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ABSTRACT

Non-negatively weighted neural networks (NNs) have proven
instrumental in various applications, offering interpretability
and mitigating overfitting concerns. However, this advantage
often comes at the expense of the expressivity of the model.
In this paper, we show that almost non-negative neural net-
works allow us to waive this limitation. More specifically,
we introduce a novel class of almost non-negative neural net-
works, that have a particular algebraic structure, for which
we recover the universal approximation properties. Further-
more, to quantify the robustness of such a network architec-
ture, we demonstrate the feasibility of deriving tight Lipschitz
bounds, which are computationally efficient. To validate our
approach, we conduct various classification experiments on a
benchmark dataset of medical images. The results underscore
the validity of our theoretical results.

Index Terms— neural networks, non-negative, Lipschitz,
adversarial stability, universal approximation, explainability

1. INTRODUCTION

Although deep learning methods have garnered increasing at-
tention in the scientific community owing to their remarkable
ability to tackle complex tasks, they often face challenges
such as interpretability, over-parameterization, and vulner-
ability to adversarial attacks [1]. One promising approach
to mitigate these shortcomings is to introduce constraints in
the architecture design. Specifically, imposing non-negativity
constraints on the model weights can enhance interpretability
by ensuring that weights represent only additive contribu-
tions, and reduce over-parameterization by limiting the search
space. In this work, we will investigate the effect of imposing
non-negativity constraints on the model weights and provide
a framework for tightly estimating the Lipschitz bounds of
the considered architectures.

There is a consensus that humans possess the innate ca-
pacity to dissect intricate interactions into distinct, intuitive
hierarchical categories prior to analysis [2]. This evolution-
ary progression toward part-based representation in human
cognition resonates with the concept of non-negativity restric-
tions on network weights [3]. This notion, among others,
has spurred interest in neural networks featuring non-negative
weights. In addition to aligning with human interpretability,

the non-negativity constraint has been identified as a potent
regularization mechanism, effectively curbing feature overfit-
ting, particularly in scenarios with limited training data avail-
ability [4, 5]. Furthermore, recent research has demonstrated
the feasibility of deriving a tight Lipschitz bound for such net-
works [5]. This Lipschitz constant serves as a valuable metric
for quantifying network robustness, facilitating the design of
networks with heightened resilience to adversarial perturba-
tions [6, 7]. However, accurately computing this constant,
even for modestly-sized networks, raises an NP-hard problem
[8], and obtaining a reliable approximation in a reasonable
timeframe remains an ongoing challenge for arbitrary-signed
NNs.

The integration of non-negative restrictions on weights in
neural networks, inspired by techniques such as non-negative
matrix factorization (NMF), has ushered in a paradigm where
hidden units correspond to discernible concepts. This innova-
tive approach has proven adept at deriving meaningful repre-
sentations, effectively revealing the intrinsic structure of high-
dimensional data, as demonstrated by [9]. Additionally, it
is noteworthy that the appealing convexity property [10] can
be ensured under some assumptions on the activation func-
tions. On a similar trajectory, monotone networks have also
gained prominence for their interpretability and stability. It
has been proven that monotonicity is a desirable property in
real-life scenarios [11]. Interestingly, this monotonicity con-
straint aligns with the non-negative constraints imposed on
weights in certain neural network architectures.

Despite their advantages, networks with non-negative
weights may exhibit less expressivity than their counterparts
with arbitrary signed weights. In a recent study [12], it is
shown that standard non-negative networks are not universal
approximators, a limitation that our work addresses.

