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Ecological Processes

Spatial patterns of causality in temperate 
silvopastoral systems: a perspective 
on nitrification stability in response to flooding
Romane Mettauer1*  , Mathieu Emily2, Zita Bednar‑Konski3, Anaïs Widmer2, Olivier Godinot1, Lukas Beule3 and 
Edith Le Cadre1 

Abstract 

Background Extreme rainfall and flooding events are projected to increase in frequency and disturb biogeochemi‑
cal cycles such as the nitrogen (N) cycle. By combining trees and grasses, silvopastoral agroforestry is expected 
to increase the stability of this cycle in response to flooding. However, little is known about the response of nitrifica‑
tion to flooding in silvopastoral systems. Aim of this study was to assess nitrification stability in response to flooding 
and identify the main causal relations that drive it in temperate silvopastures.

Methods The nitrification stability (i.e., resistance and resilience) was assessed in two silvopastoral systems (i.e., 
hedgerows and alley cropping) at three positions relative to the trees. The resistance and resilience of nitrifica‑
tion potential were measured in the laboratory after four weeks of flooding stress and four weeks after the end 
of the stress, respectively. For the first time, we used multigroup latent structural equation modeling (ML‑SEM) 
to explore the spatial structure of causal relations between nitrification stability and soil properties across all positions 
of the two silvopastoral systems.

Results Tree rows of both systems favored nitrification resistance, while the mean nitrification potential 
under flooded conditions was on average 27% and 35% higher as compared to non‑stressed soils at the two posi‑
tions assessed in the grass alleys. ML‑SEM revealed that the causal relations that explained these results differed 
between the two systems. The ML‑SEM models tested were unable to explain the causal relations in the hedgerow 
system. However, the model that considered a covariance between soil physical properties and soil resources avail‑
ability (model A) was able to explain them in the alley‑cropping system. It revealed that causal relations explain‑
ing nitrification stability varied according to the position relative to the trees: in the tree rows nitrification stability 
was associated with higher soil organic carbon concentration and earthworm abundance; in the grass alleys it 
was associated with higher soil organic carbon concentration and soil bulk density.

Conclusions This study indicates that silvopastoral systems help regulate the N cycle near the trees. The results 
further imply that improvements in soil organic carbon concentration and soil bulk density favor the regulation 
of N‑related processes in grasslands.

Keywords Nitrogen cycle, Soil microorganisms, Agroforestry, Hedgerow, Alley‑cropping system, Grassland, Microbial 
resistance, Microbial resilience, Multigroup latent structural equation modeling, Nitrogen losses mitigation
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Introduction
Extreme weather events that cause the structure and/
or functioning of ecosystems to exceed their usual lim-
its of variability are projected to become strong drivers 
of ecosystem dynamics (Smith 2011). Extreme weather 
events have long-lasting impacts on plant–microbe 
and microbe-microbe interactions, as well as on pro-
cesses that drive biogeochemical cycles (van der Putten 
et  al. 2013; Kaisermann et  al. 2017; Nguyen et  al. 2018; 
Mukhtar et  al. 2023). Nonetheless, knowledge of how 
diverse types of extreme weather events and their legacy 
disturb biogeochemical cycles is inconsistent (Müller and 
Bahn 2022; Qu et al. 2023). Authors such as Knapp et al. 
(2008), Jentsch et al. (2007), and Dodd et al. (2023) high-
lighted how few studies explore the effects of extreme 
rainfall events, even though the frequency of extreme 
rainfall events is projected to increase in some temper-
ate regions. These events are expected to influence criti-
cal biogeochemical cycles such as the nitrogen (N) cycle 
(Greaver et al. 2016), but such events are difficult to pre-
dict (Knapp et al. 2008; Ummenhofer and Meehl 2017).

Plant diversity influences N processes and related 
microbial communities and increases ecosystem stability 
under extreme stress (Cardinale et al. 2013; Abalos et al. 
2019). By planting trees in or around agricultural fields, 
agroforestry is recommended as one way to increase 
agroecosystem stability in response to extreme weather 
events, such as extreme rainfall and flooding (Elrys et al. 
2022; IPCC 2022). The stability of soil microbial com-
munities in response to extreme rainfall events depends 
on the duration, intensity, and frequency of the event 
as well as on characteristics of microhabitats and the 
soil microbial community itself (Gionchetta et al. 2019). 
Since the addition of trees and their understory vegeta-
tion alters these characteristics, agroforestry systems are 
expected to influence the resistance (i.e., ability to remain 
in a reference state) and resilience (i.e., ability to return 
to a reference state) of soil microbial communities to 
extreme weather events. Both resistance and resilience 
are crucial components of the stability of microbial com-
munities (Shade et  al. 2012; van Meerbeek et  al. 2021). 
The influence of trees on the resistance and resilience of 
soil microbial communities after drying-rewetting and 
extreme rainfall events has been explored recently in 
temperate silvoarable systems (Rivest et al. 2013; Guillot 
et al. 2019; D’Hervilly et al. 2020), but research on other 
types of agroforestry systems, such as silvopastoral sys-
tems (i.e., combination of trees and livestock) is lacking.

