
HAL Id: hal-04698713
https://hal.science/hal-04698713

Submitted on 16 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced Traffic Engineering in WAN Using Graph
Attention Networks

Sami Marouani, Kamal Singh, Baptiste Jeudy, Abbas Bradai, Amaury
Habrard

To cite this version:
Sami Marouani, Kamal Singh, Baptiste Jeudy, Abbas Bradai, Amaury Habrard. Advanced Traffic
Engineering in WAN Using Graph Attention Networks. The 20th International Conference on Wireless
and Mobile Computing, Networking and Communications, Wimob 2024, Oct 2024, Paris, France. �hal-
04698713�

https://hal.science/hal-04698713
https://hal.archives-ouvertes.fr


Advanced Traffic Engineering in WAN Using Graph
Attention Networks

Sami Marouani1, Kamal Singh1, Baptiste Jeudy1, Abbas Bradai2, Amaury Habrard1,3,4
1Université Jean Monnet Saint-Étienne, CNRS, Inst. d’Optique Graduate School, Lab. Hubert Curien, F-42023 Saint-Étienne, France

2Université Côte d’Azur, CNRS, LEAT, Sophia Antipolis, France
3Institut Universitaire de France (IUF) 4 Inria

Email: 1{sami.marouani, kamal.singh, baptiste.jeudy, amaury.habrard}@univ-st-etienne.fr, 2abbas.bradai@univ-cotedazur.fr

Abstract—Efficient and responsive traffic engineering is crucial
for maintaining the robustness and reliability of Wide Area
Networks (WANs). Traditional traffic engineering approaches
often struggle to adapt to the dynamic and complex demands
of today’s network environments. To address these challenges,
this paper enhances the Traffic Engineering algorithms by inte-
grating an attention mechanism within the Edge-Path Embedding
component. This significantly improves the model’s adaptability
and decision-making accuracy. Our comprehensive experimental
evaluations demonstrate substantial improvements in terms of
satisfied traffic demands and computational efficiency, highlight-
ing the effectiveness of our approach.

Index Terms—Attention, Graph Neural Network, Networking,
Traffic Engineering, Flow Allocation

I. INTRODUCTION

Efficient and responsive Traffic Engineering (TE) is pivotal
in maintaining the robustness and reliability of WANs. As
network infrastructures grow and diversify, the ability to
dynamically manage vast volumes of data traffic becomes
critical. Traditional traffic engineering approaches often fail to
adapt swiftly to changing conditions, resulting in performance
bottlenecks and underutilized network resources. This chal-
lenge is compounded by the increasing complexity of network
configurations and the volatile nature of data flows across
global networks. This includes inter-datacenter traffic, which
requires special attention for its distinct requirements.

Recent advancements [1] have introduced machine learning
(ML) models into traffic engineering, significantly enhancing
predictive capabilities and operational efficiency. However,
these models frequently fall short in real-time responsive-
ness and decision-making accuracy. This paper introduces a
novel enhancement method as compared to existing graph
neural network based models for WAN traffic optimization.
By integrating an attention mechanism, this research aims to
significantly elevate the ML based model’s performance in
terms of the precision and speed of TE decisions.

The main contributions of this paper are as follows:
• Attention Mechanisms: Integrating attention mechanisms

in TE to dynamically prioritize critical network features.
• Performance and Adaptability: Improving satisfied de-

mands and runtime across various network topologies.
This paper is organised as follows. Section I provides the

introduction, Section II provides background on traditional
traffic engineering approaches and the application of ML

models in traffic engineering. Section III details the proposed
graph attention-based traffic engineering model. Section IV
presents the experimental setup and results, and Section V
concludes the paper and discusses future work.

II. BACKGROUND

Efficient TE in WANs is crucial for maintaining network
performance under varying conditions. Traditional approaches
often fall short and need further advancements.

A. Traditional Traffic Engineering Approaches

Traditional TE, with its reliance on static routing and prede-
fined policies, has struggled to adapt to the dynamic demands
of modern network environments. Early traffic engineering
systems were not designed for the unpredictable changes in
network traffic, leading to congestion and inefficient resource
use. Recent advances in software-defined networking (SDN)
and network function virtualization (NFV) have introduced
adaptive TE solutions. SDN allows for the dynamic adjustment
of traffic flows by separating the control and data planes, en-
hancing real-time responsiveness [2]. Similarly, NFV improves
scalability and flexibility by virtualizing network services
traditionally tied to specific hardware [3].