In this paper, our interest lies in feed-forward neural net-
works featuring non-negative weights, with the exception of
the initial and final linear layers. This category of networks
naturally expands upon those where all linear layers possess
non-negative values. In Section 3.1 we show that for a sub-
class of these neural networks we can recover universal ap-
proximation properties. Moreover, in Sections 3.3 and 3.4,
we derive tractable and tight Lipschitz bounds for neural net-
works showcasing convolutional and fully-connected layers.
In Section 4, we perform experiments on image classification
problems to substantiate our theoretical findings.
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2. GENERAL BACKGROUND

2.1. Neural network model

We can mathematically express an m-layer perceptron as a
composition of m operators:

T = Tm ◦ · · · ◦ T1, (1)

where for every layer i ∈ {1, . . . ,m}, Ti : RNi−1 → RNi :
x 7→ Ri(Wix+bi). Here, Wi ∈ RN1×Ni−1 is a weight opera-
tor and bi is the bias vector in RNi . Note that, in our formula-
tion, (Wi)1⩽i⩽m can also be chosen as a MIMO convolutive
operator. Ri : RNi → RNi is a non-linear (activation) func-
tion, applied element-wise on the input vector. Despite the
range of activation operators available, studies like [7] have
demonstrated that common Ri choices are αi-averaged op-
erators, with αi ∈]0, 1]. Moreover, in many instances, Ri

is found to be the proximity operator of a convex function,
with αi equal to 1/2. In this work, we will further assume
that Ri is symmetric, which means that there exists a point
of symmetry in its graph. While some activations like hy-
perbolic tangent are symmetric, the classic ReLU operator is
not. However, a capped version can be employed to meet this
symmetry requirement [13].

2.2. Lipschitz bounds of neural networks

Considering a small perturbation z ∈ RN0 , an adversarial ex-
ample is defined as x̃ = x + z, such that T (x) ̸= T (x̃). A
key insight when considering adversarial perturbations is that
the original input x and its adversarial x̃ should be as close
as possible, given a similarity measure. The minimal pertur-
bation required to achieve an adversarial example is usually
quantified by ∥z∥.

If we consider θm a Lipschitz constant of the network, we
can bound the effect of z by the following inequality:

∥T (x+ z)− T (x)∥ ⩽ θm∥z∥, (2)

showing that θm is intimately correlated with the robustness
of the model. Controlling this constant thus represents a feasi-
ble approach to limit the effect of possible adversarial attacks.
Computing the exact Lipschitz constant of a neural network
is however an NP-hard problem [6, 7], so the main challenge
is to find efficient ways of approximating this constant effec-
tively and to control it during the training phase without hin-
dering the model performance. A recent study [14] shows
how the Lipschitz behaviour of a network is influenced by the
architectural choices as well as the initialization values of the
weights. A standard separable upper bound of the Lipschitz
constant is given by

θm =

m∏
i=1

∥Wi∥S, (3)

where ∥ · ∥S represents the spectral norm, i.e. the maximum
singular value. Although easy to compute, this upper bound
is often loose. Another variant, used in [15], leverages on the
following spectral expression:

θm = sup
x∈RN0

∥∇T (x)∥S. (4)

This bound scales relatively well even for larger networks. In
practice, however, the supremum must be computed by sam-
pling the input space, which means that the bound no longer
offers strict theoretical guarantees. If the activations Ri are
separable and αi-averaged, an accurate bound for the Lips-
chitz constant can be derived (see for example [6, 7]) based
on averaging properties:

ϑm = sup
Λi∈DNi

({1−2αi,1})
i∈{1,...,m}

∥WmΛm−1 · · ·Λ1W1∥S, (5)

where DNi
= {Diag(λ1, . . . , λNi

) | (λi)1⩽i⩽Ni
∈ INi}. in

this case, computing ϑm is an NP-hard problem, and even
though some simpler relaxations can be imposed, they are
limited to small networks. It is worth noting that the follow-
ing result holds:

Proposition 2.1 [7] Assume that, for every layer
i ∈ {1, . . . ,m − 1}, the activation operator Ri applies
componentwise and is αi-averaged (except for the last layer
where it is just assumed nonexpansive). Let θm be the Lips-
chitz constant of the associated linear network where opera-
tors (Ri)1⩽i⩽m are identity. Then,

θm = ∥Wm . . .W1∥S ⩽ ϑm ⩽ θm (6)

In addition if, ∀ i ∈ {1, . . . ,m}, Wi ⩾ 0, then ϑm = θm.