By influencing N-related processes, silvopastoral sys-
tems are of great interest to mitigate N losses from grazed 
grasslands (Grimaldi et  al. 2012; Kim and Isaac 2022). 
While inhibiting nitrification [i.e., oxidation of ammo-
nium  (NH4

+) to nitrate  (NO3
−)] has been considered 

one way to decrease N losses from grasslands (Di and 
Cameron 2018), previous studies observed shifts in the 
microbial communities that perform nitrification (i.e., 
nitrifying communities) and their activities in response 
to soil water in grasslands (Hammerl et al. 2019; Hafeez 
et  al. 2023; Dodd et  al. 2023). However, the sensitivity 
of nitrification to extreme rainfall and flooding events is 
complex and difficult to generalize (Mukhtar et al. 2023), 
since these events have been observed to decrease (Sun 
et al. 2016), increase (Waqas et al. 2021), or not influence 
nitrification rates (Nguyen et al. 2018).

A variety of nitrification pathways have been identified 
in agricultural soils, and they may respond differently to 
anoxia. Autotrophic nitrification by ammonia-oxidizing 
bacteria (AOB), ammonia-oxidizing archaea (AOA), 
and nitrite oxidizers is particularly reactive to changes 
in soil water content and oxygen concentration since it 
requires aerobic conditions (Prosser and Nicol 2012). In 
addition, heterotrophic nitrification (i.e., oxidization of 
ammonia or organic N by microorganisms such as bac-
teria and fungi) may be influenced by changes in the soil 
redox potential due to extreme rainfall events (Marti-
kainen 2022). Mukhtar et  al. (2023) observed that the 
stability of nitrifying communities in response to extreme 
rainfall and flooding events depended on the communi-
ties’ resource availability, connectivity, and composition. 
Thus, identifying causal relations that drive the stabil-
ity of the N cycle within silvopastoral systems during 
and after extreme rainfall and flooding events is crucial 
to promote agricultural practices that help decrease N 
losses from grasslands (Di and Cameron 2018; Thoro-
good et al. 2023).

Identifying causal relations among ecosystem compo-
nents is a statistical challenge since correlation does not 
imply causation (Shipley 2016). Studying causal relations 
among soil biogeochemical processes in agroforestry sys-
tems adds another level of complexity, since the relations 
may be spatially structured. Indeed, differences can be 
expected among (i) the tree row and its understory veg-
etation, (ii) the area of the crop alley directly influenced 
by the tree row, and (iii) the area of the crop alley not 
directly influenced by the tree row (Cardinael et al. 2020). 
Structural equation modeling (SEM) is a promising sta-
tistical tool to address such issues and is thus increas-
ingly used in ecology (Hoyle 2012; Shipley 2016; Fan 
et al. 2016). SEM explores and assesses postulated causal 
relations and is thus a method to acquire systemic under-
standing of ecosystems (Grace et al. 2016; Fan et al. 2016). 
In “latent” SEM, abstract attributes of an ecosystem, such 
as the stability of microbial communities, can be repre-
sented by latent variables. Latent variables are described 
indirectly using a set of measured “manifest” variables. In 
addition, “multigroup” SEM, a sophisticated type of SEM, 
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can assess the preservation of causal relations across sev-
eral compartments in complex agroecosystems by setting 
fixed parameters across several positions (Hoyle 2012; 
Rosseel 2021).

The aims of this study were to assess nitrification stabil-
ity in response to flooding and identify the main causal 
relations that drive this stability in temperate silvopas-
toral systems. We hypothesized that the presence of tree 
rows and their understory vegetation increases nitrifica-
tion stability in response to flooding due to their posi-
tive influence on soil physico-chemical properties. For 
the first time, we applied multigroup latent SEM (ML-
SEM) to explore the spatial structure of causal relations 
of nitrification stability in the context of flooding in two 
silvopastoral systems (i.e., hedgerow and alley cropping) 
in Brittany, France.

Materials and methods
We studied the spatial structure of causal relations that 
drive nitrification stability in two silvopastoral systems 
using ML-SEM to assess postulated causal relations and 
their spatial preservation in temperate silvopastoral sys-
tems (Fig. 1).

Development of the directed acyclic graph
In the first step of ML-SEM, we developed a directed 
acyclic graph to test postulated causal relations among 
latent and manifest variables identified in the literature 
(Rivest et al. 2013; Fan et al. 2016). Hence, we reviewed 
studies on nitrification stability and overall microbial sta-
bility, especially in temperate agroforestry systems, using 
Web of Science and Google Scholar (see Appendix  1: 
Box 1 for the combinations of keywords used). We con-
sidered reviews and articles published from 2000–2022 
and screened their titles and abstracts to select those that 
provided insights into nitrification or microbial stability 
under flooding stress. In total, we identified 45 relevant 
articles (Appendix 1: Table S1).