However, the full integration of adaptive TE that leverages
real-time data and automated decision-making is still an open
issue. Emerging applications of ML and predictive analytics in
TE are beginning to allow for preemptive adjustments to traffic
conditions [4]. These technologies are critical for networks that
support essential applications, enhancing their adaptability and
overall efficiency beyond traditional TE methods.

B. Machine Learning Models in Traffic Engineering

The integration of ML into TE marks a significant advance-
ment toward more adaptive network operations. These models
use real-time data to dynamically adjust to changes in the
network environment, thereby enhancing operational efficiency
[5]. For instance, Wang and Ng [6] investigated the application
of ML to predict network performance in virtualized environ-
ments and improve the capability of systems to adjust routing
decisions preemptively to prevent performance degradation.
Recent papers, such as RouteNet-Fermi [7], have demonstrated
the potential of Graph Neural Networks to accurately predict
network performance metrics like delay and packet loss.



Despite these promising developments, deploying ML mod-
els in traffic engineering presents significant challenges. One
major issue is ensuring the real-time responsiveness and
decision-making accuracy of these models, which are critical
for adapting quickly to changing network conditions. More-
over, some traditional ML models may not be well-suited
for addressing networking problems, which often resemble
complex combinatorial optimisation problems.

III. GRAPH ATTENTION-BASED TRAFFIC ENGINEERING

We build upon the TEAL framework [8], which leverages
graph neural networks (GNNs) reinforced by deep reinforce-
ment learning (DRL) and Alternating Direction Method of
Multipliers (ADMM) for TE optimisation. Our contribution
is to integrate graph attention mechanisms to better capture
and adapt to diverse traffic patterns intertwined with network
topologies and capacity constraints. Attention allows to selec-
tively focus on critical nodes and edges in order to optimally
allocate traffic on different paths. We show that our solution
enhances traffic engineering performance by increasing satis-
fied traffic demands and also accelerates solution discovery
times, yielding faster and more efficient decision-making.

A. Network Model and Definitions

We model the WAN traffic using a directed graph, where
flows traverse specific one-way paths. Thus, the network is
represented as a directed graph G = (V,E) where:

• V = {v1, ..., vn} represents the network nodes.
• E comprises edges with associated capacities C(e), each

limiting the maximum flow that can traverse the link.
Demands and Paths: Traffic demands are specified in a

matrix D ∈ Rn×n, with each element Di,j indicating the data
volume required from source node vi to destination node vj .
For each demand d, Pd represents the set of all feasible paths
that data can traverse from the source to the destination. Fd,p,
the fraction of demand d routed through path p, quantifies the
proportion of total demand d that is allocated to path p. A
common TE problem is as follows [8]. Given a small number
of pre-computed paths between source-destination pairs, the
goal is to distribute the demands D among these paths Pd in
order to maximize the overall network flow while adhering
to network constraints. Specifically, we aim to maximize the
total network flow, subject to network capacity constraints and
the proper allocation of demands across available paths:

maximize
∑
d∈D

∑
p∈Pd

Fd,p ·D(d)

subject to
∑
p∈Pd

Fd,p ≤ 1, ∀d ∈ D∑
d∈D
p∋e

Fd,p ·D(d) ≤ C(e), ∀e ∈ E

Fd,p ≥ 0, ∀d ∈ D,∀p ∈ Pd

(1)

Solvers like Gurobi [20] can find optimal solutions to such
complex problem, but can be slow for large networks.

B. Graph-Based Neural Networks

Graph-Based Neural Networks have demonstrated signifi-
cant effectiveness in handling graph-structured data, leading to
advancements in areas such as network modeling and traffic
prediction. Recent applications of GNNs encompass various
domains, such as RouteNet-Fermi for network modeling and
STGCN for predicting end-to-end latency [9]. Please see [10]
for a detailed survey on GNN applications.

