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1 | INTRODUCTION

In water, sound is omnipresent and is one of the main sources of information used by marine animals. As sound
travels faster and over longer distances in the marine environment than in air, many marine animals, ranging from
small invertebrates to large marine mammals, use sound to interact and communicate with their conspecifics or other
species (see Duarte et al., 2021 for review). Over the last decades, the development of sound recording systems has
allowed a significant advance in our knowledge of sound production in marine animals (Erbe & Thomas, 2022). Newly
developed devices that can be deployed on marine animals and record their sound production synchronously with
their behavior allow researchers to explore the behavioral context of vocalizations, providing insights into the func-
tion of these vocalizations (Akamatsu et al., 2005; Burgess et al., 1998; Johnson & Tyack, 2003).

In cetaceans, vocalizations are well documented, and deployments of animal-borne digital acoustic recorders
have provided a wide range of insights into their vocal behavior (Johnson et al., 2009). Underwater vocal behavior is
well described for many phocid seal species, especially polar ones (e.g., Klinck et al., 2010 on crabeater seals, Lobodon
carcinophaga; Rogers et al., 1996 on leopard seals, Hydrurga leptonyx; Mizuguchi et al., 2016 on ringed seals, Pusa his-
pida; Pahl et al., 1997 on Weddell seals, Leptonychotes weddellii; Frouin-Mouy & Hammill, 2021 on hooded seals,
Crystophora cristata), but only anecdotal recordings have been made for otariid species (Charrier, 2021). For phocids,
underwater vocalizations are thought to be used for conspecific communication, and territorial or courtship signaling
(Van Opzeeland et al., 2008). The few studies on underwater sound production of otariids (Erbe et al., 2017) either
recorded sounds from captive animals (Schusterman & Baillet, 1969 on California sea lions, Zalophus californianus;
Schusterman et al., 1970 on Steller sea lions, Eumetopias jubatus) or used hydrophones suspended below boats
(Norris & Watkins, 1971 on Juan Fernandez fur seals, Arctocephalus philippii), which allows describing the characteris-
tics of the calls but not identifying the behavioral context of the vocalizations.

Antarctic fur seals (Arctocephalus gazella; AFS hereafter) are small otariids breeding on sub-Antarctic islands.
They alternate between foraging periods at sea and periods on land for breeding and molting. During reproduction,
they gather in large colonies that can reach several thousand individuals. Colonies consist of harems with a dominant
male, several females and their single pup each (Kuzin, 2011; Martin et al., 2021; Riedman, 1990). On land, they are
highly vocal and produce barks and guttural calls that play key roles in social interactions, such as threats, or
pup/mother interactions (Aubin et al., 2015; Erbe et al., 2017; Page et al., 2002). However, to our knowledge, under-
water vocal production and their behavioral context have never been investigated in AFS (Erbe et al., 2017).

To understand potential underwater vocalizations and their behavioral context in their natural environment, we
deployed miniature sound and movement tags (Johnson & Tyack, 2003) on female AFS during their at-sea foraging
trips. Tags recorded underwater sounds synchronously with high-resolution AFS movements and diving behavior, all-
owing us to investigate simultaneously fine-scale movements of AFS and possible underwater vocal production. The
objectives of this study were (1) to assess the occurrence of underwater vocalizations, and if produced, (2) to
describe their characteristics, and (3) to assess their behavioral context. We discuss if underwater vocalizations could

be used to startle prey or as an acoustic lure to attract or confuse prey (Marten et al., 2001; Norris & Mghl, 1983).

2 | METHODS
21 | Device deployments and data collection

Data were collected on three lactating female AFS in January 2023 at Pointe Suzanne, Kerguelen Islands (49°26'S,
70°26’E, Southern Ocean) under the ethical regulation approval of the French Ethical Committee for Animal Experi-
mentations (#37480-2022052514544991 V7) and the Committee for Polar Environment (A2021-48). Females were
captured with a hoop net, anesthetized with isoflurane gas, respectively measured and weighted to the nearest cen-
timeter and 100 g. They were equipped with a head-mounted DTAG-4 mini sound tag (68.0 x 31.0 x 20.7 mm,

