reff evaluated dur-

ing the gradual annealing employed for PA in Sec. IIID.
We observe a much slower decrease when temperature is
reduced, with an effective size that remains quite large,
Reff ∼ 104 when crossing the temperature TPA, indicat-
ing that the sample size is a poor indicator of adequate
sampling in that case. This presumably results from
the resampling of the algorithm whereby the samples
that eventually dominate the low temperature behavior
are replicated more often than others, which introduces
strong correlations in the population. These correlations
make the use of Kish formula inefficient. Other indepen-
dent measures have been suggested for PA to test equili-
bration, but they require more involved analysis [90].

V. DISCUSSION: WHAT IS THE MOST
EFFICIENT SAMPLER?

A. Quantitative comparison between techniques

For each technique, we have obtained a temperature
below which the assigned sampling task, i.e. measuring
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the specific heat, starts to fail. This allowed us to rank
the various techniques. For the particular glass model
studied here, we find that SMC is by far the best tech-
nique, with TSMC = 0.12. Then come the three enhanced
algorithms, PA, NF and PT with TPA = 0.19, TNF = 0.2,
TPT = 0.23, which all perform much better than con-
ventional MD with TMD = 0.3. For comparison, we re-
call that the mode-coupling crossover is near T = 0.3
and the experimental glass transition temperature near
T = 0.15 [56].

This ranking does not easily translate into an actual
computational speedup, or efficiency gain, which may de-
pend on the temperature. For each algorithm and each
temperature, we showed that the approach to equilibrium
of the energy or the convergence timescale for the spe-
cific heat can both be recorded to assign a representative
sampling timescale. In practice, we use the former and
define a timescale τc as ⟨∆Epot(τc)⟩neq = 0.5. As a rule
of thumb, a smaller τc implies a smaller computational
cost and thus improved performance of the technique.

We collect the results for the evolution of τc for all
algorithms in Fig. 8. This provides a more detailed com-
parison between algorithms. Starting with very high tem-
peratures, we observe in Fig. 8 that MD is more efficient
than the three enhanced sampling techniques, PT, PA
and NF. In Sec. III C we explained this finding for PT by
the coupling between low and high temperatures through
the temperature swap exchanges. The explanation is dif-
ferent for PA and NF which are less efficient due to the
quite coarse sampling performed at high temperatures
with a time 104τ between each stored configurations, see
Sec. IIID. This time scale was the best compromise we
found empirically between the time invested into the an-
nealing and efficient sampling for the lowest tempera-
tures. This could clearly be reduced if the focus was on
higher temperatures. Given that MD is very efficient in
this regime, this is not a crucial endeavour.

When temperature decreases, Fig. 8 shows that the
MD timescale increases more rapidly than any other tech-
nique, and MD sampling is therefore the first to fail. The
relaxation times of the three enhanced sampling meth-
ods, PT, PA and NF seem to roughly follow the same
temperature dependence, with minor differences between
them. Their behavior appears to be approximately Ar-
rhenius, but the apparent energy barrier is much smaller
than for MD. Notice that for PT the timescale τc does
not take into account the fact that n replicas need to
be simulated in parallel. In the same vein, we note that
the computational time for PA and NF is mostly due
to the preparation of a large population of independent
configurations at relatively high temperatures. This task
can trivially be parallelized by running a large number
of independent simulations, thereby making PA and NF
potentially much more efficient than PT where no addi-
tional parallelization can be implemented.

Interestingly, SMC seems to follow the same Arrhe-
nius dependence of the three enhances methods, at least
in this temperature regime, but with a prefactor that is
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FIG. 8. Temperature evolution of the efficiency
timescale for all algorithms. In practice, τc quantifies the
approach to equilibrium of the potential energy. We compare
swap Monte Carlo (SMC), molecular dynamics (MD), parallel
tempering (PT), population annealing (PA), and normalizing
flows (NF). The corresponding symbols on the x-axis mark
the temperatures at which the sampling of each given method
starts to fail.

considerably smaller by about four orders of magnitude.
This large difference quantitatively explains why SMC is
the most efficient sampling technique for this system.
Despite the success of SMC, it is encouraging that NF

can truly compete with state-of-the-art sampling tech-
niques such as PT and PA, with a significant speedup
over MD dynamics. At the lowest temperature where
NF still operates, TNF = 0.2, the speedup over MD dy-
namics is about four orders of magnitude in relaxation
time.