Among GNN architectures, Graph Attention Networks
(GATs) [11], employ an attention mechanism to dynamically
assign importance to neighboring nodes during feature ag-
gregation. This allows GATs to focus on the most relevant
nodes, thereby enhancing feature representation. In contrast,
Graph Convolutional Networks (GCN) [12], extend convolu-
tional operations to graph data by aggregating features from
neighboring nodes equally to capture the graph structure.

1) Attention Mechanism in GATs: The fundamental com-
ponent of Graph Attention Networks (GATs) is the attention
mechanism, which evaluates the significance of the connec-
tions between each node and its neighbors. The calculation
of attention coefficients, αij , determines how much influence
node j has on node i. These coefficients are formulated as:

αij =
exp

(
LeakyReLU

(
aT [Whi ∥ Whj ]

))∑
k∈N (i) exp (LeakyReLU (aT [Whi ∥ Whk]))

(2)

where W, a learnable parameter, represents the weight matrix
applied uniformly to each node’s features, a, also a learnable
parameter, is the weight vector specific to the attention mech-
anism, hi is the feature vector of node i, and ∥ denotes the
concatenation operation. The normalization process spans all
neighbors k within node i’s neighborhood, N (i), ensuring the
sum of coefficients equals one.

2) Feature Aggregation: Following the computation of at-
tention coefficients, the next step involves the aggregation of
node features. This process updates the feature vector of each
node based on the weighted contributions of its neighbors:

h′
i = σ

 ∑
j∈N (i)

αijWhj

 (3)

where σ represents a non-linear activation function, such as the
sigmoid, used to integrate the influence from adjacent nodes.

GATs and GCNs differ in feature aggregation: GATs use
attention coefficients to weigh each neighbor’s importance,
while GCNs treat all neighbors equally. Our research integrates
GATs into the TE model, leveraging their attention mechanism
to enhance the baseline. This improves upon the baseline
model, demonstrating the attention mechanism’s value in im-
proving performance on network flow allocation in WANs.

C. Learning combinatorial optimisation over Graphs

Machine learning can be used to learn meta-algorithms
or meta-heuristics for solving NP-hard problems [17]. Some
of these works use GNN [16], [18] combined with deep
reinforcement learning (DRL) [15]. The idea is that the graph
embeddings can capture the situational context and graph



constraints. Next, just as a heuristic algorithm makes informed
decisions to arrive at a solution, DRL based meta-heuristic
can learn to make good choices by leveraging the graph
embeddings. By training on multiple problem instances, DRL
learns to identify crucial components in the graph embeddings
that are indicative of effective problem-solving strategies. Such
method uses learned patterns and relationships within the
graph embeddings to guide its decision-making process. DRL’s
advantage is that it does not require differentiable reward func-
tions, unlike supervised learning. This property makes it well-
suited for solving optimization problems like traffic engineer-
ing, where the objective function may be non-differentiable.
However, the learned algorithms may not respect different
constraints. Thus, [8] added some iterations of ADMM [19]
after DRL to fine-tune the solution. ADMM distributes the
optimisation problem into a series of unconstrained problems
by converting constraints into penalty terms in the objective
function. ADMM iterations involve minimising the objective
with respect to a variable at a time and then updating the
variables. Thus, we use this approach by combining graph
embedding with DRL and ADMM, focusing on improving
graph embedding through attention mechanisms. Due to space
constraints, we omit details of the DRL and ADMM phases,
which are the same as in [8], and refer the reader to it.

D. Integration of Attention Mechanisms

Following the above, the architecture features a multi-tiered
approach. Initially, traffic is processed using the Edge-Path
Embedding stage, which is discussed later in this section. Fol-
lowing this, Multi-Agent RL is employed, treating each traffic
demand as an individual agent. This decentralized framework
enables each agent to make independent decisions while col-
lectively striving towards a shared global objective. This setup
enhances the system’s capability to dynamically adjust traffic
allocations in real-time. After the RL optimization phase, the
ADMM is used to fine-tune these allocations, ensuring that
the traffic distributions comply with network constraints such
as capacity limits. These components are integrated into a
cohesive architecture that balances individual traffic demands
with overall network optimization goals, depicted in Figure 1.

Fig. 1: Integrating attention mechanisms into Edge-Path Em-
bedding (Green: GATs) compared to baseline architecture [8]
having GCNs (Red).