85U807 SUOWIWOD 3A1ER.ID 3(ceoljdde auy A peuenob aJe ssjofe O ‘88N JO Sa|nJ 10} Afeiqi8UlUO AB|IM UO (SUORIPUOD-pUe-SWSY/WI0D" A 1M ARe.q 1l juo//:SAY) SUORIPUOD PUe Swi | 81885 *[7202/70/0E] Uo AreiqiauIUO A8|IM ‘80l 8URI400D AQ STTET SWW/TTTT OT/I0PA00 A3 | 1M AReiq1pul|uo//Sdiy Woiy pepeojumoq ‘0 ‘269,872 T



CHEVALLAY €T AL | 3of12

58 g in air) programmed to sample GPS position up to every minute, tri-axial acceleration (250 Hz), tri-axial magne-
tometer (50 Hz), pressure (50 Hz), and audio data (96 kHz, 200 Hz to 48 kHz bandwidth). Tags were set to record
only during night hours (from 6 p.m. to 6 a.m. local time, i.e., foraging periods of AFS (Boyd & Croxall, 1992;
Jeanniard-du-Dot, Trites, et al., 2017) to save battery. Tags were glued to the hair using quick-setting epoxy glue
(Araldite AW 2101, Ciba) and recovered after a single foraging trip at sea (6-8 days) using the same capture and

sedation methods.

2.2 | Dataanalyses

Data recovered from tags were analyzed using custom-written codes and functions from https://
www.animaltags.org in MATLAB (version 2022b; https://www.mathworks.com/). Statistical analyses were con-
ducted in R (R Core Team, 2018).

221 | Detection of vocalizations and spectrogram analyses

Occurrences of vocalization were detected from recorded spectrograms in 10% of randomly selected dives per
individual. This number of dives was chosen by plotting the proportion of dives with vocalizations against the
number of analyzed dives, which reached a plateau when 6%-8% of dives per individuals were analyzed
(Figure S1).

Vocalizations were analyzed using Raven Lite software (version 2.0.5; https://www.birds.cornell.edu/ccb/
raven-pro/) and MATLAB. Vocalizations consisted of series of repeated pulses. We measured the pulse dura-
tion (milliseconds) on the waveform, and the minimum, maximum, and dominant frequency (frequency of the
maximum amplitude) of pulses (Hertz) were measured on the frequency spectrum on a randomly selected sub-
sample of pulses. The number of pulses per series and the series duration (seconds) were measured on a
randomly-selected subsample of series. The number of analyzed pulses or series was determined by the change
in the means of each of the parameters (mean series duration, number of pulses per series, pulse duration, pulse
frequency) as we increased the analyzed sample size, and we stopped the analysis when the means did not con-

tinue to change with increased samples.

2.2.2 | Metrics describing AFS behavior

Dive identification
Dives were identified from the pressure data recorded by tags. A dive was defined as animals diving deeper than
3 m for more than 4 s (Jeanniard-du-Dot, Guinet, et al., 2017). The bottom phase was defined as the period of time

when depth is above 75% of the maximum dive depth.

Prey capture attempts

Prey capture attempts (PrCAs hereafter) were detected from the 250 Hz tri-axial acceleration data recorded by tags,
by computing the norm of the differential of the tri-axial acceleration (norm-jerk hereafter), as described in
(Chevallay et al., 2023). Spikes in the norm-jerk signal higher than 3,000 m/s?> were classified as prey strikes
(Chevallay et al., 2023). As prey may be encountered in patches or may elude capture, leading to a bout structure in
prey strikes, strikes occurring less than 15 s from the previous strike were grouped in the same PrCA bout according
to the distribution of interstrike intervals (Chevallay et al., 2023). Dives where at least one strike was detected were

classified as hunting dives.
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TABLE 1 Summary of field deployments: individual length and weight, deployment and retrieval date, number of
days of recordings, and hours of audio recordings for three female AFS equipped with sound tags in the Kerguelen
Islands (austral summer 2023) during a single foraging trip at sea.