B. Perspectives

In this work we compared state-of-the-art enhanced
sampling techniques for equilibrating supercooled liquids
with a new method based on the machine learning tech-
nique using normalizing flows. Our results demonstrate
the potentiality of ML methods to equilibrate model su-
percooled liquids at low temperature. In fact, the NF
method applied to small systems at very low temper-
atures has a performance comparable to the sampling
methods developed for complex systems, such as paral-
lel tempering and population annealing. This very good
result is obtained despite the fact that NF does not in-
troduce a large set of replica (as in PT) or intermediate
annealing temperatures (as in PA) and directly targets
low temperatures in one shot. This positive conclusion
suggests that all important modes of the low temperature
states are already present, although affected by thermal
fluctuations, in the high-temperature regime. However,
NF are, like PT and PA, suboptimal with respect to the
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swap Monte Carlo technique.

We have focused on small systems with N = 43 at very
low temperatures in d = 2. As demonstrated, this pro-
vides a challenging setting for all sampling methods for
an atomistic model with realistic interactions. Applying
the sampling methods to larger system sizes introduces
new challenges for all of them. SMC and MD methods
do not suffer too much with larger N , since the compu-
tational time increases linearly with N while their per-
formances do not degrade. The situation is different for
PT, PA and NF, for different reasons. We provide in Ap-
pendix C results with a system that is four times larger
with N = 172, showing poorer performances. Addressing
the challenge of scaling these algorithms to larger system
sizes should be the focus of a dedicated future work. In
fact, even a very accurate NF method would eventually
lead to an increasing level of rejection in the reweighting
step for large sizes, as the statistical weight should scale
as exp(−cN) with c a finite constant, which account for a
small difference between the generated distribution and
the Boltzmann target. This generic argument does not
take into account the complex nature of the glassy con-
figuration space, which may very well lead to additional
sampling issues at larger system sizes.

Still, the observed performance of NF should encour-
age further work towards the development of improved
techniques. For instance, it would be interesting to study
more complex parametrization of the flow than the one
we used. Possible candidates are: equivariant coupling
flows [91], which combine the efficiency of coupling flows
while maintaining equivariance, equivariant flow match-
ing [92, 93], which uses alternative loss functions for
training [94], annealed flow transport Monte Carlo [95],
or approaches based on diffusion models [96–98]. Ad-
ditionally, it might be possible to combine NF layers
with intermittent periods of SMC dynamics to create a
stochastic normalizing flow as in Ref. [99].

The benchmarks outlined in this manuscript aim to
accelerate and simplify the development of such sophis-
ticated machine learning methods for sampling of com-
plex systems. It is anticipated that any enhancement will
manifest directly in the resulting relaxation time. Sim-
ilar benchmarking for other complex system would be
very valuable. We therefore believe that this manuscript
marks an important step on the quest of finding meth-
ods that outperform traditional enhanced sampling tech-
niques and, potentially, even the swap Monte Carlo tech-
nique.
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We thank the Noé group for publicly providing their li-
brary bgflow, and S. Ciarella, M. Gabrié, and F. Zamponi
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Appendix A: Details on the NF method

We provide more information on the hyperpa-
rameters used in the NF method. Our imple-
mentation is based on the bgflow library [34, 86]
(https://github.com/noegroup/bgflow), which was ex-
tended to include periodic boundary conditions and mul-
tiple particle types. Thus any detail provided in Ref. [86]
similarly applies to the present manuscript.

1. Hyperparameter

Most notably, we discretize the differential equation
flow in Eq. (6) using just Nt = 1 (first iteration) or
Nt = 3 timesteps (second iteration) in a multi-step fourth
order Runge-Kutta scheme [86]. This is a strong reduc-
tion of the complexity of the normalizing flows, but we
have empirically found that larger values of Nt do not
improve the results. A consequence of this choice is that
the transformation of the configurations amounts to quite
small displacements ∆x ≪ σ within the particle cages,
rather than large-scale rearrangements. We have tried
intensively to learn more general models, starting from
T → ∞ (uniformly distributed particles), but none of
these models was able to propose acceptable configura-
tions for low temperatures and reach accuracies compa-
rable to the results presented in the main text.
We include 80 independent Gaussian radial basis func-

tions centered non-uniformly at distances d in the range
0.65 ≤ d ≤ 2.8. In total this adds up to 966 learnable
parameters (1938 for Nt = 3). The gradient decent is
based on an Adam optimizer with accuracy 10−4. For
the first iteration we train on 512 different structures us-
ing only one epoch, the second iteration uses four epochs
and 4096 different structures. The batch size is always
64 structures.

