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Despite numerous efforts from numerical approaches to complement experimental measurements,
several fundamental challenges have still hindered one’s ability to truly provide an atomistic pic-
ture of the nucleation process in nanocrystals. Among them, our study resolves three obstacles:
(1)Machine-learning force fields including long-range interactions able to capture the finesse of the
underlying atomic interactions, (2) Data-driven characterization of the local ordering in a complex
structural landscape associated with several crystal polymorphs and (3) Comparing results from a
large range of temperatures using both brute-force and rare-event sampling. Altogether, our simula-
tion strategy has allowed us to study zinc oxide crystallization from nano-droplet melt. Remarkably,
our results show that different nucleation pathways compete depending on the investigated degree
of supercooling.

I. INTRODUCTION

Polymorphisms occur when the same material can be
found in different structural forms. In protein crystals,
the competition between each of the possible structures
has dramatic consequences causing amyloid diseases [1–3]
and toxicity of pharmaceutical compounds [4, 5]. Mean-
while, for technological applications associated with ma-
terial science, each crystal phase has distinct physical
and chemical properties, necessitating the stabilization
of a specific polymorphic form. As the triggering mech-
anisms for the emergence of order, crystal nucleation
should have been key for controlling polymorphic selec-
tion. However, its study remains extremely challenging
because disparate lengths and time scales are simultane-
ously involved [6, 7]. On the one hand, in terms of size, an
extended mother phase along with a small critical clus-
ter made of few tens of atoms must be jointly studied.
On the other hand, crystal nucleation combines both a
long time scale for stochastic fluctuations to trigger the
critical event and a short time scale for crystal growth.

This already complex picture is exacerbated for
nanoscale systems. Indeed, the preponderance of sur-
face effects expands the structural landscape of possible
polymorphic structures. In addition, a competition be-
tween two different natures of nucleation can be found:
homogeneous in the core and heterogeneous in the pe-
ripheral. While numerous experimental works have pro-
vided insights into this challenging nucleation process [8–
11], numerical simulations should have been the ideal tool
as it provides a dynamic picture at the single-particle
level. However, simulating crystal nucleation in nanopar-
ticles requires facing two major challenges. On the one
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hand, ab initio molecular dynamics simulations are too
much computationally demanding to perform the nec-
essary large-scale simulations while classical interaction
potentials can not always precisely model both bulk and
surface effects. On the other hand, nucleation involves
overcoming a free energy barrier and is thus an intrinsi-
cally rare-event combining a long induction time (set by
the nucleation rate) with a short transition period (set
by the growth rate).

Our study focuses on the polymorphic competition in
zinc oxide nanoparticles which exhibits promising electro-
chemical [12–14] and antibacterial [15–18] activities. For
all these applications, a key feature of ZnO is its struc-
tural complexity associated with the downsizing to the
nanoscale [19–23]. Indeed, while the Wurtzite structure
is the most stable in bulk, it was found that a competition
between different polymorphs exists with body-centered
tetragonal structure being more preponderant at suffi-
ciently small sizes. However, body-centered tetragonal
is yet to be observed experimentally in a nanoparti-
cle. This crystal phase was first theoretically discov-
ered by (author?) [24], and it has been experimen-
tally observed only on surface reconstructions [25] and
nanosheets [26]. From the theoretical perspective, stud-
ies of the formation process of ZnO nanoparticles have
mostly employed classical force-fields including ReaxFF
and Buckingham [27–29]. More recently, more precise
modeling was also achieved using machine-learning in-
teraction potentials [30, 31] (MLIP) yet never focusing
on crystal nucleation at the nanoscale.

In this work, we first constructed a machine-learning
interaction potential including long-range interactions
using the recently developed Physical LassoLars Inter-
action Potential (PLIP) methodology and demonstrated
its higher accuracy when compared to simpler short-
range MLIP. Then, we performed both brute-force molec-
ular dynamics along with seeded simulations to unravel
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the competition between Wurtzite (WRZ) which is the
most stable crystal in bulk, and body-centered tetragonal
phase (BCT) which is a concurring phase only stable at
sufficiently small nanoparticle sizes. Finally, to analyze
the obtained results, we developed a data-driven cluster-
ing method based on a Gaussian-mixture model enabling
for characterizing the local structure at the atomistic
level. Altogether, by complementing brute-force simula-
tions with the seeding approach, we managed to demon-
strate the presence of two different nucleation pathways
depending on the investigated temperatures: Multi-step
process involving a metastable crystal phase and Classi-
cal nucleation picture respectively at high and moderate
degrees of supercooling.

II. RESULTS

A. Validation of the machine-learning interaction
potential

Many variations of MLIPs have demonstrated excel-
lent performance in capturing short-range interactions
by utilizing descriptors of local atomic environments dur-
ing their model training. Nevertheless, employing these
short-ranged local environment descriptors in MLIPs can
pose difficulties when trying to simulate systems that
entail substantial long-range interactions [32, 33]. For
this study of ZnO, we develop a PLIP+Q model that
combines the PLIP approach for short-range interac-
tions [31, 34–36] along with a scaled point charge model
to incorporate a long-range description of the interac-
tions. Please see Methods A for further details on the
PLIP and PLIP+Q models. We note that the superior-
ity of the short-range PLIP against other classical force
fields for ZnO was already determined in our previous
work [31].