In other words, if we use non-negative linear weights, we have
a cheap way of computing the Lipschitz constant. This re-
sult makes non-negatively weighted neural networks appeal-
ing tools for designing robust systems. However, there exists
no universal approximation theorem for such neural networks
[12]. As a direct consequence of the results in the next sec-
tion, we will see that we can design almost non-negative ar-
chitectures that do not suffer from such an expressivity issue.
By “almost” we mean that all the layers of these networks ex-
cept the first and the last one possess non-negatively valued
weights.

3. ABBA NETWORKS

In this section, we will focus on a subset of networks charac-
terized by a specific weight matrix structure. These networks,
referred to as ABBAnets [13], offer several algebraic advan-
tages, allowed through the following weight matrix form:

Definition 3.1 Let (N1, N2) ∈ (N \ {0})2. AN1,N2 is the
space of ABBA matrices of size (2N2) × (2N1), that is



M ∈ AN1,N2 if there exist matrices A ∈ RN2×N1 and
B ∈ RN2×N1 such that

M =

[
A B
B A

]
. (7)

We also define the associated sum matrix as S(M) = A+B.

AN1,N2
is a vector space for which appealing properties are

satisfied, two of them being listed below:

(i) If M has non-negative elements, the spectral norm of
M is ∥S(M)∥S.

(ii) The projection onto the spectral ball of center 0 and ra-
dius ρ > 0 of M is an ABBA matrix.

3.1. Extension to neural networks

Let us extend these results to neural networks. We propose
to use weights which are ABBA matrices, except for the first
and the last layers. Basically, the first layer maps the input to a
twice-higher dimensional space, while the last layer performs
a dimension reduction by a factor 2. This is described more
precisely hereafter.

Definition 3.2 T̃ is an ABBA m-layer network if

T̃ = ( W̃m+1︸ ︷︷ ︸
Nm×(2Nm)

·+ b̃m+1)T̃m · · · T̃1 W̃0︸︷︷︸
(2N0)×N0

(8)

where each layer i ∈ {1, . . . ,m} corresponds to the operator
T̃i = R̃i(W̃i · +b̃i), where R̃i is a non-expansive activation
function operating in twice higher dimension than the opera-
tor Ri defined in Section 2.1, and W̃i ∈ R(2Ni)×(2Ni−1) is an
ABBA matrix, while W̃m+1 and W̃0 are arbitrary-signed.

In addition, T̃ is called a non-negative ABBA m-layer network
if it satisfies the condition of being an ABBA m-layer network
and if its ABBA matrices (W̃i)1⩽i⩽m have non-negative el-
ements. In this work we will be mainly interested in such
non-negative structures.

Let T be the neural network defined in Section 2.1. Next,
we show that if the activation functions are symmetric, T̃ is
identical to T in terms of input-output relation, for judicious
choices of the biases. For each layer i ∈ {1, . . . ,m} of T , let
W+

i be the positive part of weight matrix Wi. We also denote
by W−

i = W+
i − Wi ∈ [0,+∞[

Ni×Ni−1 the non-negative
part of Wi. Now we can define the non-negative ABBAnet
associated with T , as follows:

W̃0 =

[
IN0

−IN0

]
, W̃m+1 =

1

2
[INm − INm ], (9)

and, for every i ∈ {1, . . . ,m},

R̃i :

[
x
z

]
7→

[
Ri(x)
Ri(z)

]
, W̃i =

[
W+

i W−
i

W−
i W+

i

]
. (10)

In addition, suppose that, between the biases bi and b̃i, the
following relation holds

(∀i ∈ {1, . . . ,m}) b̃i =

[
bi −W−

i di−1

ci − bi −W+
i di−1

]
, (11)

b̃m+1 = −dm
2

, d0 = 0. (12)

Then, it can be checked that, for every input, T̃ has an identi-
cal output to T .
This result has a fundamental implication: it demonstrates
that non-negative ABBAnets possess the same expressivity
as standard feed-forward neural networks. Consequently,
all classical universal approximation results [12] for stan-
dard neural networks extend to non-negative ABBAnets, and
more broadly, to the class of networks with all their weights
non-negative, except for the first and last layers [13]. The
sole architectural limitation to meet this universal approxi-
mation properties is the symmetry of the activation operator.
However, symmetric variants of current popular non-linear
operators can be chosen.

