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ABSTRACT
Federated Learning (FL) has emerged as a paradigm shift enabling
heterogeneous clients and devices to collaborate on training a
shared global model while preserving the privacy of their local
data. However, a common yet impractical assumption in existing FL
approaches is that the deployment environment is static, which is
rarely true in heterogeneous and highly-volatile environments like
the Edge-Cloud Continuum, where FL is typically executed. While
most of the current FL approaches process data in an online fashion,
and are therefore adaptive by nature, they only support adapta-
tion at the ML/DL level (e.g., through continual learning to tackle
data and concept drift), putting aside the effects of system variance.
Moreover, the study and validation of FL approaches strongly rely
on simulations, which, although informative, tends to overlook the
real-world complexities and dynamics of actual deployments, in
particular with respect to changing network conditions, varying
client resources, and security threats.

In this paper we make a first step to address these challenges.
We investigate the shortcomings of traditional, static FL models
and identify areas of adaptation to tackle real-life deployment chal-
lenges. We devise a set of design principles for FL systems that
can smartly adjust their strategies for aggregation, communication,
privacy, and security in response to changing system conditions.
To illustrate the benefits envisioned by these strategies, we present
the results of a set of initial experiments on a 25-node testbed.
The experiments, which vary both the number of participating
clients and the network conditions, show how existing FL systems
are strongly affected by changes in their operational environment.
Based on these insights, we propose a set of take-aways for the FL
community, towards further research into FL systems that are not
only accurate and scalable but also able to dynamically adapt to the
real-world deployment unpredictability.

KEYWORDS
federated learning, dynamic adaptation, computing continuum,
machine learning, data privacy

1 INTRODUCTION
Federated Learning (FL) has emerged as a distributed learning para-
digm that allows multiple clients to collaboratively address learning
tasks without local data sharing [25]. Unlike traditional centralized
machine learning (ML) models, which require the aggregation of
extensive amounts of sensitive data on a single server, often raising
data privacy and security concerns, FL adopts a fundamentally dif-
ferent approach. It enables ML models training locally on individual
devices or servers, with only model updates shared, rather than raw
data. We focus on the cross-device case, where this global learning

task is typically executed across the Edge-Cloud (or the Computing)
Continuum [1]: a local model is trained on each client (at the Edge,
close to the data sources) and only its model parameters are shared
with a central server (in the Cloud, or HPC center). The central
server handles the model initialization, the selection of participat-
ing clients for each federated round, the aggregation of all received
parameters into global model parameters, and the distribution of
the updated global parameters back to the clients. This process is
illustrated in Figure 1.

Practical FL deployments across such Edge-Cloud Continuum,
typically leveraging geographically-distributed and heterogeneous
resources, face several challenges at both system and data levels. At
system level, the network or the computing resources may become
suddenly limited and the number of active clients can fluctuate
significantly. At data level, the data characteristics may evolve
unexpectedly, as in the case of DL applications that increasingly
need to be trained with unbounded datasets that are updated fre-
quently. For instance, scientific applications using experimental
devices such as sensors need to quickly analyze the experimental
data in order to steer an ongoing experiment. These fluctuations
can impact the learning process through increased resource con-
sumption (network, GPU/CPU hours, storage space), leading to
both prohibitive runtimes as well as inefficient resource usage.

Recently, a growing body of research has focused on addressing
the latter, data variance issues. Heterogeneous data among clients
is handled through Personalized Federated Learning [34], in which
the federated system not only aggregates global model updates
from participating devices but also allows for personalized model
customization. Since local updates to client models may deviate
to varying degrees, potentially leading to suboptimal outcomes as
the average global model drifts away [8], several solutions focus
on Clustered Federated Learning [31], employing multi-task learn-
ing [33] to mitigate data heterogeneity by grouping clients into
clusters with higher internal similarity (more homogeneity). While
these training strategies may provide effective models for coping
with evolving data, they overlook the system variance as they typi-
cally assume a level of environmental stability that does not hold
up in real-world scenarios. Hence, they cannot guarantee the same
level of performance when the underlying system conditions vary.
This is especially problematic for FL deployments across the Com-
puting Continuum, where Edge devices have a high volatility while
Cloud resources are also variable (e.g., due to multi-tenancy).