To begin, the error in lattice parameters with re-
spect to density functional theory (DFT) calculations
for all the ZnO polymorphs in the database are shown
in Fig. 1.a. In general, both PLIP+Q and PLIP method
performs well, as the errors remain below 1 %. Never-
theless, PLIP+Q seems to slightly improve the lattice pa-
rameter compared to PLIP, except for the sodalite (SOD)
polymorph.

Further, we compute the phonon density of states
(DOS) for WRZ, zincblend (ZBL), and BCT polymorphs
using a supercell approach where atomic positions are
slightly perturbed to measure the reaction forces. The
following super cells were used: WRZ (5 × 5 × 3), ZBL(3
× 3 × 3), and BCT (3 × 3 × 5). The phonon calculations
are carried out using the PHONOPY package [37, 38].
Fig. 1b, shows the comparison between PLIP, PLIP+Q,
and DFT phonon density of states. Qualitatively, the
DOS from both PLIP and PLIP+Q methods show a good
match with the DFT reference. In particular, the low-
frequency acoustic DOS is almost an exact match be-
tween PLIP and PLIP+Q. However, for high-frequency

optical modes, PLIP+Q shows a better agreement than
PLIP, for peaks between 16-17 Hz for BCT, 15-16 Hz for
WRZ, and 12 Hz for ZBL.
After studying the properties of ZnO crystals, we mea-

sure the accuracy of the model for disordered bulk struc-
tures. Ab initio molecular dynamics (AIMD) as well as
MD with the obtained MLIP are carried out averaging
through three different initial structures in the NVT en-
semble at 1500K for 4 ps and with a time-step of 1 fs.
The partial radial distribution functions (RDF) obtained
from both PLIP and PLIP+Q show a good agreement
with AIMD results [See Fig. 1c]. It seems that a good
description of short-range interactions can already pro-
vide structural information for disordered structures and
that the addition of long-range interactions does not alter
the agreement.

Frequency [THz]

FIG. 1. Properties of bulk ZnO modeled with PLIP and
PLIP+Q: (a) Lattice parameter, (b) Phonon density of
states, and (c) Liquid radial distribution functions obtained at
1500K. Please see TableVIA 3 for the nomenclature of each
crystal phases.

Thus far, the performance of both PLIP and PLIP+Q
has been almost indistinguishable. However, in the con-
text of nucleation of nanoparticles, the relative solid-
vacuum surface energies of low-index surfaces dictate the
obtained morphology and should therefore be well repro-
duced too. In the specific case of zinc oxide, one must
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put an emphasis on studying non-polar as well as low-
index polar and polar-reconstructed surfaces. On the
left part of Fig. 2.a, we show results for non-polar sur-
faces where one can see that the behavior of PLIP and
PLIP+Q closely aligns. Then, for polar-reconstructed
surfaces, although PLIP is able to perform quite well,
PLIP+Q still provides slightly better agreement with the
DFT results. However, a noticeable distinction emerges
for polar surfaces, where PLIP+Q largely outperforms
PLIP. Specifically, PLIP exhibits an error larger than 50
percent for those non-reconstructed polar surfaces, while
the error is less than 10 percent for the PLIP+Q. More
importantly, PLIP not only exhibits large percentage er-
rors, it also incorrectly predicts that the two studied po-
lar surfaces are the most stable ones [See Fig. 2b]. In
contrast, PLIP+Q is able to retrieve the correct stability
ordering when compared to DFT calculations, as demon-
strated in Fig. 2.b.

Prompted by these results, we conduct an assess-
ment of the performance of both PLIP and PLIP+Q on
nanostructures. To begin, we use ZnO clusters obtained
by (author?) [23]. We explore 3 different families of
(ZnO)N structures, encompassing cuts of bulk crystalline
structures namely BCT, WRZ, and SOD. The nanopar-
ticles are optimized further with our DFT setting. The
error in energy is measured for each system by compar-
ing to the DFT optimized reference and MLIP optimized
structure and is shown in Fig. 2.c. Although the training
set is composed of bulk and surface configurations only, it
is evident from Fig. 2.c that both MLIPs are transferable
to these nanometric structures. Since these nanoparticles
do not exhibit any polar surfaces, we additionally test
both MLIPs using WRZ and ZBL nanostructures pur-
posely constructed to expose polar surface terminations.
In the case of ZBL, we design octahedral nanoparticles
with polar (111) facets, featuring truncated corners to
ensure their overall stoichiometry. The WRZ nanoparti-
cles are made by top-down cuts of the bulk polymorph,
as illustrated by (author?) [23]. From Fig.2.d, which
displays the corresponding single point energy errors, it
can be seen that while PLIP was able to correctly model
nanoparticles with non-polar surfaces, it leads to much
higher error than PLIP+Q for both types of nanoparti-
cles exhibiting polar surfaces. The discrepancy is mainly
driven by the substantial underestimation of surface en-
ergy of polar terminations in the local PLIP approach,
and may lead to a spurious abundance of polar nanopar-
ticles in MD simulations.

Altogether, the main drawback of PLIP is that polar
surfaces are not only incorrectly reproduced in energy,
but they are also considered the most stable ones. Such
an issue has dramatic consequences when dealing with
nanostructures. However, although very simple in its
conceptual formalism, PLIP+Q is already able to rectify
this error and model correctly both polar and non-polar
surfaces as well as their subsequent nanostructures. Con-
sequently, moving forward, the results presented in the
remainder of the article will exclusively focus on calcu-

lations obtained using the PLIP+Q potential. We note
that the computational efficacy was reduced by roughly
20% upon adding the long-range interactions.