3.2. Convolutional case

The current framework can be also extended to the case of
convolutional layers. Wi is such a convolutional ABBA layer
with (2ζi−1) input channels, (2ζi) output channels, and stride
si if its output signals (ỹ+q , ỹ

−
q )1⩽qζi are associated to the in-

put signals (x̃+
p , x̃

−
p )1⩽p⩽ζi−1

by

ỹ+q = (

ζi−1∑
p=1

w+
i,q,p ∗ x̃

+
p +

ζi−1∑
p=1

w−
i,q,p ∗ x̃

−
p )↓si (13)

ỹ−q = (

ζi−1∑
p=1

w−
i,q,p ∗ x̃

+
p +

ζi−1∑
p=1

w+
i,q,p ∗ x̃

−
p )↓si , (14)

where (w+
i,q,p)1⩽p⩽ζi−1,1⩽q⩽ζi and (w−

i,q,p)1⩽p⩽ζi−1,1⩽q⩽ζi

are convolution kernels operating on d-dimensional signals.
We can also define the convolutional layer in a matrix

form. We introduce the MIMO impulse response associated
with a non-negative ABBA convolutional layer Wi: ∀n ∈ Zd,

W̃i(n) =

[
W+

i (n)W−
i (n)

W−
i (n)W+

i (n)

]
∈ [0,+∞[

(2ζi)×(2ζi−1) (15)

with

W
+/−
i (n) =


w

+/−
i,1,1 (n) · · ·w

+/−
i,1,ζi−1

(n)
...

...
w

+/−
i,ζi,1

(n) · · ·w+/−
i,ζi,ζi−1

(n)

 ⩾ 0 (16)

3.3. Lipschitz bound of fully connected ABBAnets

Let us show that, for non-negative ABBAnets, we can provide
a cost-efficient way to approximate the Lipschitz constant of



the network, which is more accurate than the normal separa-
ble bound given by (3). By using the algebraic properties of
ABBA matrices, the following property can be proved:

Proposition 3.3 Let m ∈ N \ {0} and let T̃ be an m-
layer non-negative ABBAnet. Assume that, for every i ∈
{1, . . . ,m}, R̃i is a nonexpansive operator operating com-
ponentwise. A Lipschitz constant of T̃ is

ϑm = ∥W̃m+1∥S∥S(W̃m) · · ·S(W̃1)∥S∥W̃0∥S. (17)

3.4. Lipschitz bound of convolutional ABBA kernels

We can also derive a tight bound for the Lipschitz constant of
a convolutional neural network.

Proposition 3.4 For every i ∈ {1, . . . ,m} and j ∈ S(si), let

Ω
(j)
i =

∑
n∈Zd

S(W̃i(sin+ j)) (18)

with S(si) = {0, . . . , si − 1}d. Then, with nonexpansive
and separable activation functions, a Lipschitz constant of the
non-negative ABBA convolutional network is

θm = ∥W̃m+1∥S
( m∏

i=1

∥∥∥ ∑
j∈S(si)

Ω
(j)
i

(
Ω

(j)
i

)⊤∥∥∥
S

) 1
2 ∥W̃0∥S.

(19)

In the next section, we will see how to obtain an optimal
trade-off between robustness, explainability, and accuracy,
by training non-negative ABBAnets subject to different Lips-
chitz bounds.