Our FlowAttune model represents a significant advancement
in this research, incorporating an attention mechanism into its
architecture to dynamically optimize traffic across WAN. By
employing this mechanism, the model effectively prioritizes

and processes critical network features, thereby enhancing
routing efficiency and decision-making accuracy.

FlowAttune uses six integrated layers, each comprising
GAT and Dense Neural Network (DNN) components. These
components operate sequentially within each layer to address
network capacity and demand constraints.

GAT Operations: GATs prioritize network links by assess-
ing their importance based on the current network conditions.
Instead of representing the network topology, a bipartite graph
is used. Nodes are split into two sets: one representing network
edges and the other representing paths through the network.
Figure 2 depicts this process, where each edge ei influences
path decisions Pj through targeted attention mechanisms.
This dynamic prioritization enables the system to efficiently
manage network pathways in response to real-time conditions
and demands. For illustration purposes, different width of
connections are shown representing different attention weights.

DNN Processing: Following the GAT operation in each
layer, illustrated using black lines in Figure 2, the DNN
component processes the node embeddings that result from
the GAT’s attention application. This step is essential for
integrating the information across paths and handling the
intricacies of demand constraints as well as interference due
to paths crossing similar edges.

FlowAttune aims to surpass the baseline model by maximiz-
ing total feasible network flow and reducing computational
runtime, improving efficiency and ensuring robust, accurate
TE across WAN.

IV. MODEL EVALUATION AND RESULTS

In this section, we evaluate the performance of our proposed
model and compare it with the baseline.

A. Experimental Setup

The models were trained using an NVIDIA RTX A6000
GPU and a PC with 32GB of RAM. The topologies used were
Google’s B4 (12 nodes, 38 edges) from [13], and UsCarrier
(158 nodes, 378 edges) and Kdl (754 nodes, 1790 edges)
from Topology Zoo [14]. To train and evaluate the proposed
model, we generated a comprehensive dataset of 1,036 traffic
matrices for each network topology. The original 36 matrices
for each topology were sourced from [8]. We generated a total
of 1,000 new traffic matrices per topology from the original
36 matrices. The generation process was designed to ensure
diversity and robustness in the dataset, simulating various
network traffic conditions. Two primary techniques were used
for generating the matrices:

• Load Adjustment: This method modified loads in existing
traffic matrices by a random factor between ±10%, using
an adjustment factor selected from a uniform distribution.

• Matrix Synthesis: Generate traffic matrices by linearly
combining matrices TMA and TMB with coefficient α,
randomly chosen from a uniform distribution between 0
and 1, using the following equation:

α× TMA + (1− α)× TMB (4)



Fig. 2: Illustration of FlowAttune, with wider edges indicating higher importance to dynamically prioritizing edges.

The dataset was split into a training set (70%, 724 matrices)
and validation and testing sets (15%, 156 matrices each). This
division, done post-generation, ensured all sets represented the
entire dataset. The maximum training epochs were set at 1000.
ADMM steps were set to 2 for networks with fewer than 100
nodes and 5 for larger networks. Early stopping terminated
training upon convergence before 1000 epochs.

B. Performance Analysis
During preliminary work, the baseline model showed sig-

nificant performance variability. Testing the trained model
with fixed traffic matrices sometimes yielded results near
optimal solutions, indicating potential under favorable con-
ditions. However, retraining and testing with the same data
revealed significant deviations from the optimal, highlighting
the model’s lack of robustness.

To assess model reliability, we conducted ten independent
training runs per topology, starting from scratch with different
initial random weights. Each run took several days for larger
topologies, but inference was very fast. We used Gurobi to
compute optimal solutions [21] as benchmarks to evaluate how
closely our model approached ideal performance.

1) Satisfied Demand Analysis: The satisfied demand in-
dicates total feasible network flow out of total demand. We
compare our enhanced FlowAttune model against baseline and
optimal values using Cumulative Distribution Function (CDF)
curves. These curves show the frequency of achieving certain
demand levels, with closer proximity to the optimal curve
demonstrating better performance. The enhanced stability and
consistency of the FlowAttune model across all topologies
is due to its attention mechanism, which prioritizes critical
network data, streamlining decision-making and computational
efforts. Figures 3, 4, and 5 show this improvement, demon-
strating how the model aligns closer to optimal values and
reduces result spread, ensuring reliable network management.