2. Ablation study for mixing parameter α

We have introduced in Sec. IVB the parameter α in
the loss function which interpolates continuously between
energy-based training (α = 1) and maximum-likelihood
training (α = 0). Which is the best choice for α?
To answer this question we have performed different

training procedures for different values of α. We report
in Fig. 9 the effective sample size Reff which we have
identified in the main manuscript as an important fac-
tor to quantify the performance of the NF. The figure
highlights a maximum near α ≈ 0.5, which is our final
choice. For all other choices, the effective sample size is
significantly lower.
In particular, Fig. 9 rules out the possibility to per-

form pure energy-based training (α = 1) which would
avoid the iterative procedure of finding low temperature
training configurations described in Sec. IVB. In fact, we

https://github.com/noegroup/bgflow
https://github.com/noegroup/bgflow
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FIG. 9. Effective sample size Reff, as defined in Eq. (15), for
different values of α at T = 0.205. The result for normalizing
flows (NF) is compared to reweighing (RW), see Sec. IIID.

find that the problem with α = 1 is not mode-collapse as
in other studies in the field of computer vision. For ex-
ample, we have attempted the β−NF approach in which
the entropy term (i.e., the second term in Eq. (11)) is
scaled by a factor β > 1 [100, 101] and we did not find
any improvement. Instead the only solution we found to
increase Reff for α ̸= 0.5 is early stopping, which hints
to some instabilities in the learning. Nevertheless, even
with early stopping Reff(α) never reaches the the value
Reff(α = 0.5).

In conclusion, this analysis shows that α = 0.5 is the
optimal choice for the mixing parameter.

Appendix B: Additional criteria for equilibration

In the main text we state that the best way to validate
sampling is by verifying whether cV (t) attains a plateau.
During our research, we have tested several different pos-
sibilities, which we briefly describe.

1. Fluctuation-dissipation theorem for specific heat

A popular way to validate equilibrium sampling is by
calculating the specific heat using two different formula.
The first one is used throughout this work and corre-
sponds to the variance of fluctuations in potential energy,
cVAR
V = (⟨E2

pot⟩ − ⟨Epot⟩2)/NT 2. A second definition is
based on the temperature derivative of the average poten-
tial energy, cDER

V = N−1∂⟨Epot(T )⟩/∂T. For equilibrium
samples, these two definitions yield the identical result by
virtue of the fluctuation-dissipation theorem. Any differ-
ence between these two quantities can therefore reveal a
departure from equilibrium.

The results in Fig. 10 show that this indicator does
not clearly signal departure from equilibrium. In fact, it

1

1.1

1.2

1.3

1 2 3 4 5 6 7 8 9 10

filled: VAR
open: DER

c V

1/T

MD
SMC

PT
PA
NF

FIG. 10. Specific heat cV calculated for various sampling
techniques using two different definitions, cVAR

V from fluctu-
ations and cDER

V from derivative. In equilibrium both are
related by a fluctuation-dissipation theorem. The data indi-
cate however that when the system falls out of equilibrium
the fluctuation-dissipation theorem remains valid and both
expressions similarly depart from equilibrium.

seems that when a given sampling technique departs from
the SMC solution both definitions of the specific heat de-
part similarly at the same temperature, but remain con-
sistent with each other within the error bar. A slightly
better indicator of departure from equilibrium is the no-
table increase of the error bars, which indicate increasing
correlations between configurations, indirectly revealing
lack of ergodicity. It is however difficult to transform this
observation into a clear-cut criterion for equilibration.

