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Abstract

In this paper, we perform a numerical study on the eigenvalues of the operator
of a semi-discretized age-structured predator-prey model. The age-structuration
is based on an agile modeling framework for population dynamics. We also prove
a theoretical result on the distribution of the eigenvalues of a semi-discretized
McKendrick equation. We show that, under regularity assumptions, and after a
rescaling step, the eigenvalues converge to the unit circle as the number of age
groups goes to infinity. A sufficient condition to get this convergence consists in
having piecewise-constant birth and death rates; by using random values of birth
and death rates, we also show numerically that having not enough regular values
invalidates the result. We complete this study with properties on the original
McKendrick equation, such as the compactness of its operator, the countability
of its spectrum, and the fact that the eigenvectors form a complete basis of the
function space.
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Introduction

The McKendrick equation and the predator-prey model are well known population
dynamics models. The McKendrick-von Foerster equation first appeared in articles
dealing with epidemiological and disease modeling, but dealt with demographic mod-
eling (McKendrick, 1925; Kermack and McKendrick, 1927).
This equation is classically written

∂tϕ(t, a) + ∂aϕ(t, a) + µ(a)ϕ(t, a) = 0,

where ϕ is the population density, a the age and µ the mortality rate, and completed
with a boundary condition

ϕ(t, 0) =

∫ +∞

0

b(a)ϕ(t, a) da,

where b is the natality rate, and an initial condition

ϕ(0, a) = ϕ0(a).

b is usually zero out of a fertility interval [a0, a1], with 0 < a0 < a1.
The McKendrick equation constitutes an important tool in demography, and is often
rediscovered by mathematicians studying nonlinear population dynamics problems
(Hoppenstaedt, 1975; Webb, 1985).
Several approaches exist to study structured population dynamics. Among them, let
us cite integral formulation (Sharpe and Lotka, 1911), difference equations (Thomp-
son, 1931; Cole, 1954), partial differential equations (McKendrick, 1925; von Foerster,
1959) and projection matrix (Cannan, 1895; Leslie, 1945). On the fundamental PDE
approach, some preliminary observations have been carried on the spectrum of the
operator involved in the integral formulation. As a compact operator, it has a count-
able spectrum, and one can express the solution as a superposition of eigenfunctions.
In Keyfitz and Keyfitz (1997), authors compare the McKendrick PDE to the above-
mentioned approaches and derive solutions under suitable hypotheses.

More recently, the introduction of nonlinear models breathed new life into age-
structured populations study. In Gurtin and Maccamy (1974), using nonlinear integral
Volterra equations, authors showed the existence, uniqueness and convergence to an
equilibrium of solutions of a nonlinear Sharpe-Lotka-McKendrick model. This work
paved the way to breakthroughs on nonlinear models, as much on theoretical develop-
ments as on biological applications (see Iannelli (1995) for an exhaustive approach).
The growing mathematical complexity of nonlinearities in age-structured models led
to developments of new tools and methods, such as linear and nonlinear operator
semigroups in Banach spaces, with a functional analysis approach (Diekmann and
Getto, 2005).
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When a population’s description goes beyond the assumptions of Keyfitz and Key-
fitz (1997), it is often necessary to introduce new methods for modeling and analyzing
such complex structured population models. For a complete view on structured pop-
ulations, we refer to Perthame (2007). We also mention the works of Diekmann et al.
(1994, 1998) for an approach of structured population dynamics models which presents
similarities with the method we develop, presented below.

At Dassault Systèmes, we designed an agile modeling framework and developed a
model generator, able to generate simulatable models conforming to assumptions and
population structure given as input1.
The framework’s formalism is an extension of the McKendrick equation, where the
mortality term µ(a)ϕ(t, a) is replaced with generic exchanges terms, such as

∫

D
κ(t, ϕ(t), a, x, y)ϕ(t, a, y) dy,

where x (resp. y) represents the origin (resp. destination) state, which belongs to the
state domain D.
A conservative form of exchange terms, written as

∫

D
(k(t, ϕ(t), a, x, y)ϕ(t, a, y)− k(t, ϕ(t), a, y, x)ϕ(t, a, x)) dy,

is also studied, to model exchanges between the compartments of our structured and
generic population.

To simulate structured models, we operate a semi-discretization on the age deriva-
tive, and get a dynamical system of ODE simulatable by Dassault Systèmes’s solvers
embedded in the Dymola Software (Brück et al., 2002). The input format of Dymola
being models written in the Modelica language (Fritzson and Engelson, 1998), the
modeler generates Modelica files by coupling an object-oriented implementation of
the structured population formalism with a templating approach, using the Python
library Jinja2 (Ronacher, 2014).

In our previous work, we applied this framework to the simulation of a structured
predator-prey model, exploring various and interesting phenomena in terms of asymp-
totic behaviors. The issue of such population system’s stability comes naturally in the
discussion, wondering under which assumptions a population system converges to a
fixed point, or ends up with a cyclic trajectory, or even presents a chaotic evolution.