4. EXPERIMENTS AND RESULTS

We validate the aforementioned concepts and demonstrate
that non-negative ABBAnets exhibit comparable expres-
sivity to their arbitrary-signed counterparts in classification
tasks. We perform experiments on three datasets from MedM-
NISTv2 [16], namely {Blood (8 classes), Derma (7 classes),
Pneumonia (2 classes)}-MNIST, a recently introduced bench-
mark dataset in medical imaging. For Blood and Derma
datasets, we used RGB images, while for Pneumonia we have
used the original gray scale versions. For all three datasets,
we considered the 64× 64 input resolution version. A differ-
ent architecture configuration has been used for each dataset,
so that the performance fits the official benchmark [16]. For
specifying a feed-forward architecture, we have used the no-
tation [mC]C[mF]F, where mC and mF represent the number
of convolutional and fully-connected layers (not counting the
final classification layer), respectively, with mC +mF = m.
For the intermediate pooling operators, we used 2D AvgPool-
ing. The Lipschitz constant of a 2D pooling layer operating
on k × k windows with stride k ⩾ 2 is θpool = 1

k [13]. Thus,

each pooling operator lowers the Lipschitz bound computed
solely from convolution and fully-connected layers.

In Table 1, we present the results obtained on the offi-
cial test datasets, using standard neural networks and ABBA
equivalents, either unconstrained or with an imposed θ ⩽
θmax, for some chosen upper bound θmax. All networks were
trained for 100 epochs, using a projected Adam optimizer
with a learning rate of 10−3. The Lipschitz constants θdense
and θconv of the dense and convolutional part are computed
as in (17) and (19), respectively. The estimated global bound
for nonnegative networks is θ = θdenseθconvθpool and, for
arbitrary-signed networks, it is θ = θdenseθconvθpool. For the
R̃i operators, we used the capped symmetric Leaky ReLU:

R̃i : ξ 7→

{
ξ if |ξ| ⩽ β

α(ξ − βsgn(ξ)) + βsgn(ξ) otherwise,
(20)

for which α, β are learnable parameters, with α ∈ [0, αmax]
with αmax < 1, and β > 0.

It is clear that nonnegative ABBAnets outperform stan-
dard non-negative ones, even at lower global bounds θ. Al-
though unconstrained ABBAnets may result in a significantly
higher θ than their standard arbitrary and non-negative coun-
terparts, our experiments showcase that training constrained
ABBAnets with lower θmax than standard arbitrary networks
results in similar performance. The higher θ obtained for un-
constrained ABBAnets may reveal some intrinsic character-
istic of this type of neural architecture, trained with standard
optimizers, which we plan to investigate in future works.

As the increased resilience to adversarial perturbation is
directly linked to the Lipschitz bound, we further tested its
impact by employing the DDN [17] attack with different max-
imum allowed perturbation magnitudes ∥z∥. We compared
the performance of our lowest-bound ABBAnets with Deel-
Lip [18] architectures trained under the same bound. Table 2
indicates that, although we may obtain slightly lower clean
accuracies (when z = 0) compared to DeelLip, ABBAnets
ensure a higher protection to adversarial perturbations.

Recent works have illustrated the link between Lipschitz-
constrained networks and explainability [19], by analyzing
the saliency maps of classification models. To visualize the
behaviour of our constrained ABBAnets, we employed Score-
CAM [20], which has been shown to outperform other CAM-
based methods. Figure 2 clearly illustrates that ABBA con-
strained networks offer a more explainable behaviour, focus-
ing only on informative regions. We further performed an ab-
lation study using the generated saliency maps, by retaining
the pixels corresponding to the values in saliency maps falling
under different percentiles. Figure 1 demonstrates that ABBA
constrained networks have the lowest accuracies when remov-
ing even small parts of informative regions, indicating that
saliency maps are much more concentrated over meaningful
areas. On the other hand, standard non-negative networks per-
form roughly equally, irrespective of how many pixels were



Dataset Architecture Acc [%] AUC Bounds

θconv θconv θdense θdense θ

BloodMNIST 2C1F

Standard Arbitrary 93.80 0.995 - 36.83 - 23.35 215.08
Standard Non-Negative 84.27 0.977 61.35 83.08 16.84 17.66 258.40