III. BRUTE-FORCE SIMULATIONS

To study the crystallization of ZnO nanoparticles we
perform brute-force simulations for liquid nano-droplets
of 500, 1000, 1500, and 2000 atoms at the same degree
of supercooling ie. T/Tmelt = 0.625. The simulations
are carried out using different random instance for the
initial atomic velocities so that different nucleation path-
ways could be explored. Please see Methods B for further
details on the brute-force simulation protocol. Then, in
order to analyze the structural composition of the system
during nucleation and growth, we develop a supervised
machine-learning method based on the combination of
Gaussian mixture model for classification and Steinhardt
bond order parameters for structural description. Fur-
ther details on the procedure are to be found in Methods
C. The composition of the nanoparticles as a function of
time is shown for the system of 2000 atoms in Fig. 3 as
well as snapshots at different key points in time. In all
the obtained simulations, one can observe an induction
time of approximately 300 ps after which a first nucleus
sufficiently large is formed. Surprisingly, while WRZ is
the most stable crystal structure both in bulk and in this
size regime, the nuclei consist primarily [See Fig. 3(c,d)],
and in some cases completely [See Fig. 3(a,b,e)], of atoms
in the BCT structure. Additionally, in three cases [See
Fig. 3(a,c,e)] where only one nuclei emerges at the early
stages, WRZ competes and becomes the most preponder-
ant crystal phase at the later stages. Meanwhile, in two
others cases [See Fig. 3(b,d)] where more than one nu-
clei are formed, the system presents a slower growth rate
and during the entire simulation is mostly composed of
atoms in the BCT structure. These results clearly show
that there is a competition in the formation of the BCT
and WRZ crystal phases, where BCT is more predom-
inant in the early stages of crystallization while WRZ
forms later and becomes the main structure.

These observations are further supported by additional
brute-force simulations of 500, 1000, and 1500 atoms [See
Supplementary Figures (1-3)]. In all systems sizes, BCT
forms first and WRZ appears later in some of the sim-
ulations. Such a two-step nucleation process, observed
here in the crystal nucleation from a liquid nano-droplet,
is consistent with our previous results obtained in bulk
and with short-range PLIP [31]. It is also reminiscent of
seminal findings in much more simple systems interacting
with Lennard-Jones and hard-spheres force fields where,
while the face-centered cubic is the most thermodynam-
ically stable, it is the body-centered cubic that is often
observed at the early stages of nucleation [39–42].
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FIG. 2. (a,b) Solid-vacuum surface energy measured with PLIP and PLIP+Q for different ZnO polymorphs. (a) Surface energy
error with non-polar and polar surfaces respectively on the left and on the right. (b) Value of the surface energy when focusing
on WRZ and ZBL polymorphs. In violet, the polar surfaces are highlighted. ”(R)” designates polar-reconstructed surfaces.
(c,d)Nanoparticle energy when comparing PLIP and PLIP+Q. (c) Optimized nanoparticles without any polar surfaces as
obtained by (author?) [23] and (d) Non-optimized nanoparticles created to exhibit polar surfaces.

IV. SEEDING SIMULATIONS

In the brute-force simulations, simulations must be
performed at very low temperatures ie. in a deeply su-
percooled regime in order thus reducing both the free en-
ergy barrier and the associated induction time. In order
to further investigate this competition and to verify its
presence at moderate degrees of supercooling, one has to
employ rare-event sampling techniques and we therefore
perform seeding simulations [44]. In particular, a crystal
seed is manually inserted in the fluid and its critical tem-
perature is characterized as the temperature for which
the seed neither shrinks nor grows [45]. By inserting a
crystal seed, the free energy barrier of nucleation is arti-
ficially overcome, allowing for the study of more realistic
conditions closer to the melting temperature. The seed-
ing technique has already been applied to the study of
crystal nucleation in many different systems ranging from
condensed to soft matters [45–51]. But, to the best of our

knowledge, the seeding technique has never been applied
to nanocrystal simulations. Herein, we used the seeding
technique to find the critical temperature of WRZ and
BCT crystalline clusters which will allow us to address
the competition between these two crystalline structures
in nanoparticles [Please see Methods B for more details
on the seeding simulation protocol].

Results of the growth/melting curves are shown in
Fig. 4 for a 2000-atoms system and for initial crystal seeds
of different sizes and crystal structures [Please see Sup-
plementary Figures (4-6) for results obtained with dif-
ferent numbers of atoms inside the droplet]. For each
growth/melting curves, standard deviations are showed
in shaded colors and are obtained through 5 different
simulations using the same state conditions (initial crys-
talline seed, temperature and total droplet size) yet with
different initial velocities. First, we note that in all seed-
ing simulations, the size of the biggest crystalline cluster
N increases during the relaxation step. This is required
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P(BCT) P(WRZ) P(HBN)
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FIG. 3. Brute force nucleation simulations of ZnO nanoparticles made of 2000 atoms. Five simulations are shown using different
random instances for the initial velocities in graphs (a-e) where the simulation time is shown on the x-axis and the number of
atoms is shown on the y-axis. Snapshots of the clusters are shown below each graph corresponding to times indicated by the
vertical dashed lines. Atoms are colored according to their probabilities to be in BCT structure (red), WRZ structure (green),
and h-BN (HBN) structure (blue). Images are plotted using Ovito software [43].

to fine-tune the initial size N0 in order to reach the de-
sired studied size Nc. Then, despite this fine-tuning of
the relaxation process, Fig. 4 shows that for a given set
of conditions (i.e. Nc, T and crystal structure), there is
still a large standard deviation around each plain line
and subsequently a large discrepancy between simula-
tions with different initial velocity conditions. This jus-
tifies the necessity to generate several growth/melting
curves per set of conditions (5 in our case).