Four main soil properties that drive nitrification were 
identified as potential latent variables for the directed 
acyclic graph: (i) intrinsic properties of the nitrify-
ing community (i.e., community composition, size, and 
activity level), (ii) resource availability for the nitrifying 
community, (iii) soil physical properties that drive soil 
oxygenation and structure, and (iv) soil microclimate. 
These properties are partly modulated by plant traits 
and agricultural practices (Hallin et al. 2009; Abalos et al. 
2019; Jia et al. 2020; Clark et al. 2020). Soil microclimate 
was not included as a latent variable due to experimental 
and statistical constraints. Ultimately, the directed acy-
clic graph (Fig. 2) included three latent variables: NITRI-
FICATION STABILITY, RESOURCE AVAILABILITY, 
and SOIL PHYSICAL PROPERTIES. Since ML-SEM 

is constrained by the number of replicates (Deng et  al. 
2018), latent variables were informed by ecologically 
accurate and easily measured manifest variables. For 
NITRIFICATION STABILITY, nitrification resistance 
(RS) and nitrification resilience (RL) were considered 
(Orwin and Wardle 2004; Shade et al. 2012). One mani-
fest variable for the size of the nitrifying community was 
also included, since intrinsic characteristics of the micro-
bial community can explain RS and RL (Bérard et  al. 
2011; Thion and Prosser 2014). Since we detected no 
AOA amoA genes at the study site using real-time PCR 
(Mettauer et al. 2024) and could not distinguish nitrify-
ing fungi from non-nitrifying fungi, AOB amoA genes 
were used to represent the size of the nitrifying commu-
nity. RESOURCE AVAILABILITY was informed by three 
manifest variables known to influence nitrification activ-
ity through the limitation of resources for nitrifying com-
munities and known to vary according to the position to 
the trees: soil organic carbon (SOC) concentration (Car-
dinael et al. 2017; Fikri et al. 2021), N–NH4

+ concentra-
tion (Pardon et  al. 2017; Clark et  al. 2020), and soil pH 
(Gao et al. 2022; Mettauer et al. 2024). SOIL PHYSICAL 
PROPERTIES that limit aeration and soil water holding 
capacity were informed by proxies of soil aeration and 
structure known to impact soil nitrification and to vary 
according to the positions to the trees: soil bulk density 
(Danielson and Sutherland 1986; Mettauer et  al. 2024), 
earthworm abundance (Sharma et al. 2017; Vaupel et al. 
2023), and root biomass (Freschet et  al. 2021; Siegwart 
et  al. 2023). Since SOIL PHYSICAL PROPERTIES and 
RESOURCE AVAILABILITY may influence each other, 
we tested model A, which considered covariance (β3) 
between them, and model A′, which did not (Fig. 2).

The directed acyclic graph developed met the require-
ments for identification of ML-SEM models: (i) positive 
degrees of freedom (df = 27 and 28 for models A and A′, 
respectively), (ii) all latent variables scaled by setting their 
variances equal to 1, and (iii) all latent variables informed 
by more than two manifest variables (Fan et al. 2016).

Data acquisition
The manifest variables were measured in April and May 
2022 on two neighboring plots in the south of the Ille-
et-Vilaine department, in Brittany, France (47° 45′ 36.3ʺ 
N, 1° 54′ 54.0ʺ W). Each plot contained a silvopastoral 
system typical for the region, with trees on a 4-year tem-
porary grassland (Lolium spp. and Trifolium pratense): (i) 
a hedgerow (H) system or (ii) an alley-cropping (AC) sys-
tem (Fig. 3). The systems differed in the density of trees 
planted in the tree row (every 4 m, with shrubs every 1 
m between them, in H; every 6 m in AC), diversity of tree 
species (9 in H; 6 in AC), and number of tree rows per 
plot (one in H; two spaced 27 m apart in AC). Both plots 
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Fig. 1 Overview of the multigroup latent structural equation modeling (ML‑SEM) used in the study
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are under a temperate oceanic climate on a silty-loam 
Luvisol soil. In winter, the plots were regularly flooded 
for several days due to rainfall events. See Mettauer et al. 
(2024) for further details on the management of both 
plots.

Following Mettauer et al. (2024), 30 trees were selected 
in each plot, and the manifest variables were measured in 
a 1  m2 area at three positions relative to each tree (Fig. 3): 
(i) in the tree row at 1 m from the tree (position A), (ii) in 
the grass alley at 1.5 m from the tree (position B), and (iii) 
in the grass alley at 10 m from the tree (position C). Con-
sequently, the dataset was categorized into six groups 
by the type of system (H or AC) and position relative to 
the tree (A, B, or C): H-A, H-B, H-C, AC-A, AC-B, and 
AC-C.

For each position, RS and RL were determined by 
comparing the potential nitrification rates (PNR, ISO 
15685, see Mettauer et  al. 2024 for details) of soil sam-
ples exposed to flooding stress to that of soil samples 
not exposed to flooding stress. Before determining RS 
and RL, soil samples were collected from each posi-
tion, air-dried, stored at ambient temperature for two 
months, and then sieved at < 1 mm. Next, four 10 g soil 
samples per position were prepared by slowly rewetting 
them for 2  weeks at 20  °C to reach 60% water holding 

Fig. 2 Directed acyclic graph developed to study nitrification 
stability in two silvopastoral systems (alley cropping vs. hedgerows) 
and for three positions relative to the trees. Rectangles represent 
the manifest variables, ovals the latent variables, and solid arrows 
the causal relations. The dashed arrow represents the potential 
covariance between the latent variables SOIL PHYSICAL PROPERTIES 
and RESOURCE AVAILABILITY (considered when testing model 
A but not when testing model A′). RS, nitrification resistance; 
RL, nitrification resilience; SOC, soil organic carbon; AOB, 
ammonia‑oxidizing bacteria amoA gene abundance; Earthworm, 
earthworm abundance