Table I details the performance in the UsCarrier and Kdl
topologies, highlighting the impact of attention mechanisms.
The satisfied demand percentages over the ten training runs
show our model consistently outperforms the baseline TEAL
model, except one case, nearing theoretical optimal values.

For UsCarrier, baseline satisfied demand ranges from
77.01% to 86.71%, indicating instability. The enhanced model
ranges from 88.64% to 89.95%, close to the optimal 93.42%.

Fig. 3: CDF of Satisfied Demands for B4 Topology

Fig. 4: CDF of Satisfied Demands for UsCarrier Topology

In Kdl, baseline results vary from 74.18% to 88.14%, show-
ing high instability. The enhanced model achieves 79.61% to
87.23%, outperforming the baseline except one outlier. The
performance also nears the optimal 95.53%. These results
demonstrate the stability and performance of our model’s
attention mechanism for improving traffic engineering perfor-
mance in complex networks.

2) Runtimes Analysis: Runtimes are a crucial performance
metric in TE, reflecting the efficiency and practical applicabil-
ity in real-time scenarios. This section evaluates the computa-
tional efficiency of the FlowAttune model by comparing it with
both the baseline model and the optimal runtimes achieved by
the optimizer across different network topologies.

For B4 topology, the enhanced FlowAttune model demon-
strated a consistent improvement in runtimes compared to the

Fig. 5: CDF of Satisfied Demands for Kdl Topology



TABLE I: Training Runs and Average Satisfied Demands for
Different Topologies (in percentages and in ascending order)
Independent

Training
Runs

UsCarrier Kdl

TEAL Our Model TEAL Our Model
1 77.01 88.64 74.18 79.61
2 82.46 89.09 79.61 84.81
3 84.15 89.31 81.33 85.12
4 85.43 89.40 83.50 86.71
5 85.56 89.42 83.93 86.79
6 85.89 89.44 83.97 86.85
7 86.10 89.47 85.81 86.88
8 86.47 89.63 86.82 87.15
9 86.57 89.66 87.12 87.23
10 86.71 89.95 88.14 87.51

Avg. for
Gurobi 93.42 95.53

baseline TEAL model. Figure 6 shows that the FlowAttune
model achieved runtimes between 4.39ms and 31.67ms, con-
sistently showing faster performance than the TEAL model,
which recorded runtimes ranging from 7.449ms to 32.59ms.
This indicates that FlowAttune typically operates faster than
TEAL in most cases. Although the optimizer achieved the
fastest runtimes, approximately from 1.118ms to 2.757ms,
the relatively small size of this topology does not necessitate
extensive computational time to find optimal solutions.

Fig. 6: CDF of Runtime for B4 Topology.

For UsCarrier, the enhanced model achieved runtimes rang-
ing from 26.14ms to 183.88ms, as shown in Figure 7. In
comparison, the baseline TEAL model’s runtimes varied from
37.64ms to 324.85ms, indicating that our model typically
operates faster, also depicted in the runtime distribution. The
optimizer required significantly more time from 6889.313ms
to 1014.468ms, to find the optimal solution, due to increased
computational demand as the network’s complexity grows.

Fig. 7: CDF of Runtime for UsCarrier Topology.

In Kdl, the FlowAttune demonstrated significant efficiency,
with runtimes between 0.92s and 1.74s. The baseline TEAL
model’s runtimes were more variable, ranging from 1.70s to
2.72s. The runtime comparison shown in Figure 8 illustrates

that our model consistently outperforms TEAL, effectively
reducing the computational time required for processing. The
optimizer’s runtimes in this topology extended from 1715.25s
to 2217.57s, further emphasizing the computational intensity
needed for finding optimal solutions in larger, complex net-
works. A summary of average runtimes for these topologies
across all the training runs can be found in Table II.