For each of the inserted seeds, one can deduce from
the growth/melting curves a critical temperature Tcrit

located between the lowest temperature at which the
cluster shrinks and the highest temperature at which
it grows. Ideally, the critical temperature is such that
the slope of N as a function of time is zero. In prac-
tice, a first temperature range is roughly selected and
growth/melting simulations are performed at the upper
and lower limits of the range, as well as in the middle.
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Then, the cluster sizes are plotted and the temperature
for the next simulation is chosen as the value in between
the temperatures with opposite slopes of N . We iterate
this method until reaching a temperature range of 16K
which defines our reported error on the measurement of
Tcrit and we use the middle between the two extreme
values of the obtained range. The critical temperatures
found for different crystalline cluster sizes are shown in
Fig. 5 together with the critical temperatures found for
seeds in differently sized droplets. Using the results for
the 2000-atoms system and our estimate of the melting
temperature, the system is located in a degree of super-
cooling T/Tmelt between 0.8 and 0.9 which is way larger
compared to the 0.625 studied with the brute-force simu-
lations. The first observation is that the critical tempera-
ture increases with size meaning that lower temperatures
are necessary to stabilize the smallest critical seeds. For
all cluster sizes in the 2000-atoms and 1500-atoms sys-
tems, WRZ has a significantly higher critical temperature
when compared to BCT. Accordingly, there is a range of
temperatures where a crystal seed of a similar size will be
more stable in the WRZ phase than in the BCT phase.
In the case of the 1000-atoms and 500-atoms systems,
we observe that the difference in critical temperature be-
tween BCT and WRZ crystal clusters becomes less sig-
nificant. More specifically, it is observed that the critical
temperatures for BCT and WRZ on the 500-atoms sys-
tem converge, which is consistent with what has been
observed in the brute-force simulations and energy mini-
mization at 0K [23]. In addition, the largest BCT crystal
seed made of approximately 300 atoms in the 2000-atoms
system shows an unstable behavior by sharply decreas-
ing in size at the beginning of the growth/melting simu-
lation [See Fig. 4.a]. As such, it can be conjectured that
at these higher temperature regimes where the free en-
ergy barrier is the highest, the only possible nucleation
pathway is the one starting with WRZ seeds. In closing,
Fig. 5.b shows that a strong dependence of the critical
temperature on the system size as for a similar critical
cluster size there is a difference of almost 300K in criti-
cal temperature between the 500-atoms and 2000-atoms
system. This finding strongly suggest that the nanoscale
reduction associated with finite-size effects and surface
preponderance is already at play in the investigated size
regime.

Ultimately, our seeding simulations reveal a completely
different nucleation behavior compared to brute force re-
sults that focused in a more deeply supercooled regime.
Indeed, we showed that BCT and WRZ are respectively
favored in deeply supercooling conditions (brute-force
simulations) and in moderate supercooling conditions
(seeding simulations). Therefore, nucleation mechanisms
are highly driven by the investigated degree of supercool-
ing thus advocating for the necessity to combine brute
force and rare-event sampling approaches. A similar ob-
servation was also made when studying nucleation from
a dilute phase as in a gas or in the presence of a non-
reactive solvent like NaCl in water. In both cases, de-

pending on the saturation regime, one can indeed either
directly nucleate crystalline clusters or start with a so-
called high-density amorphous precursor [52–55].

V. GROWTH MECHANISMS

Along with determining the critical temperature as a
function of the critical size, seeding simulations also allow
for studying the subsequent growth mechanisms. Herein,
we extended the previous growth curves during 84 ps af-
ter the relaxation procedure and focused on temperature
regimes where the crystal seed grows.
At first, in the WRZ case, Fig. 6 shows that the clus-

ter composition was consistent for all of the considered
seed sizes ie. the cluster core is composed of atoms in the
WRZ phase at the beginning and remains so until the end
of the simulations. This is shown on the different graphs
on which it can be noted that the number of atoms in the
WRZ phase is always equal to or bigger than the num-
ber of atoms in the BCT phase. On the other hand, the
outer layers of the cluster are often composed of atoms in
the BCT and h-BN (HBN) phases. These atoms are lo-
cated at the interface between the crystal and the liquid.
The presence of few atoms predicted to be in the HBN
phase at the surface of the crystalline cluster is probably
a consequence of the large resemblance between HBN and
WRZ structures. On the other hand, the scarce presence
of atoms in the BCT phase is reminiscent of the BCT vs.
WRZ competition. We note that these BCT atoms are
mostly located at the surface of the crystalline cluster.
Then, the BCT case exhibits a much more complex

picture. Indeed, from Fig. 7, it can be seen that the
composition of the crystalline cluster evolves with time.
Right after the relaxation procedure, the crystalline clus-
ters are composed almost entirely of atoms in the BCT
structure as it is the structure introduced in the seed-
ing initial phase. This means that our relaxation pro-
cedure correctly stabilizes the interface between crystal
and liquid without changing the crystal structure. The
number of atoms in the BCT phase then increases, but
given enough time it starts to decline, and the number of
atoms in the WRZ phase increases. Finally, at the end
of the simulation, the center of the crystalline cluster is
composed mostly of atoms in the WRZ structure, while
the outer layers are composed of atoms in HBN and BCT
structures. This observation suggests that the preferred
crystallized structure for ZnO in these conditions remains
WRZ even when starting with a BCT seed.