The issue of stability and asymptotic behavior is one of the most common when
dealing with the analysis of dynamical systems of ODEs. Linear stability refers to
the ability of a system to come back to an equilibrium point when it undergoes small
perturbations (Magiros, 1966). The usual approach consists in writing the jacobian
matrix of the differential system and examining its eigenvalues. The sign of the real

1see our unpublished work An agile framework for population dynamics available at https://hal.science/
hal-04646788
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parts of eigenvalues gives insight on the equilibrium point’s nature. See Bellman
(1953); LaSalle (1976); Demailly (2006) for further perspectives on linear and nonlin-
ear stability analysis. Beyond linear and local stability, many definitions of stability
for dynamical systems have been given, such as the stability in the sens of Lyapunov
(Lyapunov, 1992), Poincaré (Magiros, 1985, 1965) or Lagrange (Gyftopoulos, 1963;
Bhatia and Szegö, 1970). Lyapunov’s method addresses stability problems both near
and far from the equilibrium. It consists in finding a positive definite function, called
a Lyapunov function, whose derivative’s sign will give insight on the equilibrium point
asymptotic stability. To go further into nonlinear stability analysis and Lyapunov
method, see Bhatia and Szegö (1970); Roussel (2019). We also cite Arnol’d (1992) as
an exhaustive reference on ordinary differential equations.

To tackle this issue of stability and asymptotic behavior, we got interested in
computing the eigenvalues of classic demographic models. We observed that the
eigenvalues are distributed in circular structures. Our goal is to better understand
these structures. The fact that these structures appear even in a very simple problem
such as the semi-discretized McKendrick equation support the intuition that they are
due to the discretization process.

This article is divided in three sections. In section 1, we derive from the well-
known predator-prey model an age-structured, semi-discretized formulation, and carry
numerical observations on the distribution of jacobian’s eigenvalues at equilibrium
points.
In section 2, we study the simpler McKendrick-von Foerster equation, semi-discretized
in age, and prove a theoretical result on the distribution of the system’s eigenvalues.
We show that, in some sense, and under some regularity assumptions, the set of
eigenvalues is dense into the unit circle of the complex plane. We then discuss the role
of the regularity assumptions Interestingly, this result also applies to the Leslie matrix.
In section 3, we recall some classic results on the McKendrick equation, and prove
that the eigenvectors form a complete basis. We observe numerically that the first
eigenvalues of the discrete problem converge to the ones of the continuous problem.

1 Age-structured predator prey model

1.1 Predator-prey model and age-structuration

1.1.1 The predator-prey model

The predator prey model and the Lotka-Volterra equations are among the most known
models in population dynamics. For the sake of exhaustiveness, let’s recall the classic
Lotka-Volterra equations (Lotka, 1926; Volterra, 1926) :

{
dtx(t) = αx(t)− βy(t)x(t)
dty(t) = δx(t)y(t)− γy(t)

(1)

where :
• x is the number of preys,
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Fig. 1: Prey-predator model

• y is the number of predators,
• α is the natality rate for preys,
• β describes the effect of the presence of predators on the prey mortality rate,
• γ is the mortality rate for predators,
• δ describes the effect of the presence of preys on the predator natality rate.
It is well known that for positive parameters α, β, γ, δ, the system (1) has a periodic

behavior (see Figure 1).
We refer the reader to Wangersky (1978); Takeuchi (1996); Cherniha and Davy-

dovych (2022) for detailed analyses on the Lotka-Volterra equations.

1.1.2 Age-structuration of the predator-prey model

Age-structured predator-prey models have been widely studied in the literature on
population dynamics. We may cite Lu et al. (2017); Zhang and Liu (2021); Bentout
et al. (2022) for recent breakthroughs on this topic.

A classic approach to reach a further level of realism consists in introducting a
structuration on the age of individuals. We introduce a second, positive variable a
standing for the age, a transport term as a partial age derivative and adapt the shapes
of rates linked to predation. We get the system (2a)-(2f) :
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Fig. 2: Age-structured prey-predator model





∂tx(t, a) + ∂ax(t, a) +

(∫ +∞

0

β (a, ã) y (t, ã) dã

)
x(t, a) = 0, (2a)

∂ty(t, a) + ∂ay(t, a) + γ(a)y(t, a) = 0, (2b)

x(t, 0) =

∫ +∞

0

α(a)x(t, a) da, (2c)

y(t, 0) =

∫ +∞

0

∫ +∞

0

δ (a, ã)x (t, ã) dã da, (2d)

x(0, a) = x0(a), (2e)

y(0, a) = y0(a), (2f)

where we added initial conditions x0 and y0. The reproduction terms now appear
in boundary conditions (2c)-(2d), as they affect only the populations at age zero. The
rates α, γ (resp. β, δ) are to be chosen with compact support in R∗

+ (resp. R∗
+ × R∗

+)
to ensure existence and uniqueness of the solution of this system.

There exists a wide diversity of behaviors which can be observed in a such
age-structured system. Contrary to (1), which had parameters in R4, the space of
parameters in (2a)-(2f) has infinite dimension. It is interesting noticing that the result-
ing behavior is not necessarily periodic; it may also, for example, converge to a fixed
point (see Figure 2).