Individual ID

1 (ag22_365b) 2 (ag22_365c¢) 3 (ag22_365d)
Weight (kg) 30 31 33
Length (cm) 110 111 119
Deployment date December 31, 2022 December 31, 2022 December 31, 2022
Retrieval date January 8, 2023 January 6, 2023 January 7, 2023
Number of days of recordings 8 6 7
Hours of audio recordings 101 112 118

Swimming activity

High-resolution tri-axial accelerometer data allow for the identification of flipper strokes and can thus be used to describe
the AFS swimming activity. Flipper strokes were detected from the dynamic acceleration of both the heave and the surge
axes (Jeanniard-du-Dot et al., 2016) by applying a high-pass filter with a cut-off frequency of 1.6 Hz, i.e., 70% of dominant
stroke frequency, on both axes. Absolute values of the dynamic heave and surge accelerations were then summed to
obtain the swimming effort, a proxy for AFS swimming activity (Aoki et al., 2012; Maresh et al., 2014).

3 | RESULTS
3.1 | Summary of field deployments

Tags recorded data during 8, 6, and 7 days for ind. 1 (ag22_365b), ind.2 (ag22_365c), and ind. 3 (ag22_365d), respec-
tively (Table 1), for a total of 331 hr of audio data (Table 1).

3.2 | Acoustic characteristics of underwater vocalizations

Vocalizations were only found for ind. 1 and ind. 2, but not for ind. 3. For ind. 1 and ind. 2, underwater
vocalizations consisted of series lasting 2.4 + 0.6 s (Q1-Q3: 1.9-2.8 s)and 3.2 + 1.0 s (Q1-Q3: 2.3-5.6 s), made of 33+ 7
(Q1-Q3: 28-36) and 35 * 14 pulses (Q1-Q3: 24-45), with a pulse rate of 14 + 2 Hz (Q1-Q3: 13-15Hz) and 11 + 3 Hz
(Q1-Q3: 9-13 Hz), respectively (Figure 1). Series were repeated over a mean duration of 56.3 + 28.1 s for ind. 1 and 13.8
+ 14.2 s for ind. 2. While the recording quality was sufficient to detect pulse series in ind. 2, the water flow noises
prevented us from extracting detailed characteristics of the pulses produced. Therefore, we only measured pulse frequency
and duration for ind. 1. Pulses lasted 31 + 5 ms, they had a dominant frequency of 435 + 89 Hz, a minimum frequency of
55 + 20 Hz and a maximum frequency of 1006 + 105 Hz (Table 2, Figure 1C and E). Between series of pulses, AFS consis-
tently produced another type of sound (Table 2, Figure 1A and B), that lasted 95 + 19 ms, and had dominant, minimum
and maximum frequencies of 386 + 156 Hz, 75 + 30 Hz, and 941 + 165 Hz, respectively (Table 2, Figure 1D and F).

3.3 | Context of underwater vocalizations

Vocalizations were recorded in 80% of dives for ind. 1, 30% of dives for ind. 2, and in 0% of dives for ind. 3. Vocaliza-

tions were only recorded in deeper and longer dives with longer time spent in the bottom of the dive (Figure 2,
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FIGURE 1 Underwater vocalizations performed by ind. 1, an AFS female equipped with a miniature sound tag in
the Kerguelen Islands in January 2023: waveform (A) and spectrogram (B), showing a sequence of three series of
~30 very short pulses between which an inter-series sound was consistently produced. (C) and (D): waveform of a
single pulse or inter-series sound. (E) and (F): Frequency spectrum of a single pulse or inter-series sound.

Wilcoxon test, p < .001), typical of foraging dives, i.e., long and deep dives, and were never recorded in transit dives,
i.e., short and shallow dives. For ind. 1, 93% of hunting dives, i.e., dives with at least one strike, were associated with

vocalizations. For ind. 2, vocalizations were recorded in 43% of hunting dives.
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TABLE 2 Characteristics of two underwater sounds produced by a female AFS from the Kerguelen Islands
equipped with a sound tag during a single foraging trip at sea (austral summer 2023): sound duration, dominant,
minimum, and maximum frequencies. Pulses were produced in series, between which a second type of sound was
consistently produced, referred as interseries sound.

Pulse Interseries sound
Duration (ms) 315 95+ 19
[28-35] [85-106]
Dominant frequency (Hz) 435 + 89 386 + 156
[354-543] [247-525]
Minimum frequency (Hz) 55+ 20 75+ 30
[41-67] [49-95]
Maximum frequency (Hz) 1,006 + 105 941 + 165
[923-1,066] [857-1,007]
] Ind. 1
| Ind.2
80 200
*
* *
—~ 60 ® 150 =
S P -
= [0)
5 2 £
[oR g =
3 40 5 100 =
o © e
> ) = 50
a Z 7
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20 50
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No vocalization Vocalization No vocalization Vocalization No vocalization Vocalization

FIGURE 2 Comparison of dives parameters (dive depth, dive duration and bottom time) for dives with
vocalizations and dives without vocalizations, for the two female AFS equipped with sound tags in the Kerguelen
Islands in January 2023. Asterisks represent significant differences in dive parameters between dives with
vocalizations and dives without (Wilcoxon test, p < 0.05).