2. Probability distribution of potential energy

We have analyzed in detail the average potential en-
ergy, ⟨Epot⟩ and its variance in the form of the specific
heat, cV . Here we investigate whether the full probability
distribution of potential energies gives additional infor-
mation, in particular on whether equilibrium sampling
has been achieved.
We observe that histograms do not yield much more in-

formation compared to the first two moments, see Fig. 11.
At T = 0.256 where equilibrium sampling already fails
for MD, the energy histograms remain quite close, with
small deviations only visible in the left tail at low energy
values. At T = 0.205, the MD dynamics are completely
out-of-equilibrium which can be observed by a clear shift
compared to the SMC result. However, by rescaling the
first and second moment of the SMC distribution (dashed
line) we observe nearly perfect overlap with the MD re-
sults (blue squares).
We further exploit these data and evaluate the density

of state G(Epot) ∝ P (Epot, T ) exp(βEpot). The interest
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FIG. 11. Probability distribution function of the potential
energy, P (Epot, T ), calculated for various sampling techniques
at different temperatures T .

of the density of state is that it is a temperature indepen-
dent quantity which is only accurately obtained if proper
equilibrium sampling of energy fluctuations is performed.
As such it has been used as a tool to assess the degree of
equilibration [69].

Our results are shown in Fig. 12. Since the density of
states is only known up to a prefactor, each set of curves
is arbitrarily shifted to maximize the overlap between es-
timates of the density of states stemming from different
temperatures for a given algorithm. In addition, the re-
sult for each method is shifted independently for better
visualization.

The excellent data collapse for the SMC data confirms
that equilibrium sampling is achieved down to very low
temperatures. The expected temperature-independent
mastercurve is obtained when stitching together the data
from P (Epot, T ) obtained at different temperatures.

Interestingly, the MD data indeed reveals, that the en-
semble falls out of equilibrium since no perfect overlap
can be achieved. This shows that the low-energy tails
of the energy distribution are not properly sampled, in a
way that is perhaps clearer than in Fig. 11.

In contrast, even at T = 0.148, the data extracted from
PA sampling shows perfect overlap although we know
that they do not perfectly represent the equilibrium en-
semble, as identified above. The reason for the qualita-
tive difference between MD and PA is two-fold: (i) MD
falls out of equilibrium much more violently, in particular
when investigating the potential energy, while in PA the
differences are much smaller even when the system is out
of equilibrium. (ii) The number of samples used to create
the histograms is much smaller in PA, since each sample
needs to be treated independently, making it impossible
to maintain a huge set. The very subtle difference in
G(Epot) observed for MD is therefore nearly invisible for
PA.

We conclude that G(Epot) can detect non-equilibrium
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FIG. 12. Density of states, G(Epot), calculated for various
sampling techniques. For each technique, estimates of the
G(Epot) obtained at different temperatures are stitched to-
gether to form a mastercurve. Each mastercurve is vertically
shifted, for clarity.

properties, but it requires significant departure from
equilibrium and huge datasets. In other words, this is
not a very sensitive test of equilibrium sampling.

3. Radial distribution function

There are also two different ways to calculate the radial
distribution function, g(r), in particle systems at thermal
equilibrium. The first traditional approach is based on
histograms, and measures the density profile around a
tagged particle. The second is based on forces, as re-
cently proposed in Ref. [102]. The identity between both
methods is based on the assumption that the system is in
thermal equilibrium. Therefore, any difference between
the two expressions can be taken as the sign that the
system is not equilibrated, but this approach has not be
tested before.
Overall, we find that the relative difference between

the two expressions for the pair correlation are extremely
small, typically smaller than 1 %, see Fig. 13. A small
systematic signal is observed when calculating the dif-
ference between both techniques. However, this signal
depends on the discretization and binning of the his-
tograms and is thus observable independently of the tem-
perature. Apart from this signal, no systematic differ-
ence between the two computation methods can be ob-
served. This method therefore cannot be used to detect
non-equilibrium properties.
This result is reminiscent of similar findings for the

configurational temperature, which is shown to decay in-
stantaneously to the thermal temperature during equi-
libration [103]. The relationship between the histogram
and the force methods for g(r) corresponds roughly to
a space-dependent generalization of the global configura-
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tional temperature.

Appendix C: Scaling with system size

In the main text, we concentrate on a small system size,
N = 43, and we only briefly mention how the results may
change with system size.

We repeated sampling with SMC, MD, PT, PA and NF
for a larger system size, N = 172. As in the main text, we
then use the SMC results as a benchmark and report in
Fig. 14(a) deviations of the average energy with respect
to SMC. In Fig. 14(b) we show results for the specific
heat for the various sampling methods.