This figure has been computed using a semi-discretization on age and Dassault
Systèmes ODE solver, Dymola. In the next subsection, we explain the step of semi-
discretization.
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1.2 Semi-discretization of the age-structured predator-prey
model

Many approaches exist to achieve a numerical simulation of (2a)-(2f). The approach
we took on consists in two steps :
1. derive from (2a)-(2f) an age semi-discretized formulation,
2. solve numerically the semi-discretized formulation thanks to ODE solvers.
We first truncate the age interval to [0, A], with A > 0 representing a maximal age.

Let consider a discretization of [0, A] into N intervals
[
ai− 1

2
, ai+ 1

2

]
for i in 0, . . . , N−1,

with a− 1
2
= 0 and aN− 1

2
= A. The discretization will be regular, with ∆aN = ai+ 1

2
−

ai− 1
2
independent of i.

The choice of a numerical scheme is not the heart of our work. What follows could be
adapted with any numerical scheme. For the sake of simplicity, we choose an upwind
scheme, where, for i in 0, . . . , N − 1,





x
(
t, ai+ 1

2

)
is approximated by

1

∆aN

∫ a
i+1

2

a
i− 1

2

x(t, a) da

y
(
t, ai+ 1

2

)
is approximated by

1

∆aN

∫ a
i+1

2

a
i− 1

2

y(t, a) da
(3)

We also define the aggregated population variables

Xi(t) =

∫ a
i+1

2

a
i− 1

2

x(t, a) da,

Yi(t) =

∫ a
i+1

2

a
i− 1

2

y(t, a) da.

Applying the semi-discretization (3) to the age-structured continuous system (2a)-(2f)
leads to the dynamical system (4a)-(4d).





dtXi +
Xi −Xi−1

∆aN
+

(
N−1∑

k=0

βikYk

)
Xi = 0, 1 ⩽ i ⩽ N − 1, (4a)

dtX0 +
1

∆aN
X0 −

N−1∑

k=0

αkXk +

(
N−1∑

k=0

β0kYk

)
X0 = 0, (4b)

dtYi +
Yi − Yi−1

∆aN
+ γiYi = 0, 1 ⩽ i ⩽ N − 1, (4c)

dtY0 +
1

∆aN
Y0 −

N−1∑

j=0

(
N−1∑

k=0

δjkXk

)
Yj + γ0Y0 = 0, (4d)

where the boundary conditions (2c)-(2d) have been adapted into special terms in
(4b)-(4d), as input population flows into the zero-aged class.
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The discrete parameters (αi)0⩽i⩽N−1 , (βi)0⩽i⩽N−1 , (γi)0⩽i⩽N−1 , (δi)0⩽i⩽N−1 are
derived from the continuous ones :





αi = 1
∆aN

∫ a
i+1

2

a
i− 1

2

α(a) da

βij = 1
∆aN

2

∫ a
i+1

2

a
i− 1

2

∫ a
j+1

2

a
j− 1

2

β (a, ã) dã da

γi = 1
∆aN

∫ a
i+1

2

a
i− 1

2

γ(a) da

δij = 1
∆aN

2

∫ a
i+1

2

a
i− 1

2

∫ a
j+1

2

a
j− 1

2

δ (a, ã) dã da

The choice of functions α, β, γ, δ follows usual hypotheses, which may depend on
the type of ecosystem one wants to model.

1.3 Numerical observations

A natural step, to study the asymptotic behavior of the system (4a)-(4d), consists in
studying the eigenvalues of the jacobian at an equilibrium point. To reach such an
equilibrium, we may numerically run the simulation until the system seems to reach
an equilibrium point, and study the jacobian at this final point. We ensure that the
system has converged by numerically testing that enough points are sufficiently close
before stopping the computation.
We are interested in the sign of the real part of the first eigenvalue, which characterizes
the stability properties of the system. As one can easily compute, thanks to linear
algebra tools, all the eigenvalues of the system (4a)-(4d), we decided to give a look at
the whole spectrum, and how its shape depends on the number of age groups. We get
the Figure 3.

The eigenvalues distribution observed on Figure 3 is somewhat interesting, with
circles tangent to the y-axis with a center which seems to translate along the x-axis,
as N increases ; we also observe inner structures, which go from points to small circles
as N increases.

2 Semi-discretized McKendrick equation

The numerical observations on Figure 3 are of interest, but the predator-prey model
and the age-structured Lotka-Volterra equations are very complex to study. To simplify
the problem at hand, we will study an age-structured McKendrick equation. Contrary
to the predator-prey model and its nonlinearities due to predation, the McKendrick
equation is linear. As a result, the infinitesimal generator in the discrete age-structured
formulation is linear, so studying the stability through jacobian eigenvalues is equiv-
alent to studying the eigenvalues of the operator itself.
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Fig. 3: Eigenvalues of the age-structured semi-discretized predator-prey model, at the
end of the simulation, for various value of number of age groups N .

Numerically, we may formulate the following conjecture (see Figure 4) : asymptoti-
cally, the eigenvalues set in the complex plane seems to describe a circle, with center

located at

(
− 1

∆aN
, 0

)
, with radius

1

∆aN
.

2.1 Semi-discretization

Let us recall the well-known McKendrick equation :
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Fig. 4: Eigenvalues of the semi-discretized McKendrick equation, for various value of
number of age groups N .





