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Introduction

Nonsmooth Systems

e Problem Statement: Optimal control of a nonsmooth dynamical system is modeled using
an evolution variational inequality.

We consider state-constrained systems:

p(t) € f(x(t), u(t)) — Nsq (z())

where f(-,-) is a Lipschitz continuous drift, w(-)
is the control input, and Ngg(z) denotes the
outward normal cone to the convex set S(t) at
r € S(t). The model can be expressed as an
evolution variational inequality

(&(t) = f(z(t),u(t),y —x(t)) =0
Young measure relaxation: A weakly converging minimizing sequence (x(-), u(-)) generates Young
measure d,(.) ® w(du|t) such that whenever z(t) € 5(¢).
Applications:

Elastoplastic Mechanical Systems, Modeling
congestion and vehicle interactions in traffic

flow, Control systems with state Constraints,
Occupation measure relaxation: We use the superposition principle to obtain a linear equation Economics and Game Theory

1N measures

e Approach: Both discrete and continuous time formulations are considered, with relaxation in
the space of measures. No relaxation gap exists between the original finite-dimensional problem
and the relaxed version.

e Solution Approach: Approximate solutions via the converging Moment Sum of squares
hierarchy.

Measure Formulation
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Continuous Optimal Control Problem This finite-dimensional LMI produces a non-

decreasing sequence of lower bounds that is

: solved using off the shelf solver like Mosek. It
Numerical Results can be shown that the lower bounds converge

Discretized Optimal Control Problem

A particle moving in a disc.

*

Pa S Pap1 < SPo =P
©(t) € —Ng(z(t)) + (1 +ui(t),ua(t)) where S:={xecR*:2°+ 23 <1.1%}

Future Works

e Continuity equation for sweeping pro-
First moments of state cesses with bounded variation, and related

L o First moment of control thlmal control problems

zo = (0.7,0.5); zr = (0.6,0.1)

—O— First Control
——— Second Control

e Lixploiting sparsity to increase computa-
tional efliciency
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