Fig. 8: CDF of Runtime for Kdl topology

TABLE II: Training Runs and Avg. Runtimes for UsCarrier
and Kdl Topologies (in ms, sorted in ascending order)
Independent

Training
Runs

UsCarrier Kdl

TEAL Our Model TEAL Our Model
1 27.12 38.68 1716.1 934.4
2 28.44 38.88 1723.2 965.3
3 50.56 40.10 1738.4 997.5
4 50.80 40.18 1917.0 1032.1
5 50.92 40.88 1934.3 1057.8
6 51.10 41.53 1975.0 1083.3
7 82.44 41.88 2101.1 1112.0
8 83.65 42.81 2292.7 1158.2
9 84.15 43.29 2306.0 1181.2

10 85.07 43.40 2393.9 1291.7
Avg. for
Gurobi 8455.1 1900193

The attention mechanism within the FlowAttune model
plays a pivotal role in these performance gains. By effectively
prioritizing and processing the most relevant features of the
network data, the model minimizes unnecessary computations.
This not only accelerates runtime but also ensures optimal use
of computational resources, which is especially beneficial in
large-scale and complex network topologies.

C. Overall comparison
Table III highlights the performance gains achieved by our

model compared to the Baseline across several network topolo-
gies. In the B4 topology, our model improved the satisfied
demands by 10.2% while reducing the runtime by 8.33%,
demonstrating enhanced efficiency and faster processing. For
the UsCarrier topology, the improvements are equally com-
pelling, with a 5.62% increase in total transmitted demands
and a substantial 30.80% reduction in runtime, underscoring
our model’s capability to manage larger and more complex
network environments effectively. In the Kdl topology, al-
though the improvement in satisfied demands is more modest
at 2.89%, the reduction in runtime is remarkable at 46.36%.

The standard deviation (std) of satisfied demands provides
insights into the model’s consistency across different runs.
Lower std values indicate more stable performance, while



higher std values suggest greater variability. Notably, our
model shows a marked improvement in stability. In the B4
topology, std reduced from 21.61 for the Baseline to 3.62,
indicating enhanced performance consistency. For the UsCar-
rier topology, std improved from 2.82 to 0.33, and for the
Kdl topology, it improved from 3.95 to 2.28. These reductions
underscore the reliability and enhanced stability of our model
across varying network conditions.
TABLE III: Performance metrics and improvement compar-
isons across different topologies for Baseline, Gurobi, and our
model, presenting satisfied demand (%) and runtime (ms) as
mean ± standard deviation.
Metric B4 UsCarrier Kdl

Satisfied D. (%)
Baseline 84.40± 21.61 84.64± 2.82 83.44± 3.95
Our Model 93.05± 3.62 89.40± 0.33 85.85± 2.28
Gurobi 99.96± 0.15 93.42± 0.01 95.53± 0.00

Runtime (ms)
Baseline 9.6± 2.1 59.4± 25.9 2008.7± 238.8
Our Model 8.8± 2.3 41.1± 11.4 1077.4± 105.1
Gurobi 1.4± 0.2 8455.0± 525.2 1900193± 108862

Improv. over
Baseline
Satisfied D. (%) 10.2 5.62 2.89
Runtime (%) 8.33 30.80 46.36

Improv. over
Baseline & Gurobi
Satisfied D. (%) 55.57 54.21 19.93

To assess the performance improvements of our model
relative to the Baseline and the optimal results, we employ
a normalized performance metric defined as:

Norm. Satisfied D. (%) = 100× VOur Model − VBaseline

VOptimal − VBaseline
(5)

where V represents the total transmitted demands.
Applying this formula, we observe the following:
• B4 Topology: The normalized satisfied demands of our

model is 55.57%, indicating that it achieves more than
half of the possible improvement between the Baseline
and the optimal value.

• UsCarrier Topology: With a normalized satisfied de-
mands of 54.21%, our model shows that it captures more
than half of the potential improvement.

• Kdl Topology: The normalized satisfied demands is
19.93%, demonstrating that our model achieves nearly
a fifth of the way from the Baseline to the optimal value.

FlowAttune significantly improved runtime over the baseline
across all topologies, confirming its suitability for real-time
TE. Its efficiency is especially notable in larger networks,
where traditional methods become computationally intensive,
making it ideal for quick decision-making and high scalability.