Fig. 3 The experimental design of the two silvopastoral systems studied in Brittany, France (adapted from Mettauer et al. 2024). Soil and vegetation 
were measured at three positions relative to each tree: at 1 m in the tree row (A), in the grass alley at 1.5 m from the tree (B), and in the grass alley 
at 10 m from the tree (C). AC, alley cropping; H, hedgerow
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capacity. Two of the four soil samples were kept at 20 °C 
and 60% water holding capacity for the entire experiment 
and served as control soil samples. The other two sam-
ples were exposed to flooding stress by adding ultra-pure 
water until they reached 200% water holding capacity, at 
which they were held for 4 weeks. At the end of the stress 
period, the soils were air-dried for 2 days at 20 °C to reach 
60% water holding capacity. Immediately after this step, 
one control sample and one stressed sample were ana-
lyzed to determine the RS. The other two samples were 
kept for 4 additional weeks under control conditions 
to determine the RL. The 4-week duration was chosen 
based on several studies that had observed high resilience 
four weeks after the end of an applied stress (Bérard et al. 
2011; de Oliveira et al. 2020; Guillot et al. 2019; Nguyen 
et al. 2018; Rivest et al. 2013).

RS and RL were then calculated:

where PNRs and PNRc are the PNR of the stressed and 
control soils, respectively; T0 is the measurement imme-
diately after the end of the stress; and T4 is the meas-
urement after the additional four weeks under control 
conditions. Thus, RS and RL equaled 1 when the stress 

(1)RS =

PNRs(T0)

PNRc(T0)

(2)RL =

PNRs(T4)

PNRc(T4)

did not influence the PNR, were greater than 1 when the 
stress stimulated the PNR, and were less than 1 when the 
stress decreased the PNR.

Several protocols were used to collect data on the man-
ifest variables that described SOIL PHYSICAL PROPER-
TIES and RESOURCE AVAILABILITY and to determine 
AOB amoA gene abundance (Table 1).

Data management and statistical analysis
Data management and statistical analysis were per-
formed using R software v.4.2.0 (R Core Team 2022).

Detection of outliers
ML-SEM requires that each group of data considered fol-
low a multivariate normal distribution (i.e., multinormal-
ity) (Fan et al. 2016). We considered all six groups H-A, 
H-B, H-C, AC-A, AC-B, and AC-C in the ML-SEM. Mul-
tinormality of the groups was assessed based on skew-
ness and kurtosis using Mardia’s test (function ‘mvn()’ 
of the ‘MVN’ package; Korkmaz et  al. 2014). If a group 
was not multinormal, we identified multivariate outliers 
by calculating the Mahalanobis square distance (func-
tion ‘outlier()’ of the ‘psych’ package) for each observa-
tion. Four outliers were detected and removed from the 
dataset. The final dataset contained 30 observations each 
for groups AC-A and AC-C and 29 observations each for 
the other groups AC-B, H-A, H-B, and H-C. Since this 
procedure considered multivariate normal distribution, 

Table 1 Protocols used to measure the manifest variables that informed latent variables

These manifest variables informed the latent variables SOIL PHYSICAL PROPERTIES (Earthworm abundance, Root biomass, Soil bulk density), RESOURCE AVAILABILITY 
(SOC,  NH4

+–N, pH), and NITRIFICATION STABILITY (AOB amoA gene abundance). See Mettauer et al. (2024) for more details about the measurements

Variable Method used References

Ammonium (N‑NH4
+) Soil  NH4

+ concentration was determined in the laboratory from fresh and sieved (< 2 mm) 
soil samples.  NH4

+ was extracted by agitating samples for 1 h in a 1 M KCl solution and then 
measured using a discrete analyzer (SmartChem 200)

ISO 1425‑6

Soil organic carbon (SOC) Soil samples were air‑dried upon arrival from the field and then homogenized using a gravi‑
metric grinder. SOC was determined by dry combustion (FlashEA® 1112 analyzer) of the total 
soil carbon concentration

ISO 10694

Soil pH Soil samples were air‑dried upon arrival from the field and sieved at < 2 mm. Soil pH was deter‑
mined after agitating samples for 5 min in a 1 M KCl solution

ISO 10390

Soil bulk density Soil samples were collected in the field using a volumetric cylinder (8 cm in diameter; 15 
cm tall). They were then dried at 105 °C for 48 h and weighed. Bulk density was calculated 
as the ratio of the sample’s dry mass to its volume

Blake and Hartge (1986)

Earthworm abundance In the field, soil blocks (25 cm L × 25 cm W × 30 cm D) were extracted and hand‑sorted to count 
the number of earthworms. Since the soil was shallow, no mustard solution was added to col‑
lect earthworms below a depth of 30 cm

ISO 23611‑1, adapted

Root biomass Soil samples were collected in the field using a volumetric cylinder (8 cm in diameter; 15 cm 
tall) and stored frozen. They were then hand‑washed to collect the roots, which were dried 
at 65 °C for at least 48 h and weighed

Freschet et al. (2021)

AOB amoA gene abundance Microbial DNA was extracted from the soil samples, inspected for quality and quantity, 
and diluted at 1:50 (v/v) in double‑distilled water. The population size of nitrifying communities 
[i.e., ammonia‑oxidizing bacteria (AOB) and archaea (AOA)] was then determined by quantify‑
ing amoA genes using real‑time PCR. AOA amoA genes were not detected

Beule et al. (2020)
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some individual data points may look like outliers when 
considering only one variable.