VI. DISCUSSION

The comparison between results from brute force and
seeding simulations exhibits fundamental insights on the
nucleation process. Indeed, at low temperatures asso-
ciated with the deepest degree of supercooling, crystal
nucleation seems to follow a multi-step process where a
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FIG. 4. (a-e) Growth/Melt simulations for BCT and WRZ clusters of different sizes are shown in subfigures with a droplet
made of 2000 atoms. The relaxation steps are shown in each graph with a black line, after which the growth/melt simulations
are shown for different temperatures. In each subfigure, two clusters of similar critical cluster size Nc but different crystal
structures are compared. In particular, on the left (resp. on the right), the seed is made of BCT (resp. WRZ) crystalline
atoms. Meanwhile, for sub-figures a to e, size of the crystalline seeds is respectively around 343, 170, 92, 65 and 32 atoms.

metastable phase (BCT) emerges first before being re-
placed by the most stable phase (WRZ). Meanwhile, at
higher temperatures involving larger free energy barriers,
the BCT seeds are in fact less stable than the WRZ ones.
Indeed, we showed that their critical temperature is con-
sistently lower than that of WRZ and that even when
artificially inserted the BCT structure rapidly turns into
WRZ during the subsequent growth. These two observa-
tions suggest that nucleation occurs in a single step for
those moderate degrees of supercooling. To the best of
our knowledge, such a change in nucleation pathway has
so far only been found in crystal condensation from di-
lute systems like in the gas phase or in the presence of
a surrounding liquid solvent. In the latter case, the ob-
served metastable phase was made of a dense amorphous
phase while here, it is an ordered phase made of different
crystal polymorph.

Despite the breadth of our findings, interpreting them
remains a very challenging task. On the one hand, the
preponderance of WRZ at moderate degrees of supercool-
ing, ie. in the presence of free energy barrier, is consis-

tent with a classical nucleation picture where the nucle-
ating crystal is also the most stable crystal. On the other
hand, it is more surprising that an alternative nucleation
pathway involving a different crystal structure emerges
at deeper degrees of supercooling when the free energy
barrier is almost vanishing. As a possible explanation,
a classical picture based on the capillary approximation
would evoke the possibility that the crystal/liquid inter-
face is more favorable for BCT than for WRZ which only
becomes important under these temperature conditions
since the nucleus is small enough to enhance surface ef-
fects. As such, it would be appealing to characterize
bulk properties including crystal/liquid interface, migra-
tion rate or elastic stresses. While appealing for qual-
itative understanding, characterizing the crystal/liquid
interface is rendered almost impossible because in this
supercooled regime the interface is not stable and the
crystal will spontaneously grow. Additionally, herein, the
nucleus is composed of relatively few atoms (less than 50
atoms) and therefore it can not be characterized with any
sort of bulk properties. More generally, the complexity
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N=2000
N=1500

N=1000

N=500

FIG. 5. (a) Critical temperature results for different cluster structures and droplet sizes as a function of critical cluster size.
The critical temperature is shown on the y-axis while the critical cluster size is shown in logarithmic scale on the x-axis. The
melting temperatures of WRZ nanoparticles are shown in dashed lines where the color represents the size of the nanoparticle.
(b) Dependence of the critical temperature on the nano-droplet size using a similar initial crystal seed size of approximately 30
atoms.

herein is that even the concept of nucleus is no longer
relevant in this regime of vanishing free energy barrier.
As such, the current state of the art do not allow us to
provide a quantitative explanation for our findings. How-
ever, it remains that from an empirical viewpoint, WRZ
and BCT crystal symmetry can very well be compared
structurally to face centered cubic (FCC) and body cen-
tered cubic (BCC). For the latter, the emergence of BCC
when the free energy barrier vanishes has been observed
in several occasions and can be explained using symmetry
arguments and mean-field approaches[56].

From the technical viewpoint, our work proposes three
solutions to allow for studying nucleation in complex
nanoscale systems. Firstly, we developed an approach
for modeling long-range interactions that exploits Lasso-
Lars fitting for obtaining an effective static point charge
Coulomb interaction. Our comparison with short-range
PLIP shows that this approach enables us to better cap-
ture subtle charge effects related to polar surfaces which
are crucial when dealing with nanoparticles where surface
effects become preponderant. Secondly, we combined
Gaussian Mixture Model with Steinhardt parameters to
classify structures within a complex structural landscape
made of 7 crystal polymorphs. We expect that the same
methodology can be applied to characterize polymorphs
in different materials as well as defects including grain
boundaries or dislocations. Thirdly, we managed to ex-
plore nucleation at different degrees of supercooling by
using brute-force simulations as well as the seeding tech-
nique. Altogether, our promising results advocate for
transferring the proposed simulation strategy to the for-
mation of different types of nanocrystals including quan-
tum dots and nanoalloys.