∂tϕ(t, a) + ∂aϕ(t, a) + µ(a)ϕ(t, a) = 0

ϕ(t, 0) =

∫ +∞

0

b(a)ϕ(t, a) da

ϕ(0, a) = ϕ0(a)

(5)

where ϕ is the population density, µ is the death rate, b the birth rate, a the age of
individuals. The semi-discretization of (5) with an upwind-scheme is straight-forward:
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dtψi +
ψi − ψi−1

∆aN
+ µiψi = 0 1 ⩽ i ⩽ N − 1

dtψ0 +
1

∆aN
ψ0 −

N−1∑

k=0

bkψk + µ0ψ0 = 0

(6)

where:
• N is the number of age groups,

• ψi(t) =

∫ a
i+1

2

a
i− 1

2

ϕ(t, a) da ,is a discrete population variable, between ages ai− 1
2
and

ai+ 1
2
, for i in 0, . . . , N − 1, following the notations of subsection 1.2,

• bi =
1

∆aN

∫ a
i+1

2

a
i− 1

2

b(a) da,

• µi =
1

∆aN

∫ a
i+1

2

a
i− 1

2

µ(a) da.

2.2 Eigenvalues problem

The eigenvalues problem associated to (6) may be written as the following:





−
(
ψi − ψi−1

∆aN
+ µiψi

)
= λψi 1 ⩽ i ⩽ N − 1 (7a)

−
(

1

∆aN
ψ0 −

N−1∑

k=0

bkψk + µ0ψ0

)
= λψ0 (7b)

where λ is a complex eigenvalues and (ψi)0⩽i⩽N−1 is an eigenvector in CN.
Some steps of computation give, for i in 0, . . . , N − 1,

ψi =
ψ0

i∏

k=1

(1 + ∆aN (µk + λ))

.

We put back this expression into (7b), which gives after simplification

−1 + ∆aN

N−1∑

i=0

bi
i∏

k=0

(1 + ∆aN (µk + λ))

= 0

Multiplying this equation by

N−1∏

k=0

(1 + ∆aN (µk + λ)) gives the following charac-

teristic equation:
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−
N−1∏

k=0

(1 + ∆aN (µk + λ)) + ∆aN

N−1∑

i=0

bi

N−1∏

k=i+1

(1 + ∆aN (µk + λ)) = 0 (8)

From now, for the sake of realism, we will assume an hypothesis on fertile age
groups: for any given number of age groups N set in the semi-discrete model, there
exists two integers n and m such that for i < n −m or i > n, bi = 0. n is the index
of the older fertile age group, m is the width of the fertile age groups range. Because
the fertility age range in a population is supposed to be independent from the age
structure, we will assume the existence of reals α and β, strictly between 0 and 1, such
that n ∼

N→+∞
βN , m ∼

N→+∞
αN . From now, we will suppose that the problem may

be expressed in terms of n, and will denote ∆aN by ∆an. We also achieve a rescaling
of the eigenvalue, by setting z = 1 +∆anλ.
The characteristic equation (8) rewrites, under these assumptions,

n∏

k=1

(z +∆anµk) = ∆an

n∑

i=n−m

bi

n∏

k=i+1

(z +∆anµk) (En)

2.3 Asymptotic distribution of eigenvalues

We now present our main result on the circular distribution of eigenvalues for the
semi-discretized McKendrick equation.
To achieve that, we assume an additional and strong hypothesis: the birth and death
rates are piecewise-constant. This assumption is, to be sure, restrictive, but adapted
to the shape of data on birth rates and death rates we get from official statistical insti-
tutes. In a perspective of numerical simulation and model calibration, this hypothesis
is not much restrictive.
Theorem 1 (Asymptotic properties of eigenvalues of (En)). We assume piecewise-
constant birth and death rates. Then we get the following results:
1. Let (zn)n∈N be a sequence of solutions of (En). Then

lim
n→+∞

|zn| = 1

2. For any z0 = eiθ0 in U, there exists a sequence (zn)n∈N of solutions to (En)
converging to z0.

This theorem shows a result of density of the solutions to (En) in the unit circle.
We provide below a sketch of demonstration.

Proof. 1. • Let R = lim sup
n→+∞

|zn|. We prove by contradiction that R ⩽ 1. If R > 1,

we may show the existence of a sequence (un)n∈N, converging to 1, such that
for n large enough, (

R+ 1

2

)1−α

⩽ |zn| ⩽ un
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This is a contradiction, as

(
R+ 1

2

)1−α

> R > 1.

• We prove by contradiction that R ⩾ 1. If not, we can extract a subsequence,
still denoted by (zn)n∈N, such that |zn|, which converges to a L < 1. Under
the piecewise-constant hypothesis, the following computation holds on (En):

n∏

k=1

(zn +∆anµk) = ∆an

K−1∑

j=0

Cj

(j+1)pn−1∑

i=jpn

(
j−1∏

l=0

(zn +∆anMl)
pn

)
(zn +∆anMj)

i−jpn ,

where K is the number of subintervals on which b and µ are constant, pn the
number of age groups on each subinterval, and Cj (resp. Mj) is the common
value of bn−i (resp. µn−i) for i between jpn and (j + 1)pn − 1,

K−1∏

j=0

(j+1)pn−1∏

k=jpn

(zn +∆anµn−k) = ∆an

K−1∑

j=0

Cj

(
j−1∏

l=0

(zn +∆anMl)
pn

)
(zn +∆anMj)

pn − 1

zn +∆anMj − 1
,

K−1∏

j=0

(zn +∆anMj)
pn = ∆an

K−1∑

j=0

Cj

(
j−1∏

l=0

(zn +∆anMl)
pn

)
(zn +∆anMj)

pn − 1

zn +∆anMj − 1
.