ABBA 93.77 0.996 182.78 185.19 70.46 71.83 5.80 · 103

ABBA θ ⩽ 100 93.42 0.995 6.90 7.66 47.08 55.22 90.07
ABBA θ ⩽ 50 92.83 0.994 6.88 7.86 25.28 38.31 49.73
ABBA θ ⩽ 10 90.06 0.989 7.38 8.02 4.99 33.06 10.01

PneumoniaMNIST 3C3F

Standard Arbitrary 87.82 0.928 - 9.04 - 32.09 72.56
Standard Non-Negative 83.81 0.907 66.71 75.72 101.04 195.49 1.68 · 103

ABBA 88.46 0.935 9.52 · 106 9.56 · 106 510.29 582.51 1.22 · 108

ABBA θ ⩽ 25 88.78 0.933 7.37 7.57 13.17 17.71 24.92
ABBA θ ⩽ 10 87.82 0.936 5.84 5.84 6.23 21.71 9.12
ABBA θ ⩽ 1 87.58 0.925 3.84 3.85 1.00 12.40 0.97

DermaMNIST 2C2F

Standard Arbitrary 74.31 0.902 - 17.89 - 107.70 481.84
Standard Non-Negative 67.58 0.804 90.21 658.77 29.48 32.52 665.07

ABBA 73.11 0.908 269.72 293.37 2.03 · 103 2.06 · 103 1.49 · 105

ABBA θ ⩽ 100 74.16 0.912 7.70 7.75 50.00 99.81 96.94
ABBA θ ⩽ 50 72.46 0.893 7.46 7.52 24.99 67.54 47.00
ABBA θ ⩽ 10 71.77 0.894 3.40 3.50 10.01 306.69 8.76

Table 1: Results for ABBA (constrained and unconstrained) vs. standard (arbitrary-signed and non-negative) networks.

Accuracy [%]

∥z∥ = 0.0 ∥z∥ = 0.8 ∥z∥ = 2.0 ∥z∥ = 3.2

Pneumo.
Standard 87.82 66.03 13.14 0.00

ABBA θ = 1 87.58 75.48 46.63 15.38
Deel θ = 1 87.18 73.88 46.31 11.54

Derma
Standard 74.31 12.71 0.00 0.00

ABBA θ = 10 71.77 57.61 31.67 9.03
Deel θ = 10 73.16 47.48 13.66 0.35

∥z∥ = 0.0 ∥z∥ = 0.4 ∥z∥ = 1.2 ∥z∥ = 2.0

Blood
Standard 93.80 50.83 6.40 0.32

ABBA θ = 10 90.06 74.24 31.01 9.06
Deel θ = 10 92.40 68.92 21.54 1.66

Table 2: Adversarial robustness against DDN attack.

deleted, indicating a non-explainable behaviour. It is clear
that as we reduce the expressivity of ABBAnets by impos-
ing lower bounds, they tend to concentrate more on the most
informative areas, presenting a more explainable behaviour.

5. CONCLUSION

In this paper, we investigated the expressivity of non-negative
neural networks, revealing that by permitting only the first
and last layers to be signed, universal approximation can
still be achieved. Our experiments showcase comparable
performance to standard architectures through careful de-
sign of inner convolutional and fully connected operators.
Furthermore, constrained models exhibit minimal perfor-
mance degradation while offering notable enhancements in
robustness and explainability. Looking ahead, we aim to ex-
tend these mechanisms to diverse architectures tailored for a

broader array of applications.
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Fig. 1: Average test accuracies for retaining certain proportions of input images, by thresholding the saliency maps of Score-
CAM at corresponding percentiles. For any given percentile, a lower accuracy corresponds to a more explainable model.
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Fig. 2: Saliency maps generated by Score-CAM. Each row
corresponds to a sample from the three datasets. A brighter
color implies the region has a higher impact on the decision
of the classifier.
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