METHODS

A. Machine-learning interaction potentials with
long-range physics

1. Short range PLIP

To begin, we start with a concise description of the
chosen short-range MLIP, before delving into long-range
electrostatic interactions. To start, a linear model is em-
ployed to estimate each atomic energy (Ei) which is rep-
resented by a weighted sum of descriptors

Ei
short =

∑
n

ωnχ
i
n (1)

where the coefficients (ωn) are the fitting parameters.
The descriptors for the PLIP model explicitly follow a
many-body order expansion:

[χ2B]in =
∑
j

fn(rij)× fc(rij), (2)

[χ3B]in,l =
∑
j

∑
k

fn(rij)fc(rij)fn(rik)fc(rik)cos
l(θijk),

(3)

[χNB]in,m =

∑
j

fn(rij)× fc(rij)× fs(rij)

m

, (4)

where rij is the distance between atoms i and j, θijk is the
angle centered around the atom i, fn are a set of Gaussian
functions with different widths and central positions, fs
is a polynomial function that allows for setting the N-
body interactions to 0 at short range and l and m are
two positive integers. The cutoff function is defined as:
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FIG. 6. Extended growth simulations following the insertion of a WRZ crystal seed at 1000K for five different seed sizes in
a 2000-atoms system. The composition of the crystalline clusters is shown in the graphs in each column. The first and last
snapshots of each simulation are shown below the corresponding graphs. Atoms are colored according to their probabilities to
be in BCT structure (red), WRZ structure (green), and HBN structure (blue).

fc(rij) = 0.5 (1 + cos(π(rij/rcut))). In the following, we

use rcut = 6 Å and impose that l ≤ 5 and m ≤ 7. For
more details on the short-range PLIP model, one can
refer to the following references [31, 34–36].

2. Electrostatic PLIP+Q

The field of extending MLIP models to include long-
range interactions is actively advancing, and recent de-
velopments in this area have been summarized by (au-
thor?) [57]. In most of these approaches, a database
of effective point charges is computed from electron
structure calculations using different methods includ-
ing Mulliken and Löwdin population analysis [58], Bader
analysis [59], and the Density Derived Electrostatic and
Chemical (DDEC) charge model [60]. Then, a machine-
learning model is constructed in order to determine on-
the-fly the charge values based on the local environment
surrounding each atom. More recently, further progress
was obtained by training the long-range machine-learning
model on susceptibility instead of charge values which
enables for capturing subtle charge transfer mecha-

nisms [61–63]. While these approaches remain the most
accurate to date, they might suffer from implementation
difficulty and computational costs.
In our PLIP+Q model, we chose to use static point

charges that are fixed with time and the local environ-
ment. In practice, we begin by setting the value of initial
charges which can be for instance the oxidation number
or deduced from electron density calculations. Then, we
compute a fictive electrostatic contribution to the ener-
gies denoted Ei

el using the point-charge Coulomb model
along with the Ewald summation method [64]. In order to
determine how much this fictive electrostatic interaction
indeed contributes to the overall interactions, we next
define an overall charge scaling factor named γ leading
to the following total energy:

Ei = Ei
short + γEi

el (5)

As such, the scaling factor γ becomes an additional linear
coefficient that can be fitted along with those associated
with the short-range interactions. We finally use the Las-
soLars regression algorithm to determine simultaneously
the linear coefficients required for the short range inter-
actions and the value of γ thus enabling us to empiri-
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FIG. 7. Extended growth simulations following the insertion of a BCT crystal seeds at 1000K for five different seed sizes in
a 2000-atoms system. The composition of the crystalline clusters is shown in the graphs in each column. The first and last
snapshots of each simulation are shown below the corresponding graphs. Atoms are colored according to their probabilities to
be in BCT structure (red), WRZ structure (green), and HBN structure (blue).

cally obtain an effective value for the static point charge.
Often in attempts at modeling long-range interactions
using machine-learned charges, the short-range interac-
tions is treated as a substantial difference between the
long-range interactions and the total quantum accurate
energy. Here, we chose instead to consider the long-range
interactions simply as an additional descriptor without
imposing its presence in the final model. As such, when
using the LassoLars regression that selects only a subset
of the most preponderant descriptors, the long-range in-
teractions will be considered solely if necessary. In our
present case, the initial charges are set as the oxidation
number ie. at plus and minus 2 respectively for zinc and
oxygen, and following the LassoLars fitting, the rescaled
value of the charges becomes ±0.64, to be compared with
± 1.16 obtained from the Bader decomposition of DFT
charge densities. Although it is difficult to interpret this
value because the short-range PLIP also contributes to
the overall two-body interaction, it remains interesting
to note that the LassoLars regression scheme is able to
retrieve a value at a reasonable order of magnitudes.

3. Training database

The employed training database is exactly the same as
in our two previous applications of PLIP to ZnO [31, 34]
In brief, the reference DFT calculations are performed
using the VASP software, employing the PW91 exchange-
correlation functional and the projector augmented wave
method. The standard zinc and soft oxygen pseudopo-
tentials are employed, with an energy cutoff of 270 eV
[65–67]. The total database is made of both ordered
and disordered structures starting from bulk and surface
structures.

In particular, six different ZnO polymorphs namely
WRZ, zinc blend (ZBL), body-centered tetragonal
(BCT), sodalite (SOD), h-BN (HBN), and cubane (CUB)
crystallographic structures are included. We employ rela-
tively large supercells in the range of 16-19 Å forming par-
allelepipeds that contain between 320 to 480 atoms. The
Brillouin zone sampling is done at a single Γ point. We
conduct atomic coordinate relaxation until forces reduce
below 0.01 eV/Åwhile maintaining stress tensor compo-
nents below 0.01 eV/Å. To study nucleation in nanopar-
ticles, it is also essential to include low-coordinated struc-
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tures in the database. In this regard, for each of the six
ZnO polymorphs, low-index nonpolar surfaces are also
considered. In all our computations, we utilize slabs
composed of 6 to 12 atomic layers, separated by approx-
imately 15 Å of vacuum, and we conduct a thorough re-
laxation of atomic coordinates of all ions.

