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Abstract: In this paper, we address the observer based control problem for SISO (Single-
Input/Single-Output) LTI (Linear Time Invariant) system subject to delay in the measurement
data. The proposed design approach includes two steps: first, by using a partial pole placement
approach based on the MID (Multiplicity-Induced-Dominancy) property, we construct a delay-
based controller guaranteeing the stability of the closed-loop system. Second, we exploit the
control gain to determine the observer-controller matrices. The effectiveness of the proposed
methodology is illustrated through the problem of stabilizing a double integrator and of a wind-
tunnel system with delayed feedback.
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1. INTRODUCTION

Transport, propagation, communication and heredity are
the main ways in which delays appear in natural phe-
nomena and engineering processes. For further examples
and discussions on related applications, we refer to Stépán
(1989); Gu et al. (2003); Michiels and Niculescu (2014),
and the references therein.

In this work, a class of SISO system with delay in the
input-output channel is studied. Some devices with am-
ple computation resources exhibit faster calculation and
uploading of model parameters so that the feedback time
duration may vary. However, devices with limited com-
putation resources may struggle to complete the timely
updating and uploading of model parameters, and conse-
quently generating feedback delays. To fill this aforemen-
tioned gap, we propose a delayed observer based controller
to stabilize this class of systems.

Recent research has witnessed interesting advances in both
stability analysis and the design of stabilizing control
laws for delay systems. In frequency-domain, a recent
pole placement paradigm, called Partial Pole Placement
(PPP), has been introduced in Boussaada et al. (2020);
Mazanti et al. (2021); Boussaada et al. (2022) which
guarantee the stability of the zero solution of the cor-
responding time-delay system. It derives from two prop-
erties called respectively multiplicity-induced-dominancy
(MID) and coexistent-real-roots-inducing-dominancy (CR-
RID), see for instance Amrane et al. (2018); Bedouhene
et al. (2020); Schmoderer et al. (2023). It ensues from
an intriguing observation that, in some cases, multiple

spectral values of the characteristic functions associated
to linear Delay-Differential Equations (DDE) define the
spectral abscissa 1 of the system, see, for instance, the
discussions in Mazanti et al. (2021) (generic multiplicity
in retarded case) Boussaada et al. (2022) (retarded and
neutral cases, generic multiplicity) or, more recently, Bous-
saada et al. (2023) (over-order multiplicity).

In the present work, we aim to the design of observer-based
controller using the structure of a functional observer but
with a different purpose - estimating the stabilizing control
law and not the ’classical’ (system) state-estimation. In
our opinion, one of the advantages of functional observer
design for delayed systems is its application in designing
observer-based controller which significantly decreases the
computational burden. This controller design is inspired
from Zasadzinski et al. (2007), where an uncertain linear
system is considered. In fact, the design has been studied
with a Lyapunov-based approach leading to LMI (Linear
Matrix Inequality). Here, we extend this design to delayed
LTI system with the use of a partial pole placement
technique in the control design. To the best of the authors’
knowledge, such a problem was not addressed yet in the
literature. In fact, only recent works Rojas-Ricca et al.
(2023) on predictor synthesis of delayed nonlinear system
were proposed using the MID property to tune the gain
ensuring the convergence of the prediction error dynamics.

The rest of the paper is organised as follows. Some prereq-
uisites and preliminaries developed in some recent works,
are given in section 2. The problem formulation is pre-

1 the real part of the rightmost (characteristic) root of the corre-
sponding characteristic function



sented in Section 3 where the system, the observer-based
controller model and the objectives are introduced. In Sec-
tion 4, the decoupled control strategy is developed while
the stabilization of closed-loop linear time-delay system,
the existence conditions of the observer-based controller
and the convergence of the error system, are analysed.
Applications of this problem are presented in section 5.
More precisely, the double integrator case study and the
two finger robot which both involves time-delays in the
measurements vectors are discussed. Finally, some con-
cluding remarks end the paper.

2. PREREQUISITES AND PRELIMINARY RESULTS

Consider the LTI dynamical system described by the DDE
including a single delay:

y(n)(t) +

n−1∑
k=0

aky
(k)(t) +

q∑
k=0

αky
(k)(t− τ) = 0 (1)

under suitable initial conditions, where y(.) represents the
unknown real-valued function, τ > 0 denotes the delay,
and the coefficients a0, . . . , an−1, α0, . . . , αq stand as real
coefficients. The DDE (1) is a specific instance of the
subsequent matrix representation.