Univariate analysis of nitrification resistance and resilience
Effects of the type of silvopastoral system (H or AC) and 
position relative to the tree (A, B, and C) on RS and RL 
were tested using linear regression models. Since the 
groups’ data did not have normally distributed residuals 
or homoscedasticity, Kruskal–Wallis tests were followed 
by Wilcoxon tests with Bonferroni correction of p-values. 
Effects of the silvopastoral system and position relative to 
the tree were considered significant at p < 0.05. In addi-
tion, to assess whether the PNR of stressed soils differed 
from that of control soils, Student’s t-tests (‘t.test’ func-
tion of the ‘stats’ package) were performed to compare RS 
and RL to 1.

ML‑SEM
ML-SEM was performed with models A and A′ using a 
standardized dataset (function ‘scale’ of R) that excluded 
the four outliers. Models A and A′ were estimated (i.e., 
free parameters were calculated to fit the data) using 
the ‘sem’ function of R (‘lavaan’ package, Rosseel 2012). 
To test whether the spatial structure of causal relations 
between nitrification stability and the other latent vari-
ables was preserved across groups, parameters for causal 
relations β1, β2, and β3 (Fig.  2) were each assigned the 
same estimated value for the groups considered. First, β1, 
β2, and β3 were each assigned the same estimated value 
for all six groups. Next, they were each assigned the same 
estimated value for all positions given a silvopastoral sys-
tem (H-A, H-B, and H-C vs. AC-A, AC-B, and AC-C). 
Finally, they were each assigned the same estimated value 
for each position relative to the tree (H-A and AC-A vs. 
H-B and AC-B vs. H-C and AC-C). We calculated χ2-p-
values (‘pchisq’ function of the ‘stats’ package) for each 
group using a χ2 test and the degrees of freedom of the 
given model. Models were non-rejected at χ2-p > 0.05. 
The Akaike Information Criteria (AIC) was used to com-
pare models A and A′ and identify the more plausible 
one (Bollen et al. 2014).

Results
Nitrification stability
For both silvopastoral systems, the PNR in the tree row 
after stress were comparable to those from control soils 
(RS at position A, 1.13 ± 0.38), but it was found higher as 
compared to the control soils at positions B (1.35 ± 0.61) 
and C (1.27 ± 0.38) (p < 0.001) (Fig.  4a). This indicates 
that the PNR was stimulated by the flooding stress in 
the grass alleys only. Although the type of system did not 
influence RS in response to the flooding stress (Fig. 4a), 
the RS of the alley-cropping system varied less (standard 

deviation = 0.33–0.52) than that of the hedgerow system 
(standard deviation = 0.43–0.79). In the alley-cropping 
system, RS was influenced by the position, with lower RS 
in the tree row (position A, 1.01 ± 0.52) than in the mid-
dle of the grass alley (position C, 1.30 ± 0.33) (p < 0.001) 
(Fig. 4a). RL did not differ significantly from 1 for either 
system and all positions (Fig.  4b), indicating that four 
weeks after experiencing flooding stress, stressed soils 
had similar PNR as control soils.

Preservation of the causal relations that explain 
nitrification stability across silvopastoral systems
When parameters β1, β2, and β3 were each assigned the 
same estimated value for all six groups (AC-A, AC-B, 
AC-C, H-A, H-B, and H-C), model A was rejected for 
groups AC-B, H-A, H-B, and H-C (χ2-p = 0.018, 0.027, 
0.016, and 0.001, respectively), while model A′ was 
rejected for groups AC-B, AC-C, H-B, and H-C (χ2-
p = 0.012, 0.032, 0.004, and 0.001, respectively) (Fig. 5b). 
These results indicate that the causal relations that 
explained NITRIFICATION STABILITY were not pre-
served among groups.

When considering models A and A′ for only the alley-
cropping system, model A was always accepted (χ2-
p > 0.05 for AC-A, AC-B, and AC-C), while model A′ was 
always rejected (χ2-p < 0.05 for AC-A, AC-B, and AC-C) 
(Fig.  5c). In addition, model A had a better AIC (1909) 
than model A′ (1946) for the alley-cropping system, indi-
cating that NITRIFICATION STABILITY was explained 
well for all positions of this system when considering 
covariance between SOIL PHYSICAL PROPERTIES and 
RESOURCE AVAILABILITY. Both models A and A′ 
were rejected when considering only the hedgerow sys-
tem (χ2-p < 0.05 for H-A, H-B, and H-C) (Fig. 5c), which 
indicates that neither model could explain nitrification 
stability across all positions of the hedgerow system.