In this paper, we are focusing precisely on the impact of system
variance on the FL performance (i.e., accuracy and training time).
We study the performance degradation of existing solutions when
deployed on real-clusters. We show that existing schemes fail to
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Server aggregates the local updates into the global model

Figure 1: Steps of a Federated Learning process.

preserve accuracy and degrade system efficiency when the environ-
ment characteristics change over time. To mitigate this issue and
accelerate model convergence, we advocate for dynamic adaptation
within FL frameworks. Instead of introducing new techniques, we
show how the existing methods can be extended to better cope
with the system variability across the Computing Continuum.

Our main contributions are summarized as follows:
• A study of howdifferent types of system changes affect

FL, highlighting what, when and how to adapt.
• A review of existing methods that can be adjusted or

repurposed to meet specific challenges such as network
inconsistencies, varying number of clients, and evolving
data sets.

• An experimental evaluation on 25 nodes from 2 dis-
tant sites of the Grid’5000 [5] testbed, illustrating the
impact of the available bandwidth, latency and client volatil-
ity on the training time. The results show that existing FL
approaches (i.e., FedAvg [25]) are not designed to handle
dynamic adaptation.

• A set of take-aways for the FL community on how to
incorporate dynamic adaptation in FL frameworks and open
related research challenges.

The remainder of this paper is organized as follows. Section 2
reviews the recent body of work addressing the challenges of data
heterogeneity in FL and advocates for new research around dy-
namic adaptation to tackle system variance. Section 3 highlights
the envisioned benefits of dynamically adapting to system variance
in FL. Section 4 presents a set of design principles for enhancing
FL with dynamic adaptation. Section 5 presents the results of our
real-world experiments showing how existing FL approaches . are
impacted by system variace. Finally, Section 6 provides a set of
hints for the community on how to elaborate on early adaptive FL
strategies.

2 BACKGROUND AND RELATEDWORK
2.1 Federated Learning
Federated Learning is an approach to machine learning devised to
train models across decentralized and distributed data sources while
preserving data privacy and reducing communication overhead. It
tackles the difficulty of training AI models on sensitive or private

data without centralizing that data in one location. Among the
numerous proposed FL algorithms [17, 36], Federated Averaging,
commonly known as FedAvg [25], stands out as a fundamental
and extensively utilized algorithm. In FedAvg, a global model is
derived by averaging the models from clients at a server and then
disseminating the averaged model back to the clients after each
training round.

Nevertheless, the canonical FL setup faces several challenges,
which can be largely divided into two categories: (1) data hetero-
geneity (variations in data distribution), and (2) device heterogene-
ity (disparities in computational capacity, network connection, etc.).
The vast majority of FL research is focusing on addressing the first
(data) challenge, which complicates the learning of a single shared
global model for all clients. We recall the main solutions to these
issues in Section 2.2. We discuss the device heterogeneity and how
this issue is worsen by the inherent variability of resources and
clients on the Computing Continuum in Section 2.3.

2.2 Data Heterogeneity Challenges and
Solutions

Data Diversity andNon-IIDData. Data heterogeneity refers to the
uneven distribution of features, labels, and/or samples among client
datasets. This non-uniformity results in gradient drift between lo-
cal updates and server updates (which occur post-aggregation).
Gradient drift can occur from various sources, including the client
model’s overfitting locally biased data, biases in aggregation, and
covariate shift. Consequently, gradient drift introduces noise into
the training process of the global model and adversely affects its
overall performance [20]. To tackle this issue, a new branch of FL
referred to as Personalized Federated Learning [34] has emerged,
leveraging personalized models for each client. Recently, numer-
ous techniques have been introduced to enhance the accuracy and
convergence of personalized FL. These advancements encompass
strategies such as clustering [31], multi-task learning [33], met-
alearning [11], model mixture[14], or adjusting the influence of
updates from different clients based on their data characteristics
[7] or contribution quality [37].