All vocalizations were emitted during the bottom phase of the dive (Figure 3). For ind. 1, vocalizations consis-
tently followed the same behavioral pattern: the individual starts its descent by swimming actively without vocaliz-
ing, and then sharply reduces the number of flipper strokes once it reaches the bottom phase. Between 2 and 4 s
(Q1-Q3) after reaching the bottom phase, the individual starts vocalizing until the start of the ascent, stopping tem-
porarily vocalizing during PrCAs (Figure 3).

3.4 | Foraging behavior and vocalizations

PrCA bouts performed by ind. 1, which vocalized in 93% of hunting dives, were significantly shorter than PrCA bouts
performed by ind. 2, which vocalized in 43% of hunting dives, and by ind. 3, which never vocalized (Figure 4,
ANOVA, p <.001). Ind. 1 also displayed significantly lower swimming efforts during PrCA bouts compared to ind.
2 and 3 (Figure 4, ANOVA, p < .001).
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FIGURE 3 Example of a dive of ind. 1, an AFS female equipped with a sound tag in January 2023.

(A) Spectrogram of sound recordings during the dive. Black arrows define the periods where vocalizations were
produced. (B) Dive profile recorded during a single dive. (C) Tri-axial accelerometer data recorded at a 250 Hz
sampling rate during the dive. The insert represents the three axes of the accelerometer: longitudinal (surge, x), left-
right (sway, y), dorso-ventral (heave, z). Letters s and g refer respectively to stroking and gliding periods. The red
rectangles indicate PrCA bouts, and the gray shaded regions correspond to the periods where underwater
vocalizations were produced by the individual.

For ind. 2 which only vocalized in 43% of hunting dives, no difference in swimming effort was found between
PrCA bouts preceded by vocalizations and PrCA bouts without (Figure 4) (Wilcoxon test, p = .9026). Duration of
PrCA bouts that were preceded by vocalizations and PrCA bouts that were not preceded by vocalizations
was similar (Figure 4, Wilcoxon test, p = .6411).
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FIGURE 4 (A) and (B): PrCA bout durations and swimming efforts during PrCA bouts of the three female AFS
equipped with sound tags in the Kerguelen Islands (austral summer 2023). Letters indicate significant differences
between individuals (ANOVA, p < .05). (C) and (D): Comparison of bout durations and swimming efforts during PrCA
bouts preceded by vocalizations and PrCA bouts that were not preceded by vocalizations for ind. 2, for which
vocalizations were recorded in 43% of hunting dives.

4 | DISCUSSION

We provide the first evidence of underwater vocalizations in free-ranging female AFS in a context of foraging at sea.
Miniature sound recorders deployed on females allowed us to identify stereotyped calls made of low-frequency
pulses produced in series during foraging dives. These calls resembled those recorded on Juan Fernandez fur seals
(Norris & Watkins, 1971), California sea lions (Poulter, 1963; Schevill et al., 1963), and Steller sea lions (Schusterman
et al.,, 1970), which are also known to produce series of pulses. In particular, Juan Fernandez fur seals produce series
of 17-43 pulses lasting 50-110 ms each and with a dominant frequency of 150-200 Hz (Norris & Watkins, 1971).
Similarly, tagged AFS produced series of 28-45 pulses lasting 28-35 ms with a dominant frequency of 350-540 Hz.
As these pulse calls have been recorded in different genera of otariids, they are likely widespread among otariid spe-
cies; however, few studies have investigated their underwater vocal behavior so their prevalence among otariids

remains to be explored. Most underwater vocalizations recorded so far in otariids are barks produced from males
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and during the breeding season, and thus are likely barks that males produce also in air while defending their terri-
tories and harems (Charrier, 2021). The series of pulses recorded in this study seem different from typical bark series
and were produced in a context of foraging at-sea.