From all of these equilibrium structures, we perform
molecular dynamics (MD) simulations using either a clas-
sical potential or a previously obtained MLIP to sample
additional structures where forces are then determined
afterward with single-point DFT calculations.

Shortname Fullname
BCT body-centered tetragonal
CUB cubane
HBN h-BN
SOD sodalite
WRZ wurtzite
ZBL zinc blend

TABLE I. Nomenclature defining the acronyms used to de-
scribe each of the considered crystal structures.

B. Brute-force and seeding simulations

Brute-force simulations For the brute-force simula-
tions, we used the NVT ensemble in the LAMMPS soft-
ware [68] with a Nose-Hoover thermostat and a timestep
of 1 fs. In order to work at a consistent degree of super-
cooling, we measure the melting temperature for a WRZ
nanoparticle of each nanoparticle size using a linear tem-
perature ramp [2000K.ns−1] and fitting the crystal size
with a hyperbolic tangent function. The melting temper-
atures are 1213K, 1401K, 1503K, and 1531K for sizes
of 500, 1000, 1500, and 2000 atoms, respectively. We
note that our MD simulations as well as experimental
measurements seems to indicate that the ZnO melting is
congruent[69]. Despite imposing the same degree of su-
percooling, the nucleation induction time slightly differs
for each nanoparticle and we used different simulation
duration, between 1 and 10 ns, as necessary for the dif-
ferent droplet sizes. By varying initial atomic velocities
we obtained multiple simulation trajectories for the same
system and temperature. By doing this we are able to
assess the average behavior of this type of system at the
chosen temperature.

Seeding simulations After initializing the system with
a crystalline seed of a chosen size N0 inserted inside a
liquid nano-droplet, the relaxation protocol enabling for
reaching the desired temperature T consists of three dif-
ferent steps. Firstly, the crystalline cluster is kept static
while MD is performed on the liquid nano-droplet in
the NVT ensemble at the relaxation temperature T0,
which was chosen always lower than the expected crit-
ical temperature and changed depending on the size of
the droplet and the crystalline cluster. This step is per-
formed for a duration that is adjusted according to the

system size in order to avoid complete crystallization dur-
ing this step. Because only the liquid droplet can move,
the size of the crystal seed can increase through inter-
facial growth. Furthermore, the gap created during the
insertion of the seed between the crystal and the liquid is
filled during this first step. Secondly, atoms in the crys-
talline cluster are also allowed to move in the NVT en-
semble at an increasing temperature. In this second step,
of the same duration as the first one, two separate Nose-
Hoover thermostats are used: (1) for the liquid droplet
at T0 and (2) for the crystalline seed going from 100K
to T0. During this step, we attempt to keep the size
of the cluster constant. The purpose of this step is to
slowly increase the temperature of the crystalline clus-
ter until T0 is achieved for the whole system. Thirdly,
the temperature of the system needs to go from T0 to T .
For that purpose, we can not directly set the thermostat
temperature at T as it would put the system out of equi-
librium. In addition, because nucleation is a stochastic
process, it was crucial to be able to study the same sys-
tem (ie. size of crystalline seed + temperature) with dif-
ferent initial velocities. For these reasons, the Langevin
thermostat [70] is used at an increasing temperature from
T0 to T and with 5 different random values for the ther-
mostat. At the end of these three steps, the apparent
size of the crystalline seed that is used for the analysis
is always different from N0 and is denoted Nc. After
the Langevin temperature ramp, NVT simulations us-
ing the traditional Nose-Hoover thermostat are carried
out at a temperature of interest T . At the end, the ob-
tained growth/melting curves are averaged over the dif-
ferent random values of the Langevin thermostat thus ac-
counting for the stochasticity of the nucleation process.
We used those 5 different simulations to also compute
a standard deviation associated to each growth/melting
curves. The duration of each step and the relaxation tem-
peratures used are presented in Supplementary Table 1.

C. Gaussian-mixture model to characterize
polymorphic crystal ordering

In order to analyze local ordering in the obtained simu-
lations, it is crucial to use a numerical tool capable of dis-
tinguishing 7 different polymorphs of ZnO among which
6 are already employed in the DFT training database as
well as the rock salt (RCK) structure that was considered
only for the structure identification. We propose a super-
vised learning method that we call Steinhardt Gaussian
Mixture Analysis (SGMA) [See Fig. 8 for a schematic pic-
ture].
In particular, we start by creating a database consist-

ing of crystalline structures sampled around their equi-
librium positions. For that purpose, NVT simulations
are performed during 10 ps with an increasing tempera-
ture from 200K to 1500K controlled via a Nosé-Hoover
thermostat. The duration and the upper temperature
are chosen so that none of the seven considered crystals
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melt. In addition, liquid structures are also sampled in
our database using NVT simulation at 2500K. 21 snap-
shots are extracted along those simulations for each of
the crystal polymorphs and for the liquid.

For each of these snapshots, we then compute the av-
eraged Voronoi weighted Steinhardt parameters [71] us-
ing the Pyscal [72] library in Python. We augmented the
generic Steinhardt values with homo nuclear ones cal-
culated after removing each hetero atom type. In both
cases, we used Steinhardt parameters indexed from 2 to 8
thus making a list of 14 order parameters to characterize
the local ordering of each atom in a given snapshot.