Ẋ(t) +Bτ Ẋ(t− τ) = AX(t) +AτX(t− τ) (2)

where X(t) =
(
y(t) ẏ(t) . . . y(n−1)(t)

)T ∈ Rn is the state
vector and the matrices A, Aτ and Bτ are known real
matrices. Thus, the characteristic function corresponding
to (1) is the quasipolynomial ∆ : C −→ C, given by

∆(s, τ) = P0(s) + P1(s)e
−sτ , (3)

where P0 and P1 are polynomials in s.

As mentioned in the Introduction, we will use a partial
pole placement approach for the stability analysis of the
closed-loop system. This approach consists in selecting
the free parameters of the controller to determine the
positions of a finite number of roots, ensuring that the
dominant root (i.e. the rightmost characteristic root in the
complex plane) is included among the selected ones. For
further insights and/or illustrative examples, the reader
is referred to Bedouhene et al. (2020); Boussaada et al.
(2020); Mazanti et al. (2021); Ramirez et al. (2016). Un-
like the finite pole placement (FPP) strategy employed
in Manitius and Olbrot (1979), the controllers developed
using these approaches do not aim to make the closed-
loop system finite-dimensional and conserve the infinite-
dimensional character of the system. Conceptually, they
focus on controlling its rightmost spectral value by impos-
ing an appropriate multiplicity or an appropriate number
of coexisting real roots. Specifically, in this paper, we will
use the MID property outlined in Balogh et al. (2021)
where the case of real-rooted plants has been addressed.

So, we address the case when the plant is real-rooted.

Assumption 1. The polynomial P0 to be real-rooted.

Denote s0 a real root with multiplicity at least n of the
characteristic function (3). It is established that if s0
represents the corresponding rightmost root, then the zero
solution of system (2) is asymptotically stable, leading
to a “stable” vector X(t). The following propositions
from Balogh et al. (2021) provide a detailed integral
representation of the quasipolynomial.

Proposition 2. If the quasipolynomial (3) has a real root
s0 with multiplicity at least n then it can be written as

∆(s) = (s− s0)
n

(
nn +

∫ 1

0

e−(s−s0)τt
τRn−1(s0; τt)

(n− 1)!
dt

)
,

(4)
where the family of polynomials Rk(s, τ) is defined as

Rk(s; τ) =

k∑
i=0

(
k

i

)
P (i)(s)τk−i, k ∈ N∗ . (5)

The following Proposition from Balogh et al. (2021) estab-
lishes sufficient conditions to ensure the dominance of the
multiple spectral value.

Proposition 3. Let s0 be a real root of the quasipolyno-
mial(3) with multiplicity at least n+1. If Rk(s; τ t) ≤ 0,∀t,
0 < t ≤ 1 then s0 is the dominant root of (3).

These results will be used in the sequel to prove the
(exponential) stability of the closed-loop system. For more
discussions we refer the reader to Balogh et al. (2021);
Boussaada et al. (2023) and references therein.

3. PROBLEM STATEMENT

We consider a SISO LTI system with a delay in the output
signal given by the following equations:

ẋ(t) = Ax(t) +Bu(t) (6a)

y(t) = Cx(t− τ) (6b)

x(0) = ϕ(t) t ∈ [0, τ ] (6c)

where x ∈ Rn, u ∈ Rm (m = 1), and y ∈ Rp (p = 1) are
the state vector, the control input and the measurements
vector, respectively. Here, τ ∈ R+ is a constant delay. The
function ϕ(t) is a continuous one defining the correspond-
ing initial condition. The matrix A ∈ Rn×n and the vectors
B ∈ Rn and CT ∈ Rn are time-invariant.

As outlined in the Introduction, our aim is to design an
observer-based controller with the following structure

η̇(t) = Nη(t) +My(t) + Fu(t− τ) (7a)

u(t) = η(t) + Ey(t) (7b)

where η ∈ Rm. The matrices N ,M , F and E are unknown,
and will be determined later.

The approach used in this paper involves a two-step
controller design: first, constructing a state feedback gain
L verifying u(t) = Lx(t− τ) for subsystem (6). Once this
gain is found (i.e. assumed to be known for the sequel),
the second-step consists in proposing an observer-based
controller (7) allowing to construct this gain L.