Compared to N = 43, the performance of the MD
approach are essentially the same, with deviations ap-
pearing near TMD = 0.3 in both quantities. However, we
observe that the efficiency of the three enhanced sampling
techniques (PT, PA, and NF) is significantly reduced in
larger systems, as expected [20, 68]. In detail, we see that
PT and PA now have a comparable performance, with a
speedup compared to MD that is much less impressive
than for N = 43 particles. This strong decrease in per-
formance for both techniques stems from the complexity
of sampling multiple low-energy states in glassy systems.

We also conclude that the normalizing flows suffer from
the same reduction in performance with increasing sys-
tem size. Therefore, our current implementation of NF
does not get more efficient in larger systems compared
to traditional enhanced sampling techniques such as PT
and PA. Scaling the NF method to large sizes is clearly
a challenging problem, which therefore deserves further
attention in future work.

−0.002

0

0.002

0.004

0.006

0.008

0.01

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

(a)

∆
E

p
o
t
/〈
E

p
o
t
〉

1/T

MD
PT
PA
NF

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

2.5 3 3.5 4 4.5 5 5.5

(b)

c V

1/T

SMC
SMC(43)

MD
PT
PA
NF

FIG. 14. Scaling the results to a larger system size, N =
172. (a) Difference in potential energy from the SMC result
∆Epot = ⟨Epot⟩ − ⟨ESMC

pot ⟩. (b) Specific heat cV . The open
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E. D. Cubuk, S. S. Schoenholz, A. Obika, A. W. Nel-
son, T. Back, D. Hassabis, et al., Unveiling the predic-
tive power of static structure in glassy systems, Nature
physics 16, 448 (2020).

[53] J. Paret, R. L. Jack, and D. Coslovich, Assessing the
structural heterogeneity of supercooled liquids through
community inference, The Journal of chemical physics
152 (2020).

[54] G. Jung, R. M. Alkemade, V. Bapst, D. Coslovich,
L. Filion, F. P. Landes, A. Liu, F. S. Pezzicoli, H. Shiba,
G. Volpe, et al., Roadmap on machine learning glassy
liquids, arXiv preprint arXiv:2311.14752 (2023).

[55] C. Scalliet, B. Guiselin, and L. Berthier, Thirty millisec-
onds in the life of a supercooled liquid, Phys. Rev. X 12,
041028 (2022).

[56] G. Jung, G. Biroli, and L. Berthier, Predicting dy-
namic heterogeneity in glass-forming liquids by physics-
inspired machine learning, Phys. Rev. Lett. 130, 238202
(2023).

[57] G. Jung, G. Biroli, and L. Berthier, Dynamic hetero-

geneity at the experimental glass transition predicted
by transferable machine learning, Phys. Rev. B 109,
064205 (2024).

[58] A. Ninarello, L. Berthier, and D. Coslovich, Models and
algorithms for the next generation of glass transition
studies, Phys. Rev. X 7, 021039 (2017).

[59] W. Kob and H. C. Andersen, Testing mode-coupling
theory for a supercooled binary lennard-jones mixture
i: The van hove correlation function, Phys. Rev. E 51,
4626 (1995).

[60] A. D. S. Parmar, M. Ozawa, and L. Berthier, Ultrastable
metallic glasses in silico, Phys. Rev. Lett. 125, 085505
(2020).

[61] A. Heuer, Exploring the potential energy landscape
of glass-forming systems: from inherent structures
via metabasins to macroscopic transport, Journal of
Physics: Condensed Matter 20, 373101 (2008).

[62] L. Berthier, D. Coslovich, A. Ninarello, and M. Ozawa,
Equilibrium sampling of hard spheres up to the jamming
density and beyond, Physical review letters 116, 238002
(2016).

[63] L. Berthier, E. Flenner, C. J. Fullerton, C. Scalliet, and
M. Singh, Efficient swap algorithms for molecular dy-
namics simulations of equilibrium supercooled liquids,
Journal of Statistical Mechanics: Theory and Experi-
ment 2019, 064004 (2019).

[64] E. Flenner and G. Szamel, Hybrid monte carlo simula-
tion of a glass-forming binary mixture, Physical Review
E 73, 061505 (2006).

[65] Y. Sugita and Y. Okamoto, Replica-exchange molecular
dynamics method for protein folding, Chemical physics
letters 314, 141 (1999).

[66] G. Bussi, F. L. Gervasio, A. Laio, and M. Parrinello,
Free-energy landscape for β hairpin folding from com-
bined parallel tempering and metadynamics, Journal of
the American Chemical Society 128, 13435 (2006).