The training of the database is next performed us-
ing the Gaussian Mixture Model (GMM) as implemented
in the scikit-learn [73] library in Python. The unknown
parameters of the GMM were iteratively estimated us-
ing the Expectation-Maximization algorithm [74]. The
GMM was trained using full covariance matrices and 100
k-means initializations. In our case, instead of letting the
GMM determine the number of Gaussian components au-
tomatically, we chose to impose it equal to the number
of structure types in our database ie. 8. In this way, we
give priority to the physical meaning of our database. For
classification, the Maximum Likelihood Classifier is uti-
lized, in which the probability of an object xi to belong to

class ωk is computed as: p(ωk|xi) =
αkN (xi|mk,Ck)∑K
j=1 αjN (xi|mj ,Cj)

,

where αk are mixture proportions andmk andCk are the
mean vector and the covariance matrix of each Gaussian
component ωk. The mixture proportions satisfy the con-

ditions 0 ≤ αk ≤ 1 and
∑K

k=1 αk = 1. These values can
then be interpreted as the probability of an atom being in
one of the 8 structure types in the database. In the Max-
imum Likelihood Classifier, the probabilities are usually
compared and an object is said to belong to a category
for which it has the highest probability. In this work, we
chose a more severe classification rule and considered an
atom to belong to a cluster only when its probability is
higher than 50%.

Parameters for the different Gaussian clusters in the
model are obtained following the training procedure.
However, only the index of each cluster is known and
no information is given as to what structure each cluster
represents. To do this, the model is tested by predicting
the Gaussian cluster to which the perfect crystals and the
liquid belong. In this way, the labels of each Gaussian
cluster are obtained. This is another way in which our
method differs from previous uses of the GMM. We first
train a model, and since the clusters in our database are
approximately Gaussian, it is expected that after training
a Gaussian cluster will be assigned to each structure type.
This model can then be used to analyze systems differ-
ent from the ones encountered in the database and obtain
specific structural predictions in a supervised manner.

Altogether, our SGMA methodology allows us to pre-
dict crystal structures in a system by creating a database
with the different known polymorphs. In this applica-
tion, we rely on the assumption that each structure in

our database can be approximated by a single Gaussian
cluster, as opposed to other applications of the GMM
where the number of Gaussian clusters is found auto-
matically [75–77]. For future applications, the method
can also be adapted to automatically find the number of
required Gaussian clusters when a structure is better rep-
resented with more than one. Our method is also char-
acterized by the significantly large number of descriptors
that are computed and used for analysis. Compared to
other methods, we do not make use of dimensionality re-
duction techniques to decrease the complexity of the data
at the clustering step [31, 76–83]. If the computational
cost demands it, it is possible to reduce the complexity
of the model by carefully choosing the descriptors that
distinguish the structures in the database the best.

To test the usage of SGMA in the seeding technique
we analyzed the structure of seeded nanoparticles right
after the initialization and before the relaxation step for
BCT and WRZ crystal seeds, illustrated in Fig. 9. It was
found that in both cases our model correctly identifies the
crystalline cluster surrounded by the liquid. In the case
of the BCT crystal seed, the number of atoms predicted
to be in the BCT phase is lower than the number of in-
serted atoms. This is expected from our model since at
the interface between crystal and liquid, the atomic en-
vironments differ significantly from the environment rep-
resented in the database. Even though the atoms at the
interface still present some order in their structure, ac-
cording to the Maximum Likelihood Classifier described
previously, they are considered to be closer to the liq-
uid structure. Similarly, in the case of the WRZ crystal
seed, the number of atoms predicted to be in the crys-
talline phase is lower than the number of inserted atoms.
This time, however, not all atoms in the crystalline clus-
ter are predicted to be in the WRZ phase. At the surface
of the crystalline cluster, some atoms are predicted to
be in the HBN or BCT phases instead. This is due to
the large resemblance between WRZ and HBN phases.
With these tests, we have shown the physical meaning of
the predictions performed using the GMM. Crystalline
atoms were correctly identified when surrounded by a
liquid, with the exception of atoms at the interface be-
tween liquid and WRZ phases that can be also labeled as
HBN. These results confirm that the training parameters
of the model were appropriately chosen, and the physical
meaning of the database was retained.

VII. DATA AVAILABILITY

The authors declare that the data supporting the find-
ings of this study are available within the article and its
supplementary information files or from the correspond-
ing authors on reasonable request.
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FIG. 8. Schematic of the steps in SGMA. A database is created from (a) atomistic trajectories obtained using Molecular
Dynamics. (b) The neighbors of each atom are found using Voronoi tessellation, (c) as well as the neighbors of only the same
element. (d) The Steinhardt parameters are then computed for all atoms in each snapshot of the trajectory. A Gaussian
Mixture Model is then trained on the database. (e) The parameters of the Gaussian clusters are initialized using the Kmeans
algorithm and are then optimized using the Expectation-Maximization algorithm (f). Steps (e) and (f) are performed 100 times
and the parameters with the best results are kept. (g) Classification is then performed on the structures in the database or on
new test structures.

VIII. CODE AVAILABILITY

The implementation of (1) PLIP+Q, (2) the structural
analysis, (3) Seeding and brute forces simulations inputs
and outputs will be shared with community upon request.
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