More precisely, we introduce the following notion:

Definition 4. System (6) is said to be stabilizable based
on the functional observer if there exist gain matrix L, a
functional observer (7a) and a control law (7b) such that

(i) limt−→∞ u(t)− Lx(t− τ) = 0
(ii) the designed controller must be an observer-based

one for the nominal system (i.e. a separation principle
like condition is satisfied : the eigenvalues of A and N
are those of the state matrix of the nominal closed-
loop system),

(iii) the closed-loop system (6)-(7) is stable.



4. CONTROL STRATEGY

The control strategy for system (6) can be divided into two
parts: the state-feedback gain design and the design of a
functional filter which estimates the control law without
estimating the system states.

4.1 Synthesis of the state feedback gain

The linear state feedback controller can be determined by
a nominal linear model. Thus, we replace u by Lx(t−τ) in
system (6a)-(6b) and get the following closed-loop system

ẋ(t) = Ax(t) +BLx(t− τ) (8a)

y(t) = Cx(t− τ) (8b)

The characteristic function ∆ : C×R+ → C corresponding
to (8) reads as follows

∆(s, τ) = det(sIn −A−BLe−τs) (9)

which yields to the form of function (3).

Remark 5. In previous work Sassi et al. (2022, 2023), we
assumed that the matrices product BL is a one-rank ma-
trix. This assumption guarantee that the quasipolynomial
(3) involves a single delay, so one can use results in section
2. However, we consider, in this work, a class of SISO
system. Thus, with the following rank property

rank(AB) ≤ min(rank(A), rank(B))

one can see easily that the rank of the matrix BL is equal
to 1 as the rank of the matrices B and L is equal to 1.
So, we can use results of section 2 without considering
a one-rank matrix assumption. Furthermore, the previous
results are for the design of observers. So, here we extend
our design to the design of observer-based controller.

Now, let us define the following polynomial P called
in Boussaada et al. (2023) as the elimination-produced
polynomial, defined by

P(s, τ) =
n∑

k=0

(
n

k

)
P

(k)
0 (s)τn−k. (10)

Using Propositions 2 and 3 in Section 2, the stability of
the closed-loop control design can be guaranteed by the
following theorem.

Theorem 6. Consider that Assumption 1 holds and the
quasipolynomial (9) associated to the closed-loop system
(8) admits a root at some complex number s0 with
multiplicity n + 1. Then, s0 is necessarily algebraic and
the corresponding characteristic polynomial is P defined
in (10). Moreover, if s0 is the abscissa of P and P is is real-
rooted and Hurwitz, then the closed-loop system given by
(8) exhibits exponential stability with s0 as a decay rate.

Sketch of the proof
The vanishing of the characteristic equation ∆(s) = 0

can be expressed as e−sτ = −P0(s)
P1(s)

. Subsequently, an

algebraic system of n equations ∆′(s) = 0, . . . ,∆(n)(s) = 0
is considered. Initially, due to the linearity of the sys-
tem ∆′(s) = 0, . . . ,∆(n−1)(s) = 0 with respect to the
coefficients of P1, one proceeds by systematically elim-
inating these coefficients order by order. Subsequently,
the obtained values of these coefficients are substituted
into the remaining equation ∆(n)(s) = 0, yielding to the

elimination-produced polynomial P, in the variable s, the
delay τ , and the coefficients of P0.

Assuming that condition 1 is satisfied, the proof of the
theorem relies on proposition 3, as the quasipolynomial
corresponding to the closed-loop system (8) is described
by equation (9). □

4.2 Synthesis of the observer based controller

Using item (i) of definition 4, an observation error signal
can be defined as

e(t) = Lx(t− τ)− u(t) = Ψx(t− τ)− η(t) (11)

where ψ = L−EC. Note that the matrix L is known and
deduced from the section before, so that the closed-loop
system is stable. The error admits the following dynamics

ė(t) = Ne(t) + (ΨA−NΨ−MC)x(t− τ)

+ (ΨB − F )u(t− τ) (12)

The unbiasedness of the nominal part corresponding to
item (i) of definition 4 is achieved if and only if the closed-
loop is stable and the following conditions hold:

F −ΨB = 0 (13a)

ΨA−NΨ−MC = 0 (13b)

Replacing Ψ by its expressions, equations (13) can be
written with the following form.

F = LB − ECB (14a)

LA = ECA+NL+KC (14b)

with K = M − NE. One can see that we have just to
solve equation (14b) to determine the existence condition
of the observer, i.e. the expression of matrices N , K and
E, and then deduce the matrix F from equation (14a) and
the matrix M from the expression of K.