Data Transfers Overhead. FL requires regular updates between
clients and the central server, which can be problematic in envi-
ronments with limited bandwidth or high latency, hindering FL’s
efficiency and scalability [18]. To cut down on communication over-
head, there are strategies for selectively engaging clients in the
training phase, targeting clients with either more relevant data or
better network connection [12].

Slow Model Learning. The distributed nature of FL, coupled with
variations in data often results in slower convergence rates for the
global model. This requires additional training rounds to achieve
satisfactory performance, impacting the timely deployment of up-
dated models [22]. Approaches based on the dynamic management
of local epochs aim to address this issue. These strategies find a
middle ground between the local processing done by clients and
the need for global communication, to speed up the model learning
by adjusting how often updates occur [29].



Towards Efficient Learning on the Computing Continuum: Advancing Dynamic Adaptation of Federated Learning

2.3 System Variance Challenges on the
Computing Continuum

Emerging FL applications typically need to be implemented as com-
plex workflows and require the coordinated use of supercomputers,
Cloud data centres and Edge-processing devices. This assembly is
called the Computing Continuum. It raises challenges at multiple
levels: (i) at the application/workflow level, to bridge machine learn-
ing and data-driven analytics; (ii) at the middleware level, adequate
tools must enable efficient deployment and orchestration of the
workflow components across the whole distributed infrastructure;
and, finally, (iii) a capable resource management system must allo-
cate a suitable set of components of the infrastructure to run the
application workflow, preferably in a dynamic and adaptive way,
taking into account the specific capabilities of each component
of the underlying heterogeneous infrastructure. In this paper, we
are focusing on the FL issues related to the dynamic nature of the
Computing Continuum: variable system resources and high client
volatility.

Static Settings. Many FL strategies are built on static assumptions
regarding client participation, data distribution, and network condi-
tions. Works such as [4, 6] conduct experiments under conditions of
constant data distribution and unvarying client engagement. This
limits their applicability in dynamic environments where these
factors can fluctuate unpredictably.

Isolated Parameters. Several solutions focus on optimizing in-
dividual components of FL, such as improving communication
efficiency or refining data aggregation techniques, without con-
sidering how these aspects are interlinked and change over time.
This approach may miss opportunities for broader improvements
across FL [21]. As pointed out in [23], much of the research aimed
at enhancing accuracy concentrates on optimizing the aggregation
algorithm without necessarily considering its dynamic interplay
with other FL aspects such as client data heterogeneity or system
heterogeneity.

Simulation vs. Experimental Validation. Since the main focus of
the FL community is on algorithmic improvements, addressing data
and model heterogeneity, the de facto standard for validation and
evaluation is by simulation. While this approach allows to assess
the accuracy of the proposed solutions, it raises some important
challenges in terms of fully capturing the real-world complexities
and supporting reproducibility in the Computing Continuum. For
example, it is increasingly difficult to model the heterogeneity and
volatility of Edge devices or to assess the impact of the inherent
complexity of hybrid Edge-Cloud deployments on performance. At
this stage, experimental evaluation remains the main approach to
gain accurate insights of performance metrics, to build precise ap-
proximations of the expected behavior of large-scale FL applications
on the Computing Continuum, and to eventually validate whether
they can be effectively scaled and applied outside of a controlled
setting. The gap between simulations and real-world deployments
in FL is discussed in [13] and showed to be critical. For instance,
the FL algorithms proposed in [42] targeting the communication
latency and validated on a Raspberry Pi cluster (16 nodes) already
highlight the difference between simulation and a small cluster to
be significant.

2.4 Problem Statement: Dynamic Adaptation
for Federated Learning

The term "dynamic adaptation" is broadly used by the ML and DL
communities to designate in-model adjustments for improved learn-
ing outcomes based on performance feedback [29]. In the context
of our work, focusing on addressing system variance, we define dy-
namic adaptation as the ability of FL systems to modify operational
strategies in real-time in response to environmental changes.