[67] A. Bunker and B. Dünweg, Parallel excluded volume
tempering for polymer melts, Phys. Rev. E 63, 016701
(2000).

[68] M. Falcioni and M. W. Deem, A biased monte carlo
scheme for zeolite structure solution, The Journal of
chemical physics 110, 1754 (1999).

[69] R. Yamamoto and W. Kob, Replica-exchange molecular
dynamics simulation for supercooled liquids, Phys. Rev.
E 61, 5473 (2000).

[70] C. De Michele and F. Sciortino, Equilibration times in
numerical simulation of structural glasses: Comparing
parallel tempering and conventional molecular dynam-
ics, Physical Review E 65, 051202 (2002).

[71] S. Yaida, L. Berthier, P. Charbonneau, and G. Tar-
jus, Point-to-set lengths, local structure, and glassiness,
Physical Review E 94, 032605 (2016).

[72] L. Berthier, P. Charbonneau, and S. Yaida, Efficient
measurement of point-to-set correlations and overlap
fluctuations in glass-forming liquids, The Journal of
chemical physics 144 (2016).

[73] W. Kob and L. Berthier, Probing a liquid to glass
transition in equilibrium, Phys. Rev. Lett. 110, 245702
(2013).

[74] A. M. Ferrenberg and R. H. Swendsen, New monte carlo
technique for studying phase transitions, Phys. Rev.
Lett. 61, 2635 (1988).

[75] T. Shen and D. Hamelberg, A statistical analysis of the
precision of reweighting-based simulations, The Journal

https://arxiv.org/abs/2208.10420
https://arxiv.org/abs/2305.08483
https://doi.org/10.1021/acs.jpcb.0c08645
https://doi.org/10.1021/acs.jpcb.0c08645
https://doi.org/10.1088/2632-2153/acefa8
https://doi.org/10.1088/2632-2153/acefa8
https://arxiv.org/abs/2207.04941
https://doi.org/10.1103/PhysRevE.101.053312
https://doi.org/10.1103/PhysRevE.101.053312
https://doi.org/10.21468/SciPostPhys.15.1.018
https://doi.org/10.21468/SciPostPhys.15.1.018
https://doi.org/10.1088/2632-2153/acbe91
https://doi.org/10.1088/2632-2153/acbe91
https://arxiv.org/abs/2308.14085
https://doi.org/10.1103/PhysRevX.12.041028
https://doi.org/10.1103/PhysRevX.12.041028
https://doi.org/10.1103/PhysRevLett.130.238202
https://doi.org/10.1103/PhysRevLett.130.238202
https://doi.org/10.1103/PhysRevB.109.064205
https://doi.org/10.1103/PhysRevB.109.064205
https://doi.org/10.1103/PhysRevX.7.021039
https://doi.org/10.1103/PhysRevE.51.4626
https://doi.org/10.1103/PhysRevE.51.4626
https://doi.org/10.1103/PhysRevLett.125.085505
https://doi.org/10.1103/PhysRevLett.125.085505
https://doi.org/10.1088/1742-5468/ab1910
https://doi.org/10.1088/1742-5468/ab1910
https://doi.org/10.1103/PhysRevE.63.016701
https://doi.org/10.1103/PhysRevE.63.016701
https://doi.org/10.1103/PhysRevE.61.5473
https://doi.org/10.1103/PhysRevE.61.5473
https://doi.org/10.1103/PhysRevLett.110.245702
https://doi.org/10.1103/PhysRevLett.110.245702
https://doi.org/10.1103/PhysRevLett.61.2635
https://doi.org/10.1103/PhysRevLett.61.2635


19

of chemical physics 129 (2008).
[76] Y. Miao, W. Sinko, L. Pierce, D. Bucher, R. C. Walker,

and J. A. McCammon, Improved reweighting of accel-
erated molecular dynamics simulations for free energy
calculation, Journal of chemical theory and computa-
tion 10, 2677 (2014).

[77] S. T. Tokdar and R. E. Kass, Importance sampling:
a review, Wiley Interdisciplinary Reviews: Computa-
tional Statistics 2, 54 (2010).

[78] W. Wang, J. Machta, and H. G. Katzgraber, Population
annealing: Theory and application in spin glasses, Phys.
Rev. E 92, 063307 (2015).