When parameters β1, β2, and β3 were each assigned 
the same estimated value for AC-A and H-A, AC-B and 
H-B, or AC-C and H-B, sequentially, both models were 
accepted for position A (χ2-p > 0.05 for AC-A and H-A) 
(Fig.  5d). Model A had a better AIC (1457) than model 
A′ (1462), but causal relations β1 between NITRIFICA-
TION STABILITY and SOIL PHYSICAL PROPERTIES 
(p = 0.67) and β2 between NITRIFICATION STABILITY 
and RESOURCE AVAILABILITY (p = 0.54) were non-
significant for model A (Appendix S2). Both model A and 
A′ were rejected when estimating β1, β2, and β3 equally 
for positions B and C (χ2-p < 0.05 for AC-B and H-B as 
well as for AC-C and H-C) (Fig.  5d). Thus, none of the 
models was able to explain nitrification stability well in 
the grass alleys of either silvopastoral system when esti-
mating β1, β2, and β3 equally for positions B and C.
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Fig. 4 Boxplots with jittered data points (n = 176) of (a) nitrification resistance (RS) and (b) resilience (RL) as a function of the silvopastoral system 
and the position relative to the trees: at 1 m in the tree row (A), in the grass alleys at 1.5 m from the tree (B), and in the grass alleys at 10 m 
from the tree (C). Whiskers represent 1.5 times the interquartile range. Boxplots concerning RS and RL in the alley‑cropping system are colored 
in orange and the ones concerning the hedgerow system are colored in blue. Different letters above the boxplots indicate significant differences 
(p < 0.05). Red asterisks indicate significant differences from 1: * p < 0.05, ** p < 0.01, and *** p < 0.001
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Fig. 5 Causal space exploration and model selection using multigroup latent structural equation modeling (ML‑SEM). (a) Two latent causal 
structures were tested. Model A considered potential covariance between the latent variables SOIL PHYSICAL PROPERTIES and RESOURCE 
AVAILABILITY, while model A′ did not. Tables (b), (c) and (d) show the χ2‑p‑value and Akaike Information Criteria (AIC) for all models. Models 
were not rejected when χ2‑p > 0.05 (in bold). RS = nitrification resistance, RL = nitrification resilience, SOC = soil organic carbon, AOB = 
ammonia‑oxidizing bacteria amoA gene abundance, Earthworm = earthworm abundance
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Spatial causal relations between latent and manifest 
variables in the alley‑cropping system according to model A
The latent variable NITRIFICATION STABILITY was 
significantly and positively informed by RS at positions A 
and B (Fig. 6). Since the RS was greater than 1 and related 
to stimulation of PNR, the stability of PNR decreased as 
RS increased. In contrast, NITRIFICATION STABIL-
ITY was significantly and negatively informed by RS at 
position C. RL significantly informed NITRIFICATION 
STABILITY only at position B, while AOB did not sig-
nificantly inform NITRIFICATION STABILITY at any 
position. At all positions, NITRIFICATION STABILITY 
was significantly related to RESOURCE AVAILABIL-
ITY (negatively) and SOIL PHYSICAL PROPERTIES 
(positively).

Depending on the position, RESOURCE AVAILABIL-
ITY was significantly informed by different manifest vari-
ables. At position A, RESOURCE AVAILABILITY was 
positively informed by SOC and soil pH. At position B, 
it was positively informed by SOC, while at position C, it 
was significantly and negatively informed by SOC. Fur-
thermore, the absolute value of the contribution of SOC 
to RESOURCE AVAILABILITY decreased from posi-
tion A (0.826) to B (0.423) to C (0.270). SOIL PHYSICAL 
PROPERTIES was significantly and positively influenced 
by earthworm abundance only at position A. Soil bulk 
density significantly influenced SOIL PHYSICAL PROP-
ERTIES in the grass alleys at positions B (negatively) and 
C (positively), with similar absolute values of contribu-
tion at both positions (0.581 and 0.504, respectively). In 
addition, RESOURCE AVAILABILITY and SOIL PHYSI-
CAL PROPERTIES significantly influenced each other.

The latent variable NITRIFICATION STABILITY was 
mostly positively related to the manifest variable RS 
(i.e., stimulation of PNR after flooding). By extension of 
the relations between NITRIFICATION STABILITY 
and RESOURCE AVAILABILITY and SOIL PHYSICAL 
PROPERTIES, RS was negatively related to high SOC 
and soil pH at position A. Moreover, RS was positively 
related to earthworm abundance in the tree row (position 
A) and negatively related to SOC and soil bulk density in 
the grass alleys (positions B and C).

Discussion
Trees improve nearby nitrification stability when soil faces 
flooding stress
This study demonstrates that trees in temperate grass-
lands can favor nitrification stability when flooding 
occurs. Although PNR may not reflect the in  situ activ-
ity of the nitrifying communities due to laboratory con-
ditions, it is a valid method to explore and compare 
nitrification potentials between several conditions (e.g., 
position relative to the trees) (Hazard et al. 2021). First, 

the PNR was resilient at all positions relative to the tree 
in both silvopastoral systems studied. This study indi-
cate that, unlike other C- and N-cycle processes, flooding 
stress has no long-term effect on nitrification or nitrify-
ing communities, consistent with the results of other 
studies (Nguyen et al. 2018; Fikri et al. 2021).

In the present study, NITRIFICATION STABILITY 
was most sensitive to variations in nitrification resist-
ance. Immediately after the flooding stress, PNR was 
stimulated in the grass alleys, indicating that nitrifica-
tion was not resistant in these positions in the plots. 
This result is consistent with that of Dodd et al. (2023), 
who concluded that flooding stress strongly influences 
ecosystem processes in temperate grasslands; how-
ever, the present study highlights that tree rows of both 
alley-cropping and hedgerow systems prevented such 
stimulation. Previous studies argued that after anaero-
bic conditions, nitrification can be stimulated by the N–
NH4

+ that had accumulated through nitrate reduction 
during the anaerobic conditions and additional miner-
alization of organic N inputs from cell lysis (Unger et al. 
2009; De-Campos et  al. 2012; Dodd et  al. 2023). Since 
SOC contributed greatly to nitrification stability in the 
ML-SEM of the alley-cropping system, we speculate 
that additional N mineralization was inhibited by litter 
inputs in the tree rows, which consequently inhibited 
N–NH4

+ production during the flooding stress (Lado-
Monserrat et al. 2014; Rivest et al. 2015).