We know that

∆an ∼ Aβ

n

and that for j ̸= 0,

j−1∏

l=0

(zn +∆anMl)
pn converges to 0 as well as

(zn +∆anMj)
pn . Then we may extract a subsequence, still denoted by

(zn)n∈N, and have a real C such that

K−1∏

j=0

(zn +∆anMj)
pn =

C

n
+ o

(
1

n

)

Taking the logarithm of each member gives

K−1∑

j=0

ln|zn +∆anMj | =
ln (C)− ln (n)

pn
+ o(1).

As
K−1∑

j=0

ln |zn +∆anMj | ⩽ Kln (C) < 0

13



and

lim
n→+∞

ln (C)− ln (n)

pn
−→

n→+∞
0,

we get a contradiction.

2. We denote the average mortality rate
1

n

n∑

k=1

µk by µ̄ and rewrite (En) as a fixed

point equation:

(
z +

µ̄

n

)n
=
(
z +

µ̄

n

)n
−

n∏

k=1

(
z +

µk

n

)
+
C

n

m∑

i=0

bn−i

n∏

k=n−i+1

(
z +

µk

n

)
, (9)

where C = Aβ.
We prove the existence of a solution to (9) (and consequently, to (En)) in the
angular sector Dn,θ0 defined by

Dn,θ0 =
{
z ∈ C, |z| ∈ [0, 2], arg (z) ∈

[
θ0 −

π

n
, θ0 +

π

n

[}
.

In order to apply the Brouwer fixed point theorem2, we draw a bijection ξn
between Dn,θ0 and D(0, 2),
We rewrite (9) as (

z +
µ̄

n

)n
= φn(z) (10)

and denote by χn a monovaluation of the inverse of the map z 7→ zn. We then
rewrite (10) as

z̃ = ξn

(
χn ◦ φn ◦ ξ−1

n (z̃)− µ̄

n

)
(11)

where z̃ = ξn(z) belongs to D(0, 2). The right-hand side of (11) is denoted by
fn (z̃) so that a stronger form of (9) is equivalent to

fn (z̃) = z̃, (12)

One can easily show that fn is continuous. It remains to prove that D(0, 2) is
stabe by fn. We have, on the last term of φn(z), for z in D(0, 2), the following
estimation:

∣∣∣∣∣
C

n

m∑

i=0

bm−i

n∏

k=n−i+1

(
z +

µk

n

)∣∣∣∣∣ =
(
2 +

∥µ∥∞
n

)m+1

O

(
1

n

)

2see e.g. Boothby (1971) for details and demonstration
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The two first terms of φn(z) are rewritten as

(
z +

µ̄

n

)n
−

n∏

k=1

(
z +

µk

n

)
=
(
z +

µ̄

n

)n



1−

n∏

k=1

(
z +

µk

n

)

(
z +

µ̄

n

)n ,




and after some computation, the following estimation holds:

n∏

k=1

(
z +

µk

n

)

(
z +

µ̄

n

)n = 1 +O

(
1

n

)
,

so that

|φn(z)| ⩽ O

(
1

n

)((
2 +

µ̄

n

)n
+

(
2 +

∥µ∥∞
n

)m+1
)
.

One can then prove the existence of a C1 > 0 such that, for n large enough,

|φn(z)| ⩽
2C1

n

(
2 +

∥µ∥∞
n

)n

,

|χn ◦ φn (z)| ⩽ (2C1)
1
n

(
2 +

∥µ∥∞ − 2ln (n)

n
+ o

(
ln (n)

n

))
,

∣∣∣ξn
(
χn ◦ φn(z)−

µ̄

n

)∣∣∣ ⩽ 2 +
∥µ∥∞ 2ln (2C1) + µ̄− 2ln (n)

n
+ o

(
ln (n)

n

)
,

and then conclude that fn(z) ∈ D(0, 2).
By applying Brouwer’s fixed point theorem, we then get a solution of (12), which
provides by applying ξn backwards a solution of (9) which belongs to Dn,θ0 , i.e.
which has argument converging to θ0 as n goes to infinity.
The conjugation of the two steps shows that the constructed sequence (zn)n∈N
converges to z0 as n goes to infinity.

We can verify that the piecewise regularity assumption of Theorem 1 is also cru-
cial here. We can construct counter-examples that give us eigenvalues inside the unit
disk, even with a large number of age groups, by taking random uniform identically
distributed values of natality or mortality between 0 and 1 (see Figure 5).
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Fig. 5: Computation of eigenvalues of (7a)-(7b) with random natality and mortality
values, with N = 1000 age groups. The target circle is represented for reference.