To the best of our knowledge, existing FL strategies are agnostic
to dynamic changes, as per this definition of dynamic adaption, and
they fail to guarantee accuracy or significantly degrade efficiency.
The key reason for this is that some optimal algorithms, or parame-
ter and hyperparameter assignments at the current instant can be
suboptimal in the future.

3 MOTIVATION:WHY DYNAMICALLY ADAPT
In this section we briefly recall the main factors of variation for FL
deployments across the Computing Continuum, and we illustrate
with some real-life use-cases how detecting and then reacting to
this variability could improve the overall FL process.

3.1 Dynamics of Federated Learning
Environments

Several factors are likely to evolve during the FL execution across
Edge-Cloud deployments. We discus below the most important
ones.

Variable network conditions. FL’s reliance on ongoing communi-
cation means it is vulnerable to network issues [32]. For example,
heavy traffic can slow down the exchange of model updates, affect-
ing the training process. In the context of 5G networks, the speed
experienced by a device can fluctuate significantly depending on its
location relative to the nearest 5G tower. When a device is in close
proximity to a tower and has an unobstructed path to it, speeds can
reach up to 1000 MB/s. However, these speeds tend to decrease as
the distance to the tower increases or if physical barriers disrupt
the direct line of sight, impacting the signal strength and quality.

Changing data distributions. The data each client contributes to
FL can change over time, either because they collect new types
of data or their data collection methods evolve. This continuous
change demands that the FL process adjusts to keep the global
model accurate and relevant [10]. Several solutions to tackle this
problem were proposed in the context of Continual Learning [8],
essentially by training the DL model incrementally (i.e., the train-
ing proceeds with relatively inexpensive updates to the model’s
parameters based on just the new data samples). Unfortunately,
this approach can cause the accuracy of the DL model to deterio-
rate quickly—a phenomenon known as catastrophic forgetting [24].
Specifically, the training introduces a bias in favor of new samples,
effectively causing the model to reinforce recent patterns at the
expense of previously acquired knowledge. This is an active field
of research in the domain of DL, however, its impact on FL has not
yet been studied.

Fluctuating client participation. The number of clients taking
part in FL can change dramatically over time, influenced by factors
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such as device availability, user choices, and technical limitations.
Remember that clients are typically deployed at the Edge, subject to
high churn and volatility. The study by Bonawitz et al. [3] illustrates
the fluctuating availability of devices for FL over a 24-hour period,
highlighting a significant variance from a peak of 6000 devices at
midnight to approximately 1000 devices at noon. This could po-
tentially impact the accuracy of the FL, by skewing the federated
model towards the data characteristics present during high partici-
pation periods, potentially at midnight, and underrepresenting the
data characteristics of lower participation periods, like noon. The
study also note that client dropout rates are higher during daytime
compared to nighttime, this trend is attributed to changes in device
eligibility as users are more likely to interact with their devices dur-
ing the day. Not only does the number of available clients vary, but
their characteristics change as well, highlighting the importance of
considering time-dependent variations in FL strategies.

3.2 Performance Optimization with Adaptive
Strategies

Detecting and mitigating the impact of such variability could poten-
tially improve the performance of FL systems in several dimensions:

• Accuracy enhancement: FL strategies can improve the
representativeness and accuracy of the global model by
adjusting to the dynamic nature and diversity of data [28].

• Efficiency improvement:Optimizing how andwhen clients
communicate based on current network conditions and
available resources can reduce training time and resource
usage [40].

• Robustness increase: Implementing adaptivemechanisms
can make FL systems resilient to potential issues such as
outliers, security threats, and system failures, maintaining
the integrity of the learning process [26, 39].

Several real-life use-cases highlight the importance of adaptabil-
ity in FL.

Healthcare monitoring. In a network of healthcare facilities shar-
ing data to predict patient outcomes, the variability in incoming
patient data can vary widely with seasonal diseases or outbreaks.
FL systems must adapt to these changes by adjusting data sam-
pling rates, or model aggregation strategies to ensure timely model
convergence without compromising patient privacy or hospital
operations [38].