Hedgerows and tree rows are considered to help 
improving microclimate conditions by intercepting, 
draining, and taking up water, as well as by decreasing 
wind speeds (Benhamou 2012; Kanzler et  al. 2019; van 
Ramshorst et  al. 2022; Brandle et  al. 2004). Thus, we 
speculate that nitrification may also be stimulated in 
grass alleys because the nitrifying communities there are 
more accustomed to flooding stress than those in tree 
rows (Guillot et al. 2019; Evans and Wallenstein 2012).

Finally, we expected a strong relation between nitri-
fication stability and the size of the nitrifying commu-
nity (i.e., AOB) from the ML-SEM. However, results of 
the present study are consistent with those of Nguyen 
et  al. (2018), who observed no influence of flooding 
on AOB community size in agricultural soils. Further 
analysis of the composition of AOB communities and 
other nitrifying organisms may supplement our results 
for nitrification stability. Moreover, PNR measure-
ments neglect the impact of heterotrophic nitrifiers 
(Hazard et  al. 2021), although heterotrophic nitrifica-
tion may be of importance, especially in grassland soils 
(Martikainen 2022). Hence, further studies consider-
ing the role of heterotrophic nitrifying communities in 
the causal relations explaining nitrification stability in 
silvopastoral systems are needed.
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Agroforestry systems differ in the spatial causal relations 
that drive nitrification stability when soil faces flooding 
stress
Silvopastoral systems are often considered a homog-
enous type of agroforestry system, but several studies 
revealed high heterogeneity among silvopastoral sys-
tems (e.g., Mayer et al. 2022; Terasaki Hart et al. 2023). 
In the present study, both silvopastoral systems were 
managed in the same way, differing only in character-
istics of the tree rows (i.e., tree species, tree density, 
and number of tree rows per plot). Univariate analysis 
revealed that the two systems had similar spatial pat-
terns of nitrification resistance and resilience, but the 
ML-SEM revealed that different underlying causal pro-
cesses explained their nitrification stability. In the first 
step of the ML-SEM, most models were rejected when 
assigning the same estimated value for the causal rela-
tions among NITRIFICATION STABILITY, SOIL 
PHYSICAL PROPERTIES, and RESOURCE AVAIL-
ABILITY for all six groups (H-A, H-B, H-C, AC-A, 
AC-B, and AC-C). The second and third steps of the 
ML-SEM in particular revealed that the directed acyclic 
graph developed did not reflect the causal relations that 
explained nitrification stability for the hedgerow sys-
tem, but that it did for the alley-cropping system. Thus, 
ML-SEM was sufficient for identifying the main factors 
that explained nitrification stability in the alley-crop-
ping system (i.e., soil physical properties and resource 
availability), but further research is necessary to iden-
tify those that explain it in the hedgerow system.

In addition to the effects of tree diversity and identity 
(Abalos et al. 2019), differences in microclimate induced 

by tree density (Jian et al. 2018; 33% higher density in the 
hedgerow system than in the alley-cropping system) may 
have contributed to the differences in causal relations 
observed between the two systems. Due to experimen-
tal and statistical constraints, we were unable to consider 
data on soil microclimate in the ML-SEM, although we 
observed a trend for higher temperature in the hedgerow 
system than in the alley-copping system (Appendix S3). 
Future studies that relate the functional traits of trees and 
their understory vegetation to microclimate and micro-
bial communities may help understand the observed dif-
ferences in causal relations. Moreover, affiliates of the 
fungal phylum Ascomycota may be involved in hetero-
trophic nitrification, especially at low pH (Martikainen 
2022). Since we could not distinguish nitrifying from 
non-nitrifying Ascomycota, we were not able to include 
this information in the directed acyclic graph.

Understanding the effects of biodiversity-based prac-
tices on ecological processes in order to develop agroe-
cological systems requires considering causal complexity 
(Carof et  al. 2022; Thorogood et  al. 2023). Many repli-
cates (i.e., > 50; Marsh et al. 1998) are necessary for SEM 
to capture the high variability induced by such com-
plexity. Despite our sampling effort, the directed acyclic 
graph may have been invalid for the hedgerow system 
due to this system’s high variability in RS. Thus, causal 
relations in the hedgerow system may be more uncertain 
than those in the alley-cropping system. Despite the dif-
ficulties in acquiring datasets with many replicates, the 
power of SEM is promising, since univariate analyses of 
nitrification stability concluded that the two silvopasto-
ral systems were highly similar, while the present study’s 

Fig. 6 Validated models obtained for positions in the alley‑cropping system: at 1 m in the tree row (A), in the grass alleys at 1.5 m from the tree 
(B), and in the grass alleys at 10 m from the tree (C). Values in italics indicate regressions between latent (ovals) and manifest (rectangles) variables. 
Asterisks indicate significant regressions: * p < 0.05, ** p < 0.01, and *** p < 0.001. Black arrows represent significant regressions (p < 0.05), while gray 
arrows represent non‑significant regressions. RS, nitrification resistance; RL, nitrification resilience; SOC, soil organic carbon; AOB, ammonia‑oxidizing 
bacteria amoA gene abundance; Earthworm, earthworm abundance
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ML-SEM highlighted a variety of multifactorial relations 
that drive nitrification stability in these systems.