2.4 Relation with the Leslie matrix

In this subsection, we are interested in the dynamic of a population P divided into N
age groups. The dynamic is ruled by the following recurrence equation:

P (t+∆t) = LP (t) (13)

where ∆t represents a time step and P (t) is a vector of RN with, for age group i,
P (t)i the population of the ith age group. In the litterature, the matrix L is called the
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Leslie matrix (Leslie, 1945). It is a non-negative matrix given by

L =




∆tb0 · · · · · · · · · ∆tbN−1

1−∆tµ0 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1−∆tµN−2 0




We first recall a classic result on the spectrum of the Leslie Matrix, which is an
application of the Perron-Frobenius theorem.
Theorem 2. The Leslie Matrix has one real eigenvalue which is equal to its spectral
radius.

Obviously there is a strong link between the Leslie matrix and the matrix of the
dynamic system (6) resulting from the semi-discretization of the McKendrick equation,
which will be denoted by M . Taking ∆aN = ∆t gives

M =




1
∆t + µ0 − b0 −b1 · · · · · · −bN−1

− 1
∆t

1
∆t + µ1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 − 1
∆t

1
∆t + µN−−1




We denote by J the following matrix:

J =




µ0 0 · · · · · · 0
−µ0 µ1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −µN−2 µN−1




Then one immediately sees that

P (t+∆t)− P (t)

∆t
=
L− IN
∆t

P (t) = (−M + J)P (t)

so that

L = IN −∆tM +∆tJ

As ∆tJ = O(∆t), the Leslie Matrix L is a perturbation of matrix IN −∆tM , and
we have, as ∆t goes to 0, L close to IN −∆tM .
It follows from Theorem 1 that IN −∆tM is a matrix whose eigenvalues are close to
the unit circle when N is high enough. Consequently, the eigenvalues of L will also be
close to the unit circle (as the map λ 7→ 1 −∆tλ is precisely the rescaling operation
applied to the eigenvalues of M).
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3 McKendrick equation spectrum

Let us recall the McKendrick equation introduced in the previous section:





∂tϕ(t, a) + ∂aϕ(t, a) + µ(a)ϕ(t, a) = 0

ϕ(t, 0) =

∫ +∞

0

b(a)ϕ(t, a) da

ϕ(0, a) = ϕ0(a)

(5)

and the assumptions presented in the introduction: b is zero out of a fertility inter-
val [a0, a1], and for any t ⩾ 0, ϕ(t, ·) is zero out of an age interval [0, A], where A > 0

is the maximum age. The boundary term may then be rewritten

∫ a1

a0

b(a)ϕ(t, a) da.

For what follows, we will also assume that the mortality coefficient µ(t, a) and the
natality coefficient b(t, a) are non-negative L∞(]0, A[) functions.

It is well known that the problem (5) is well posed. Moreover, one can exhibit an
analytical solution.
Theorem 3 (Analytical solution of McKendrick equation). There exists one unique
solution to the McKendrick equation. Moreover, if the infertility interval is such that
0 < a0 < a1 < A < +∞, then the solution is given by the following analytical formula,
for all t < a0:

ϕ(t, a) = 1a>tψI(t, a) + 1a⩽tψB(t, a)

with

ψI(t, a) = ϕ0(a− t)exp

(∫ t

0

−µ(u, a− t+ u) du

)

and

ψB(t, a) =

(∫ a1

a0

ψI (t− a, ã) da

)
exp

(
−
∫ t

t−a

µ(u, a− t+ u) du

)

By recurrence, the formula can be extended on each time intervals of the form
[ia0, (i+ 1)a0[.

In what follows, the parameters µ and b will be independent of the time. Let us
introduce the following spectral problem in L2(]0, A[) associated with problem (5),
where the infinite bound in the natality term may be replaced by A:





−daϕ(a)− µ(a)ϕ(a) = λϕ(a),

ϕ(0) =

∫ A

0

b(a)ϕ(a) da.
(14)

This problem is not self-adjoint, and as often in this kind of situation, it is useful
to introduce its adjoint spectral problem

{
daϕ

⋆(a)− µ(a)ϕ⋆(a) + b(a)ϕ⋆(0) = λ⋆ϕ⋆(a),
ϕ⋆(A) = 0.

(15)

The eigenvectors of the problems (14) and (15), if they exist, can be computed
explicitly. Indeed, if (λ, ϕ) is an eigenpair solution of (14), then
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ϕ(a) = ϕ(0)exp

(
−
∫ a

0

(λ+ µ (ã)) dã

)
.

Moreover, the eigenvalue λ is solution of the following characteristic equation,
which is obtained from the boundary condition:

1 =

∫ A

0

b(a)exp

(
−
∫ a

0

(λ+ µ (ã)) dã

)
da. (16)

If (λ⋆, ϕ⋆) is an eigenpair solution of (15), then

ϕ⋆(a) = ϕ⋆(0)

∫ A

a

b (ã) exp

(
−
∫ ã

a

(
λ⋆ + µ

(
˜̃a
))

d˜̃a

)
dã

and the eigenvalue satisfies the same characteristic equation (16) as the direct
problem. We shall see later more complete results on the eigenpairs of problems (14)
and (15). Les us say for now that there exists a unique real eigenvalue to (14), often
called the first or leading eigenvalue, which is associated with a positive eigenvector.
The reason why the spectral problem is important is that the global dynamic of the
population will be dictated by the sign of the real part of the first eigenvalue of problem
(14).
Theorem 4. Let (λ1, ϕ1) denote the first eigenpair of problem (14). Then for any
ε > 0, there exists a constant c and a time T such that for any t > T , we have

∥ϕ(t, ·)− ⟨ϕ⋆1, ϕI⟩exp (λ1t)ϕ1∥L2(]0,A[) ⩽ c exp ((λ1 − ε) t) .