Traffic management systems. Traffic management systems lever-
age FL to improve traffic flow and safety by learning from data
collected across senors and cameras. Variables such as traffic con-
ditions, sensor functionality, and the quality of data are prone to
sudden changes due to unforeseen events like accidents, adverse
weather, or infrastructure malfunctions. Adapting client selection
and communication strategies can help maintain system perfor-
mance even under these conditions [9].

Autonomous vehicles. For autonomous vehicles, FL is employed
to continually improve driving algorithms based on data from vehi-
cles on the road. These vehicles face rapidly changing conditions
like weather, traffic and road conditions. Additionally, the compu-
tational capacity for training can fluctuate, as vehicles must give

precedence to navigation tasks and safety. FL needs to adapt dy-
namically, deciding which data to focus on, synchronization timing
and frequency, to improve learning efficiently without affecting the
vehicle primary tasks [27].

Although these examples are not exhaustive, the FL patterns
they leverage can be generalized in other contexts (i.e., speech and
vision, climate science, cancer research, to name a few). Overall,
the above examples motivate the need for FL approaches that can
model future dynamic adaptation and account for data and system
uncertainty while optimizing for both accuracy and efficiency.

4 SUPPORTING USER-DEFINED REACTION:
WHAT, WHEN AND HOW TO ADAPT

While dynamic adaptation is a key enabler for efficient FL training,
improper changes to the system environment or the FL settings
can adversely impact convergence properties and degrade model
accuracy. Thus, we argue that FL strategies should support user-
defined dynamic adaptation to avoid affecting training accuracy.
This means tuning several settings and parameters mainly because
no single adaptive technique (i.e., single parameter) works consis-
tently well across all datasets and throughout the entire Computing
Continuum.

4.1 Adaptation Dimensions
In this context, adjustments can be made across several dimensions:

• Aggregation Algorithm: This involves the techniques
used to merge client updates into the global model. Adapt-
ing this algorithm is essential for dealing with data diversity
and varying client reliability. Techniques like weighted av-
eraging [36] prioritize updates from clients with extensive
or higher-quality data, while robust aggregation [26] meth-
ods aim to reduce the influence of outliers or malicious
inputs.

• Client Selection Method: Adjusting how clients are cho-
sen for training rounds can optimize the use of resources
and improve the efficiency of the learning process. This
selection can be adapted based on factors such as network
conditions, the quality or amount of data from clients, their
past impact on model accuracy, or their computational ca-
pabilities [12].

• Communication Frequency: The rate at which updates
are exchanged between clients and the server affects the
speed of model convergence and the overall communication
burden. Modifying this frequency in response to current
network conditions or the pace of model improvement can
make training more efficient [25].

4.2 Decision Criteria
The decision on when to react to changes is guided by various
conditions:

• Network and Resource Conditions: Fluctuations in net-
work speed and resource availability can dictate adjust-
ments in how often communications happen and which
clients are included, aiming for efficient bandwidth and
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resource usage and minimizing learning interruptions. For
example, network congestion caused by a traffic jam might
necessitate reducing the frequency of communications be-
tween the server and clients to alleviate bandwidth strain.

• Data Heterogeneity: The variation in data among clients
may require changes in the aggregation algorithm to en-
sure the global model is effective and representative for all
participants. As Li et al. [20] showed, there is not a single
FL algorithm that consistently outperforms the other al-
gorithms or has a good performance in all settings, hence
finding ways to dynamically match clients evolving data
distribution can significantly enhance system performance.

• Model Performance Metrics:Monitoring performance
indicators like accuracy, loss, or other validation measures
helps pinpoint when and what kind of adaptations are nec-
essary to enhance learning outcomes. Detecting a notable
decline in accuracy, for example, may prompt the imple-
mentation of more robust methods designed to counter
potential security threats.