Perspectives on the regulation of nitrification stability 
in grass alleys in temperate agroforestry systems
Although rainfall or flooding events that last for four 
weeks remain rare in temperate regions, they are 
expected to increase in frequency as the climate changes 
(Knapp et  al. 2008; Beier et  al. 2008; Soubeyroux et  al. 
2020; Qu et  al. 2023). Studies like ours that focused on 
a “press” flooding stress (i.e., a continuous long-term 
event; Dodd et al. 2023; Unger et al. 2009) often recorded 
a stimulation of nitrification immediately after flooding, 
which has rarely been observed in studies that focused 
on “pulse” flooding stresses (i.e., discrete short-term 
events) (Sereni et al. 2022; Nguyen et al. 2018). The pre-
sent study’s results highlight risks of hot spots and hot 
moments for nitrification (i.e., locations where nitrifi-
cation rates are high for short periods) (McClain et  al. 
2003) in grazed grass alleys. Since the PNR is consid-
ered as a proxy of losses in soil function (Sereni et  al. 
2022) and provides insights on potential N losses (Cam-
eron et al. 2013), the present study’s results suggest that 
agroforestry can mitigate spikes in N losses from grass 
alleys. However, our previous study of PNR under non-
stressed conditions found higher PNR in the tree rows of 
the alley-cropping system than that  in its grass alleys or 
in the hedgerow system (Mettauer et al. 2024). We thus 
argue that alley-cropping systems may have trade-offs 
between a high risk of N losses under non-stressed con-
ditions and limitation of spikes in N losses under stressed 
conditions, while hedgerow systems seem to promote 
more stable and lower PNR. Thus, based on the present 
study’s results, hedgerow systems may be more likely 
to decrease N losses from grazed grasslands than alley-
cropping systems.

More specifically, ML-SEM helps identify factors that 
decrease PNR under flooding, which is important since 
certain types of agriculture, such as organic farming, can-
not use nitrification inhibitors to decrease N losses (Nor-
ton and Ouyang 2019). Indeed, our study revealed that 
causal relations explaining nitrification stability in the 
alley-cropping system varied according to the position 
relative to the trees: in the tree rows nitrification stabil-
ity was associated with higher soil organic carbon con-
centration and earthworm abundance; in the grass alleys 
it was associated with higher soil organic carbon con-
centration and soil bulk density. The present study thus 
encourages considering agricultural practices in the grass 
alley that enhance SOC (e.g., organic fertilization, agro-
forestry practices) to limit hot spots and hot moments of 
nitrification in grazed grasslands. In addition, soil bulk 
density contributed significantly to nitrification stability 

in grass alleys, likely due to bulk density’s influence on 
the structure of nitrifying communities in grazed grass-
lands (Pan et al. 2018). Unfortunately, SOC and bulk den-
sity are usually excluded when modeling nitrification in 
agricultural systems since variations of nitrification are 
often calculated based on variations in  NH4

+ concen-
tration, soil temperature, soil water content, and soil pH 
(Brisson et al. 2008; Taylor et al. 2017; Norton and Ouy-
ang 2019). Furthermore, our study indicates the spatial 
variation in the main factors that influence nitrification 
stability in the alley-cropping system, which highlights 
the complexity of process stability in agroecological 
systems. Meanwhile, the rejection of model A′ (i.e., no 
covariance between SOIL PHYSICAL PROPERTIES 
and RESOURCE AVAILABILITY) for the alley-cropping 
system highlights the importance of feedback loops in 
regulating nitrification stability (Placella and Firestone 
2013; Jia et  al. 2020; Clark et  al. 2020; Bei et  al. 2021). 
Feedback loops need to be considered when identifying 
management options for regulating soil processes (van 
der Putten et al. 2013) and PNR under non-flooded con-
ditions. Modeling nitrification processes would be useful 
to assessing agricultural practices that decrease N losses 
from grazed grasslands. However, we argue that such 
models need improvements before they can be applied 
robustly to complex agroecological systems (e.g., agrofor-
estry systems). These improvements include representing 
the spatial heterogeneity of soil processes, effects of plant 
traits, and feedback loops between soil physical proper-
ties and resource availability.

Conclusions
This study found that temperate silvopastoral systems 
improve the stability of nitrification in the context of 
extreme rainfall and flooding events. Trees in both the 
hedgerow and alley-cropping systems promoted nearby 
nitrification stability. Furthermore, the ML-SEM high-
lighted that the causal relations that drive nitrification 
stability are spatially structured in silvopastoral systems 
and differ between the two systems studied. Overall, 
hedgerow systems seem to be a better option for mitigat-
ing N losses through nitrification regulation in grazed 
grasslands. By using ML-SEM, this study raises novel 
research questions about the relations among SOC, soil 
bulk density, and nitrification stability, as well as about 
shifts in microbial communities during extreme weather 
events in complex agroecosystems. Future research using 
factorial experiments and modeling will help to address 
these questions.
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