For a proof of this proposition, the reader will usefully read Song, J. et al. (1982).

3.1 Compactness of the McKendrick operator

We study the compact nature of the McKendrick operator T , defined in the Equation 5
below.
Theorem 5. The operator T , defined by

T :

(
L2(]0, A[) → L2(]0, A[)

f 7→ ϕ

)
,

where ϕ is solution of





daϕ(a) + µ(a)ϕ(a) = f(a),

ϕ(0) =

∫ A

0

b(a)ϕ(a) da,
(17)

is compact. Its eigenvalues are the inverse of the eigenvalues of (14). Moreover, T is
positive.
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Proof. The analytical solution of problem (17) is given by the following formula:

ϕ(a) =

(
ϕ(0) +

∫ a

0

exp

(∫ s

0

µ (v) dv

)
f (s) ds

)
exp

(
−
∫ a

0

µ (s) ds

)
,

with

ϕ(0)

(
1−

∫ A

0

b(a)exp

(
−
∫ a

0

µ (s) ds

)
da

)
=

∫ A

0

b(a)

∫ a

0

exp

(∫ s

a

µ (v) dv

)
f (s) dsda.

From this the following a priori estimates can be clearly obtained:





|ϕ(0)| ⩽ C ∥f∥2 ,
∥ϕ∥2 ⩽ C ∥f∥2 ,

∥daϕ∥2 ⩽ C ∥f∥2 .

This ensures the compactness of T . In fact, it is possible that the factor 1 −∫ A

0

b(a)exp

(
−
∫ a

0

µ (s) ds

)
da is equal to 0. In this situation, the right-hand side

term must also be equal to 0. Notice that 0 is then the real eigenvalue of problem (14),
and that the condition satisfied by f precisely corresponds to the Fredholm alternative.
The solution of (17) will be defined up to a function proportional to the eigenvector
associated with the null eigenvalue. In the L2 space quotiented by the first eigenspace,
the a priori estimate will still hold. Then the derivative will also be bounded, and the
compactness ensured. The positivity is obvious considering the analytical formula.

The compactness of operator T allows using the following classic functional analysis
theorem which gives us information on the eigenvalues and eigenvectors of problem
(14) (see for instance Kato (1995)).
Theorem 6. Let T be a compact operator. Then its spectrum is at most a countable
set, with no accumulation point different from 0. Each nonzero value λ of the spectrum
is an eigenvalue of T of finite multiplicity. The conjugate value λ̄ is an eigenvalue of
the adjoint operator T ⋆ with the same multiplicity.

3.2 Spectral properties

Finally, let us write a summary of the results that are known on the problems (14)
and (15). A demonstration of these results can again be read in Song, J. et al. (1982).
Theorem 7 (Spectral properties McKendrick equation). • The spectral problems

(14) and (15) have one and only one real eigenvalue, solution of the characteristic
equation (16).

• All the other eigenvalues arise as pairs of complex and conjugate numbers. Their
real part is greater than the real part of the unique real eigenvalue.

• There exists at most a countable number of eigenpairs.
• If there is an infinity of eigenvalues, their module tends to infinity.
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• If we denote by (λk, ϕk) and
(
λk, ϕ

⋆
k

)
the eigenpairs of (14) and (15), then these

eigenvectors can be normalized so that they are orthogonal:

⟨ϕ⋆l , ϕk⟩ = δkl

• In every vertical strip of finite width, there exists at most a finite number of
eigenvalues.

Of course, one question remains unanswered. Do the eigenvectors of problem (14)
form a complete basis? As in the heat equation for instance, we would like to know if
we can write for any f ∈ L2(]0, A[):





f =

+∞∑

k=0

⟨ϕ⋆k, f⟩ϕk,

T f =

+∞∑

k=0

1

λk
⟨ϕ⋆k, f⟩ϕk.

We will show that this result is true.
Theorem 8. The eigenvectors of the spectral problem (14) form a complete basis of
the space L2(]0, A[).

Proof. The operator T is a compact operator. Consequently, its spectrum is at most
countable and the following decomposition holds for any meromorphic function f (see
Riechers and Crutchfield (2018) for instance):

f(T ) =
∑

λ∈ΛT

1

2iπ

∮

Cλ

f(z) (zI − T )
−1

dz,

where the sum runs over the values in the spectrum ΛT of T , and Cλ is a contour
encircling the isolated eigenvalue λ. For f = I, this yields

T =
∑

λ∈ΛT

λ
1

2iπ

∮

Cλ

(zI − T )
−1

dz +
1

2iπ

∮

Cλ

(z − λ) (zI − T )
−1

dz (18)

Let us introduce the following operators

Tλ,0 =
1

2iπ

∮

Cλ

(zI − T )
−1

dz,

Tλ,1 =
1

2iπ

∮

Cλ

(z − λ) (zI − T )
−1

dz.