4.3 Algorithmic Approaches
The strategies enabling dynamic FL adaptation fall broadly into
two categories.

Reinforcement Learning: RL strategies can refine adaptation mea-
sures based on performance feedback [35]. For instance, an RL agent
could determine optimal times to adjust communication frequency,
striking a balance between network usage and learning efficiency.

Heuristic-Based Approaches: These strategies use straightforward
rules or heuristics—derived from empirical data or theoretical knowl-
edge—to inform adaptation decisions. For example, the system could
automatically extend communication intervals if network latency
reaches a predefined threshold; another example could be a heuristic
algorithm to approximate the optimal client selection as proposed
in [41].

5 EVALUATION
For this preliminary evaluation, out of the 3 main factors (identified
in Section 3.1) affecting the FL across the continuum, we focus on
the variable network conditions and the fluctuating client partici-
pation. Our objective is to highlight their crucial impact on the FL
operational efficiency and the importance of dynamic adaptation
to mitigate such effects. Hence, the evaluation seeks to answer the
following questions:

• How are the state-of-the-art FL approaches (i.e., FedAvg)
impacted by network and client variance in the absence of
dynamic adaptation?

• What is the relationship (if any) between the system vari-
ability (i.e., number of participating clients, network condi-
tions) and the training time (i.e., the duration required to
complete a single round of FL)?

5.1 Experimental Setup
We use a total of 25 nodes from 2 distant sites of Grid’5000 [5], a
large-scale testbed for experiment-driven research: 5 nodes from
the Lille site are equipped with 2 AMD EPYC 7301 (16 cores/CPU)

Figure 2: Time per FL round with varying number of partici-
pating clients.

each, and 20 nodes on the Rennes site are equipped with 2 Intel
Xeon E5-2630 v3 (8 cores/CPU) each. We deploy 500 clients for the
federated process (20 clients per node). Each node is given access
to an Ethernet configuration with a 10GBps rate.

We leverage the E2Clab framework [30] to automatize our ex-
periments. E2Clab provides tools and functionalities to streamline
the deployment and the execution of scientific workflows on Edge-
Cloud computing environments. Its integration into our experi-
mental setup allows for orchestration of training processes across
distributed nodes.

5.2 Methodology
Evaluation Scenario. In our study, we focus on FedAvg [25], the

standard approach for FL with weighted averaging of the client
updates to build the global model update. We use FedAvg to train a
ResNet-18 network [15] on the CIFAR10 dataset [19]. We rely on
the Flower framework [2] for easy setup and deployment of the FL
system across multiple nodes.

In each FL round, 10 clients are randomly selected from the pool
of 500 clients to participate in the training process. This design
mirrors common operational scenarios in FL, where only a subset
of available devices participates in each training iteration, balancing
computational efficiency and model performance. To evaluate the
system performance under different network conditions, we use the
netem [16] tool to emulate specific network latencies and bandwidth
scenarios across the distributed nodes.

Performance Metrics. The primary metric for our investigation
is the total duration of a single FL training round, comprising all
phases of the FL process: (1) the distribution of the global model
to the selected clients, (2) local training on client devices, (3) the
transmission of model updates back to the server, and (4) the aggre-
gation of these updates using the FedAvg algorithm. Measuring the
total round duration provides a view of the system performance,
highlighting the influence of network conditions on the efficiency
of FL training.
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Figure 3: Time per FL round with varying bandwidth.

5.3 Impact of Client Volatility
We vary the number of clients participating in the federation from
10 to 160 and report the time per round in Figure 2. The results
show a progressive increase in the time per round as more clients
are included in the federation. This trend suggests a potential bot-
tleneck, particularly when multiple clients reside on the same node,
slowing down the training process.

In this context, a notable finding is the minimal difference in time
per round between selecting 10 and 20 clients. This observation
highlights the potential for scalability of FL systems under optimal
conditions. Specifically, if the computational resources and network
bandwidth are adequate, increasing the number of participating
clients does not significantly impact on the training rounds.