[79] C. Amey and J. Machta, Analysis and optimization of
population annealing, Phys. Rev. E 97, 033301 (2018).

[80] D. Gessert, W. Janke, and M. Weigel, Resampling
schemes in population annealing–numerical and theo-
retical results, arXiv preprint arXiv:2305.19994 (2023).

[81] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mo-
hamed, and B. Lakshminarayanan, Normalizing flows
for probabilistic modeling and inference, Journal of Ma-
chine Learning Research 22, 1 (2021).

[82] L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density esti-
mation using real nvp, arXiv preprint arXiv:1605.08803
(2016).

[83] J. Song, S. Zhao, and S. Ermon, A-nice-mc: Adversar-
ial training for mcmc, Advances in neural information
processing systems 30 (2017).

[84] L. Klein, A. Foong, T. Fjelde, B. Mlodozeniec,
M. Brockschmidt, S. Nowozin, F. Noé, and R. Tomioka,
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[99] H. Wu, J. Köhler, and F. Noe, Stochastic normaliz-
ing flows, in Advances in Neural Information Processing
Systems, Vol. 33, edited by H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin (Curran Associates,
Inc., 2020) pp. 5933–5944.

[100] H. Sun and K. L. Bouman, Deep probabilistic imag-
ing: Uncertainty quantification and multi-modal solu-
tion characterization for computational imaging, Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence 35, 2628 (2021).

[101] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,
M. Botvinick, S. Mohamed, and A. Lerchner, beta-VAE:
Learning basic visual concepts with a constrained varia-
tional framework, in International Conference on Learn-
ing Representations (2017).

[102] B. Rotenberg, Use the force! Reduced variance esti-
mators for densities, radial distribution functions, and
local mobilities in molecular simulations, The Journal
of Chemical Physics 153, 150902 (2020).

[103] S. Mehri, T. S. Ingebrigtsen, and J. C. Dyre, Single-
parameter aging in a binary Lennard-Jones system, The
Journal of Chemical Physics 154, 094504 (2021).

https://doi.org/10.1103/PhysRevE.92.063307
https://doi.org/10.1103/PhysRevE.92.063307
https://doi.org/10.1103/PhysRevE.97.033301
https://openreview.net/forum?id=XCTVFJwS9LJ
https://openreview.net/forum?id=XCTVFJwS9LJ
https://arxiv.org/abs/2308.10364
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2301.05475
https://proceedings.mlr.press/v139/arbel21a.html
https://proceedings.mlr.press/v139/arbel21a.html
https://arxiv.org/abs/2203.02923
https://arxiv.org/abs/2306.05445
https://doi.org/https://doi.org/10.1016/j.jcp.2023.111972
https://doi.org/https://doi.org/10.1016/j.jcp.2023.111972
https://proceedings.neurips.cc/paper_files/paper/2020/file/41d80bfc327ef980528426fc810a6d7a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/41d80bfc327ef980528426fc810a6d7a-Paper.pdf
https://doi.org/10.1609/aaai.v35i3.16366
https://doi.org/10.1609/aaai.v35i3.16366
https://doi.org/10.1609/aaai.v35i3.16366
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://doi.org/10.1063/5.0029113
https://doi.org/10.1063/5.0029113
https://doi.org/10.1063/5.0039250
https://doi.org/10.1063/5.0039250

	Normalizing flows as an enhanced sampling method for atomistic supercooled liquids
	Abstract
	Introduction
	Setting the Stage: Model and sampling task
	A two-dimensional ternary Lennard-Jones mixture
	The specific heat as a sampling task

	Benchmarking known sampling algorithms
	Swap Monte Carlo (SMC)
	Molecular dynamics (MD)
	Monte Carlo in temperature space: Parallel tempering (PT)
	Population annealing (PA) and reweighting (RW)

	Sampling by Normalizing Flows
	Continuous normalizing flows (NF)
	Loss function and training
	Unbiasing the NF distribution
	Results: Sampling efficiency of NF
	Analysis of the effective sample size

	Discussion: What is the most efficient sampler?
	Quantitative comparison between techniques
	Perspectives

	Acknowledgments
	Details on the NF method
	Hyperparameter
	Ablation study for mixing parameter 

	Additional criteria for equilibration
	Fluctuation-dissipation theorem for specific heat
	Probability distribution of potential energy
	Radial distribution function

	Scaling with system size
	References