The operator Tλ,0 is a projection operator on the eigenspace corresponding to the
eigenvalue λ, and Tλ,1 a nilpotent operator. The decomposition formula (18) is the
so-called Dunford decomposition. We know explicitly the formula for the eigenvectors
corresponding to a given eigenvalue. Obviously, any eigenspace is of dimension 1.
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Consequently, if the nilpotent term is in fact null, the Dunford decomposition implies
that there is an infinite number of eigenvalues, and that their eigenspaces form a
complete basis allowing to decompose the identity and to diagonalize the operator T .
It remains to see if the nilpotent term is indeed null. Remembering that the eigenvalues
of T are the inverse of the eigenvalues introduced in (14), we want to know if we can
find a solution f to the equation

(
T − 1

λk
I

)
f = ϕk,

where Tϕk =
1

λk
ϕk. Then the Fredholm alternative implies that ⟨ϕ⋆k, ϕk⟩ = 0 which is

not true since its value is equal to 1. Thus, the nilpotent space is null, which concludes
the proof.

To end this section, let us give two numerical examples. In the first example, the
natality and mortality rates are constant. It is easy then to compute the eigenvectors
once the eigenvalues are known. The eigenvalues however must be calculated numeri-
cally. We will denote this set of eigenvalues by “continuous spectrum”. The spectrum
displays a very classic cusp shape as can be seen on Figure 6.
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Fig. 6: Complex eigenvalues of the problem (14), with constant natality and mortality
rates.
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Plotting on the same figure both discrete and continuous spectrums shows an inter-
esting link between the two problems. At a large scale, it seems that the continuous
spectrum is tangent to the circle constituting the discrete spectrum (Figure 7a). At a
small scale, we observe a correspondence in the shapes of the two spectrums. Indeed,
the convergence of the discrete spectrum to a circle seems to be nonuniform, as the
discrete spectrum presents the characteristic cusp shape (Figure 7b). This observation
paves the way to a deeper study of the links between discrete and continuous spec-
trums. The conjecture that the continuous spectrum can be obtained from the discrete
one, taking the limit on the number of age groups, seems to be reasonable.
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Fig. 7: Continuous and discrete spectrums of the McKendrick equation

In the second example, the mortality is constant, but the natality is concentrated
in a Dirac operator b(a) = bδa=a0 . Then the eigenpairs are given by





λk = µ− log (b)

a0
+ i

2kπ

a0

ϕk(a) = exp

((
µ− log (b)

a0
+ i

2kπ

a0

)
a

)

so that we could say that the eigenvectors form a Fourier basis. The evolution
problem has periodic solutions, up to a multiplicative growing or decaying exponential
term. Interestingly, this situation is not at all a pure mathematical curiosity, as such
reproduction strategies are employed by certain species, like some bamboo species that
have a cycle of decades.

Discussion

In this paper, we present theoretical and numerical studies on a semi-discretized McK-
endrick equation eigenvalues. This work aims at enlightening a specific phenomenon
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occurring with the distribution of the eigenvalues of the McKendrick semi-discretized
equation. Although we managed to demonstrate the numerical conjectures, the theo-
retical results do not exhaust the issue. One could seek a deeper explanation on why
such figures arise when the number of age groups goes to infinity. Moreover, what influ-
ence does the numerical scheme or the equation itself have on the discrete spectrum?
How could one link the spectra of discrete and continuous McKendrick equation? What
extension could one draw with the predator-prey model, or even other population
models?

Future work

As presented in the previous discussion, many interesting topics arise from our study.
The generalization of such theoretical results to an age-structured Lotka-Volterra
model, and in a larger way, to this type of equations (i.e. transport equations with
exchange terms) is one of these topics. To achieve that, one could linearize the age-
structured Lotka-Voltera model at an equilibrium point, to get the spectrum of the
continuous problem and compare it with the discrete one. Other numerical schemes
could produce similar theoretical and numerical results. Understanding better the com-
putation and characterization of equilibrium points, and handling the nonlinearities of
the predator-prey model which were eclipsed in the McKendrick equation, represents
a crucial issue. It would also be a topic of interest to deepen the interpretation and
analysis of the eigenvalues distribution; especially, explain why circles appear with the
discrete formulation and not with the continuous one, and how one can properly get
the second spectrum from the first by taking the limit on the number of age groups.

Conclusion

In this work, we presented numerical and theoretical considerations on spectral prop-
erties of population dynamics models. We took simple and academic population
dynamics models with an age structure, starting from predator-prey models extended
within a McKendrick formalism, then undergoing a semi-discretization process. We
proved a density result on the discrete formulation’s eigenvalues, as the number of
age groups goes to infinity. We showed the property that the eigenfunctions of McK-
endrick spectral problem form a complete basis of the space L2(]0, A[).
These considerations enlighten the stability analysis of such population models, where
the eigenvalues distribution play a fundamental role.
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Statements and Declarations

• This work was funded by Dassault Systèmes and the Association Nationale de la
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