V. CONCLUSION

The integration of attention mechanisms into the Edge-
Path Embedding component has demonstrated substantial im-
provements in both satisfied demands and runtime across
various network topologies. The enhanced FlowAttune model

mostly outperforms the baseline, showing greater stability and
robustness, particularly in larger and more complex network
environments. Future work will explore further refinements
of the attention mechanism and its application to additional
network scenarios to continue improving WAN TE.

ACKNOWLEDGMENT

This work has been supported by grant ANR-21-CE25-0005
from the Agence Nationale de la Recherche, France for the
SAFE project.

REFERENCES

[1] Guillermo B. ”Is machine learning ready for traffic engineering opti-
mization?.” in IEEE Int. Conf. on Network Protocols (ICNP), 2021.

[2] Kreutz, Diego, et al. ”Software-defined networking: A comprehensive
survey.” Proceedings of the IEEE 103.1 (2014): 14-76.

[3] Mijumbi, Rashid, et al. ”Network function virtualization: State-of-the-
art and research challenges.” IEEE Communications Surveys & Tutorials
18.1 (2015): 236-262.

[4] Boutaba, Raouf, et al. ”A Comprehensive Survey on Machine Learning
for Networking: Evolution, Applications and Research Opportunities,”
Journal of Internet Services and Applications, vol. 9, no. 16, 2018.

[5] Minghao Ye, et al. ”FlexDATE: Flexible and Disturbance-Aware Traffic
Engineering With Reinforcement Learning in Software-Defined Net-
works.” IEEE Trans. on Networking, vol. 31.4, pp. 1433-1448, 2023.

[6] Wang, J. and Ng, T. S. E. ”The impact of virtualization on network
performance of Amazon EC2 data center,” in IEEE INFOCOM, 2012.

[7] Galmés, Miquel Ferriol, et al. ”RouteNet-Fermi: Network Modeling
with Graph Neural Networks,” in IEEE Journal on Selected Areas in
Communications, vol. 39, no. 6, pp. 1701-1711, 2021.

[8] Xu, Zhiying, et al. ”Teal: Learning-Accelerated Optimization of WAN
Traffic Engineering,” in ACM SIGCOMM, pp. 378-393, 2023.

[9] Ge, Zhun, Jiacheng Hou, and Amiya Nayak. ”Forecasting SDN end-to-
end latency using graph neural network.” 2023 International Conference
on Information Networking (IEEE, 2023).

[10] Zhou, Jie, et al. ”Graph Neural Networks: A Review of Methods and
Applications,” in AI Open, vol. 1, pp. 57-81, 2020.

[11] Veličković, Petar, et al. ”Graph Attention Networks,” arXiv preprint
arXiv:1710.10903, 2018.

[12] Kipf, Thomas N., and Welling, Max, ”Semi-Supervised Classification
with Graph Convolutional Networks,” arXiv preprint arXiv:1609.02907,
2016.

[13] Jain, Sushant, et al. ”B4: Experience with a globally-deployed software
defined WAN.” ACM SIGCOMM Computer Communication Review 43.4
(2013): 3-14.

[14] Knight, Simon, et al. ”The internet topology zoo.” IEEE Journal on
Selected Areas in Communications 29.9 (2011): 1765-1775.

[15] Khalil, Elias, et al. ”Learning combinatorial optimization algorithms
over graphs.” Advances in Neural Information Processing Systems 30
(2017).

[16] Peng, Yun, Byron Choi, and Jianliang Xu. ”Graph learning for com-
binatorial optimization: a survey of state-of-the-art.” Data Science and
Engineering 6.2 (2021): 119-141.

[17] Nair, Vinod, et al. ”Solving mixed integer programs using neural
networks.” arXiv preprint arXiv:2012.13349 (2020).

[18] Gasse, Maxime, et al. ”Exact combinatorial optimization with graph con-
volutional neural networks.” Advances in Neural Information Processing
Systems 32 (2019).

[19] Boyd, Stephen, et al. ”Distributed optimization and statistical learning
via the alternating direction method of multipliers.” Foundations and
Trends in Machine Learning 3.1 (2011): 1-122.

[20] Gurobi Optimization, LLC. ”Gurobi Optimizer Reference Manual.”
Available: https://www.gurobi.com/.

[21] Abuzaid, Firas, et al. ”Contracting wide-area network topologies to solve
flow problems quickly.” 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). 2021.