By deploying movement and sound tags on AFS, we were able to study the behavioral context of vocalizations
and to hypothesize on their possible roles. Although otariids such as AFS are very vocal on land and produce various
calls to communicate in colonies (Aubin et al., 2015; Page et al., 2002), AFS are known to be solitary foragers that
disperse during their foraging trips (Jeanniard-du-Dot & Guinet, 2021). Therefore, it is unlikely that vocalizations are
used for communication with conspecifics during foraging. However, there is no visual evidence that AFS always for-
age solitarily, so the use of vocalizations for communication cannot be excluded. However, we did not detect vocali-
zations produced by other AFS at close vicinity in our study.

For the two females in which vocalizations were detected, they were exclusively recorded during foraging dives.
We noticed a strong consistency in call production patterns: calls were typically produced during the bottom phase
of the dive, with a start of the call at the end of the descent and a stop of the call just before the ascent. The bottom
phase of the dive is the phase in which most of prey capture events occur (Viviant et al., 2016), which suggests that
these vocalizations have a foraging function.

It has been hypothesized that penguins produce underwater calls just before prey capture to startle their prey
and immobilize it (Thiebault et al., 2019), as suggested in other marine predators such as common bottlenose dol-
phins (Tursiops truncatus) or killer whales (Orcinus orca) (Marten et al., 2001; Norris & Mghl, 1983). AFS mostly forage
on myctophids, for which no hearing range information is available. Most fish species can hear sounds between
50 and 3,000 Hz (Popper & Schilt, 2008), which includes calls produced by our tagged AFS. This suggests that the
fish prey of AFS can hear AFS calls. However, unlike dolphins that produce loud impulsive “bangs” and penguins that
emit short calls just before prey capture, AFS emit calls almost continuously during the bottom phase, so it is unlikely
that these continuous sounds can startle prey.

One could hypothesize that these acoustic pulse series are used as an acoustic lure. Indeed, calls produced by
AFS are quite similar to fish choruses (McCauley & Cato, 2016; Parsons et al., 2016), leading us to suggest that calls
could be used to confuse or attract fish prey. So far, no acoustic pulses produced independently to those from the
equipped fur seals were detected. Indeed, the received level of pulses is stable while if another organism produced
the sound, the received level would vary according to the distance between the equipped AFS and the organism.
While we cannot test this hypothesis, we were able to study the fine-scale hunting behavior of AFS to infer informa-
tion on prey behavior. In particular, a previous study using sonar and movement tags showed that evasive prey were
associated with higher swimming efforts and longer prey capture events (Chevallay et al., 2023). Here we compared
these two behavioral parameters between the female that consistently produced calls (ind. 1), the female that only
vocalized in 43% of dives (ind. 2), and the female that never produced calls (ind. 3). Overall, we found that ind. 1 dis-
played lower swimming efforts while hunting than ind. 2 and 3. Prey capture bouts were also significantly shorter for
ind. 1. This might suggest that prey were easier to capture for the female which vocalized most. This result supports
the acoustic lure hypothesis; however, this must be interpreted cautiously due to our small sample size and the lack
of direct information on prey behavior.

To further test this hypothesis, we focused on the female that only vocalized in 43% of hunting dives. We com-
pared its hunting behavior during dives with vocalizations and dives without vocalizations. Our hypothesis was that
if vocalizations are used as an acoustic lure, PrCA bouts preceded by vocalizations should show lower swimming
efforts than PrCA bouts not preceded by vocalizations. We did not find any statistical difference in swimming efforts
during PrCA bouts that were preceded by vocalizations and those that were not preceded by vocalizations. For this
female (ind. 2), vocalizations were significantly shorter than for ind. 1 (only lasting 10-15 s vs. 50-60 s for ind. 1).
These differences raise questions about the function of these vocalizations and should be explored more deeply by
performing multiple tag deployments that include miniature video cameras on the same individuals. A larger sample
size is needed to study the prevalence of underwater vocalizations among the AFS population and their benefits for

foraging success.
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Our limited sample size prevented us from making strong inferences about this behavior or determining the
prevalence of this vocal behavior among the AFS population. However, the fact that two out of three AFS performed
vocalizations suggests that it might be a widespread behavior in the population. This study provides the basis for
using sound and movement tags to investigate further the adaptive significance of these underwater vocalizations
of AFS.
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