Thus, we rewrite equation (14b) with the following form

[LA]︸︷︷︸
A

= [N K E]︸ ︷︷ ︸
X

[
L
C
CA

]
︸ ︷︷ ︸

B

(15)

where the unknown matrices N , K and E are gathered in
one vector, denoted in the sequel X. Then equation (15)
can be written with a compact form A = XB. This type
of equation admits a solution if and only if the following
rank condition is satisfied Darouach (2000).

rank(B) = rank

[
A
B

]
(16)

Let us note r = m + 2p (with m = 1, dimension of the
system input), The general solution of equation (15) is
given by

X = AB† + Z(Ir − BB†) (17)
where Z is an arbitrary matrix with appropriate dimen-
sion, which will be chosen in order to satisfy the conver-
gence of the estimation errors, X is defined hereafter in
equation (19) and B† is any generalised inverse of B, which
fulfils the following equation Rao and Mitra (1971)

B = BB†B (18)

Then, the observers matrices can be expressed through a
single gain matrix Z as

[N K E]︸ ︷︷ ︸
X

= [N1 K1 E1]︸ ︷︷ ︸
AB†

+Z [N2 K2 E2]︸ ︷︷ ︸
Ir−BB†

(19)



The matrix Z will be determined from the convergence
analysis of the estimation error hereafter and will allow
us computing the different parameter matrices of the
functional observer (7).

Since the existence conditions of the functional observer
are satisfied with the resolution of (13b), the dynamics of
the estimation error is described by:

ė(t) = Ne(t) (20)

As the control problem is decoupled, and the convergence
of the closed-loop system is derived by similarity to the
one presented in the previous paragraphs, one can see that
since the matrix N is Hurwitz, (7) is an observer-based
controller for the system (6). Thus, one can assign the
decay rate, denoted s0 of the observation error system by
choosing an appropriate matrix such that

Z = (s0 −N1)N
−1
2 (21)

Based on the remarks above, we state the following result:

Theorem 7. With the notations above, assume that the
rank condition (16) holds. Then the system (7) is an
observer-based unbiased controller for system (6) where L
is given by the resolution of the corresponding quasipoly-
nomial (9) in function of the delay parameter τ , if:

(i) N is Hurwitz and
(ii) for an assigned decay rate s0, the matrix Z is given

by equation (21).

5. ILLUSTRATIVE EXAMPLES

5.1 Double integrator system

We consider a system of a doucle integrator with sensor
delay as in Espitia et al. (2022)

ẋ1(t) = x2(t) (22a)

ẋ2(t) = u(t) (22b)

y(t) = x1(t− τ) (22c)

The system is unstable. However, it is observable and
controllable. In closed-loop, assuming that u(t) = Lx(t −
τ), system (22a) can be written as:

Ẋ(t) = AX(t) +BLX(t− τ),

where X(t) = [x1(t) x2(t)]
T . The matrices A and B

can be easily deduced and L = [ℓ1 ℓ2] is the control
gain to be determined in function of the delay τ . The
quasipolynomial corresponding to the closed-loop system
is explicitly given by

∆(s, τ) = s2 − e−τs(ℓ2s+ ℓ1).

It is easy to observe that ∆ admits a triple root at some
complex number s if and only if s = s± where

s± =
−2±

√
2

τ
,

l1 = −
2
(
−7± 5

√
2
)
es± τ

τ2

l2 = −
2
(
−1±

√
2
)
es± τ

τ
,

(23)

leading to:

∆(s, τ) = s2 − e−τs(
2s
(√

2− 1
)
e−2+

√
2

τ
+

2
(
−7 + 5

√
2
)
e−2+

√
2

τ2

)
(24)

Fig. 1. Migration of the roots of (24) with respect to the
delay variation τ ∈ [ 1

200 ,
1
2 ] (from blue to red).

Fig. 2. Variation of the spectral abscissa of (24) with
respect to the delay (parameter) variation.

Using first Theorem 6 one can compute the gain L as in
equations (23). Consider two cases given by τ1 = 0.4 and
τ2 = 2. Then, the matrix L = [−0.4945 − 1.1529] for
τ = τ1 and L = [−0.0198 −0.2306] for τ = τ2. Next, using
Theorem 7, we compute the observer gain N to stabilize
the error system (20) and the characteristic function is
given by

∆(s, τ) = s−N = s−N1 − ZN2

So that, one can assign the decay rate s0 = −2 of
the observation error by choosing an appropriate Z =
(s0−N1)

N2 = [−2.2215 − 1.0986 − 2.5612] for τ = τ1.