5.4 Impact of Network Quality
In the next series of experiments we assess the impact of the net-
work degradation (with different available bandwidth and latency)
on the FL training time.

Varying available bandwidth. In the experiment depicted in Fig-
ure 3, the network rate ranges from high-speed connections of 10
Gbit/s down to 1 Mbit/s. At low network speeds of 100 Kbit/s, the
system ceased to function effectively with the server struggling
to maintain or even to establish stable connections with clients,
highlighting the role of network quality in maintaining FL opera-
tions. At the lower end of the network rate (1 Mbit/s), we observe
a significant increase in the time per round. Conversely, at higher
network rates, particularly as we approach Gigabit speeds, the time
per round reaches a plateau. This suggests that beyond a certain
point, improvements in the network speed yield diminishing re-
turns on training speed, likely due to other limiting factors, such
as computational latency at the client or server level.

Varying network latency. In our FL context, we define latency as
the one-way, end-to-end delay occurring between the server and
the client. Figure 4 shows the time per round when the latency
changes from 2ms to 100ms. Similar to what we experienced with
low network speeds, the system ceased to function effectively at
higher latency, the server encountering significant difficulties in es-
tablishing and sustaining connections with each client. We observe
that even small increments in latency can result in non-negligible

Figure 4: Time per FL round with varying network latency.

delays in round completion. This sensitivity to latency variations
is an important consideration for the deployment of FL systems,
especially in environments where network conditions are variable
or cannot be strictly controlled.

These preliminary results demonstrate the sensitivity of existing
FL systems to variations in network quality, including bandwidth
and latency. As state-of-the-art FL approaches like FedAvg lack
support for dynamic adaption, there is an urgent need to fill this
gap by designing FL systems able to: (1) detect in real-time changes
in the deployment environment (e.g., network conditions), and (2)
react swiftly by updating system parameters (e.g., frequency or
number of clients selected each round) or changing the underlying
algorithms.

6 DISCUSSION
Several take-aways emerge for the FL community regarding the
early design and development of strategies for dynamically adapting
FL systems.

6.1 Emphasize System Adaptability
The FL community should prioritize building systems with inherent
flexibility. This means designing FL frameworks capable of smooth
and seamless modification of important operational aspects, such as
the client selection method or the communication protocol, based
on real-time assessments of the environment, like the network
conditions or the computational constraints.

6.2 Monitor and Respond in Real-Time
Adapting to the system environment variability is crucial. Contin-
uous monitoring of network conditions and system performance
should form the backbone of dynamic adaptation strategies. For
example, by incorporating network sensing technologies and predic-
tive analytics into FL systems, it could be possible to preemptively
adjust operations before network degradation significantly impacts
performance. To ensure the dynamic adaptation strategies remain
efficient without burdening the FL process, these monitoringmecha-
nisms should be non-intrusive. For example, leveraging lightweight
communication protocols like UDP for monitoring tasks can min-
imize the overhead. This approach ensures that the essential FL
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operations remain unaffected while still gaining the benefits of
responsive adaptation based on environmental feedback.

6.3 Engage in Cross-Disciplinary Research
Addressing the challenges of dynamic adaptation in FL will benefit
from a cross-disciplinary approach, drawing insights from fields
such as network engineering, machine learning, distributed com-
puting and even behavioral sciences to understand and predict
system and participant behavior.

7 CONCLUSION
Federated Learning has advanced to the point where its application
is pervasive, spanning diverse domains. However, with its increased
adoption across the Computing Continuum comes the need to effec-
tively mitigate the issues related to the inherent dynamicity of such
infrastructures. In this paper, we showed how existing FL systems
degrade efficiency when faced with variable execution conditions.
To address these challenges, we proposed to add dynamic adapta-
tion support in FL and provided some initial guidelines into this
direction.

Looking forward, we plan to extend our experimental evaluation
with a wider range of real-world scenarios and testing different
FL methods. We also plan to study how different existing tools for
monitoring and responding to environment conditions could be
integrated in a lightweight fashion into existing FL strategies.
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