Then, the observer-based controller matrices are given by
N = −2,M = 4.6116, F = −1.1529 and E = −2.8003. For
τ = τ2 and with the same decay rate s0 = −2, we obtain
the matrix Z = [−2.0043−0.0396−0.4622], which gives the
following observer-based controller N = −2, M = 0.9223,
F = −0.2306 and E = −0.4809.

The initial conditions considered for the simulation are
x(0) = [−12 10] and for the controller η(0) = 0. Figures
3 and 4 show the convergence of the closed-loop states
system for τ = 0.4s and τ = 2s respectively.
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Fig. 3. Closed-loop states x(t) for τ = 0.4s.
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Fig. 4. Closed-loop states x(t) for τ = 2s.

5.2 Wind Tunnel System

As a second example, we consider the problem of control of
a transonic flow in a wind tunnel described in Armstrong
and Tripp (1981); Manitius (1984):{

κm′(t) +m(t) = kϑ(t),

ϑ′′(t) + 2ζωϑ′(t) + ω2ϑ(t) = ω2u(t),
(25)

in whichm, ϑ, and u represent, respectively, perturbations
of the Mach number of the flow, the guide vane angle,
and the input of the guide vane actuator, with respect
to steady-state values. The parameters κ and k depend
on the steady-state operating point and are assumed to
be constant as long as m, ϑ, and u remain small, and
satisfying κ > 0 and k < 0. The parameters ζ ∈ (0, 1)
and ω > 0 come from the design of the guide vane angle
actuator and are thus independent from the operating
point. Equation (25) may be written under a state-space
model representation as follows

Ẋ(t) =

−2ξω −ω2 0
1 0 0

0
k

κ

−1

κ

X(t) +

ω2

0
0

u(t), (26)

where X(t) = [ϑ̇(t) ϑ(t) m(t)]T .

In closed-loop, assuming that u(t) = Lx(t − τ), with
L = [ℓ1 ℓ2 ℓ3], the system can be written as in (8a) and the
available measurement is assumed to be single and delayed
such that y(t) = ϑ(t− τ).
The quasipolynomial corresponding to the closed-loop
system is explicitly given by

∆(s) = s3 +
23s2

6
+

80s

3
+

25

2︸ ︷︷ ︸
P0(s)

−e−sτ

×
(
25ℓ1s

2 +

(
25ℓ1
2

+ 25ℓ2

)
s− 3025ℓ3

361
+

25ℓ2
2

)
(27)

This latter quasipolynomial admits a quadruple root (as
shown in figure 5) s = −4.3891, for a delay τ = 1/3s, if
and only if 

ℓ1 = 0.0111

ℓ2 = 0.2067

ℓ3 = 1.3512

(28)

Since the gain L is known, we compute the observer-based

Fig. 5. The spectrum distribution of the quasipolynomial
(27)

controller matrices using equation (17), and by assigning
a decay rate s0 = −1, one can compute easily the matrix
Z using (21). So, the controller matrices are as follows.
N = −1, M = −1.037, F = 0.2775 and E = 0.46316.

We consider the initial conditions as X(0) = [0.25 0 0.15]T

and η(0) = 0. Figure 6 shows the convergence of the states
vector to zero and consequently the stabilization of the
considered system.

6. CONCLUSION

A decoupled controller design for SISO delayed systems
has been investigated using a functional filter approach
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Fig. 6. Closed-loop states x(t) for τ = 1/3s.

to estimate the control law. The optimal gain matrices
of the functional observer-based controller are obtained in
two steps. First, we determine the controller gains which
stabilize the closed-loop system. Then, using these gains
for some delay value, the nominal unbiasedness condition
of the observer error dynamics are given and the functional
observer matrices are easily obtained with a partial pole
placement approach. The practicality and efficiency of
the proposed stabilization approach is illustrated through
two examples. Multiple-Inputs Multiple-Outputs (MIMO)
systems will be considered in future works with another
type of control strategy to overcome the one rank condition
on the delayed matrix given in previous work and not
considered here due to the considered class of system, i.e.
a SISO one (see remark 5).
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