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Abstract: This paper focuses on the transverse vibration midpoint control of a string. More
precisely, we explore the use of a control block that includes delays in both input and output
signals under the assumption that the memory-window length is also a parameter of the
control law. Relatively simple to construct, such a control law was successfully used in the
boundary control of the transport and wave equations. The effectiveness of the proposed method
is illustrated through numerical simulations and the corresponding finite-difference scheme is
detailed.
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1. INTRODUCTION

In recent years, a new partial pole placement method
has been developed for the control of infinite-dimensional
systems. It is essentially based on two properties called,
respectively multiplicity-induced-dominancy (MID) and
coexistant-real-roots-inducing-dominancy (CRRID), see for
example Boussaada et al. (2022, 2020); Mazanti et al.
(2021); Ramı́rez et al. (2016); Schmoderer et al. (2023,
2024). Although the MID property has been widely studied
and has recently emerged as closely related to the spectral
abscissa minimization problem, as pointed out in Michiels
et al. (2023); Pinney (1958), the CRRID property seems
more complex to characterize but offers a greater degree
of robustness, see for instance Schmoderer et al. (2023).

In other respects, conventional control methods often rely
on instantaneous feedback information, which may be
limited in capturing the nuanced dynamics of infinite-
dimensional systems. In this note, we present a new
methodology that exploits past data to improve the sta-
bility of wave systems through autoregressive control, as
suggested in Ammari et al. (2023, 2024b) in the bound-
ary control as well as in Ammari et al. (2024a) in the
pointwise control of some hyperbolic PDEs. By integrating
past information into the control framework, our approach
offers a proactive strategy for mitigating instabilities and
improving overall system behavior. The main benefit is a
new perspective that exploits past data to build the control
signal, thus improving system stability and performance.

The contribution of the paper is twofold: first, to explore
the potential of the autoregressive control law in pointwise
stabilization of an elastic string by using the delay as a
control parameter, as proposed in Ammari et al. (2024a).
We note that the pointwise stabilization of elastic struc-
tures (strings or beams) without delay, or, equivalently,

stabilization of serially connected stings or beams with
dissipative joints, has been widely studied in recent lit-
erature, see Ammari and Tucsnak (2000), Ammari et al.
(2002), Ammari et al. (2001), Ammari and Mercier (2015)
and references therein. Such a control block is of low-
complexity type since it includes a reduced number of
parameters, and it offers the advantage of being simpler
to implement. Furthermore, the idea to leave the delay as
a parameter to tune allows capturing dynamics property
that improves the behaviour of the closed-loop system.
Second, the corresponding numerical framework and re-
lated simulations are presented in some extent (see, for
instance, Ammari et al. (2023)).

The remaining of the paper is organized as follows: the
problem formulation and main results are presented in
Section 2. The material for the numerical implementation
is given in Section 3, where simulations are performed for
various cases. Some concluding remarks end the paper.
The notations are standard and explained when used first
time.

2. PROBLEM FORMULATION AND MAIN RESULTS

Given a perfectly elastic string of length ℓ > 0 with
one fixed end that can pivot and the other one that can
slide while not pivoting, under the assumption of constant
density and elasticity parameters, when there are no body
forces, the motion equation is described by the following
Partial Differential Equation (PDE) of hyperbolic type:

Utt(x, t)− c2 Uxx(x, t) = 0,

with (x, t) ∈ (0, ℓ)× (0,+∞)

U(0, t) = 0, Ux(ℓ, t) = 0, t > 0,

U(x, 0) = f(x), Ut(x, 0) = g(x), x ∈ (0, ℓ),

(P̃)



where U(x, t) denotes the transversal displacement of a
point belonging to the string, located at position x and
given at time t; the constant c > 0 is the wave celerity;
finally, f and g are smooth univariate functions that are
specified further below.

Remark 2.1. The wave equation problem modeled by
equation (P̃) can be normalized, i.e. by using dimen-
sionless time t and position x variables, in such a way
that their corresponding relations to the considered true
variables are x = ℓ x and t = d t with d := ℓ

c . In that case,
the normalized transversal displacement denoted u(x, t) is
related to the original one by the relation

u(x, t) := U(x, t) = U(ℓ x, d t). (1)

The control structure is defined by the following delay-
based autoregressive control law applied in a pointwise
manner at the midpoint x = ξ, ξ := ℓ

2 , in (P̃) where

now (x, t) ∈ (0, ℓ) \
{
ξ := ℓ

2

}
× (0,+∞). It writes

U(ξ−, t) = U(ξ+, t), ξ :=
ℓ

2
, t > 0,

Ux(ξ
+, t)− Ux(ξ

−, t) + α
(
Ux(ξ

+, t− τ )

−Ux(ξ
−, t− τ )

)
=

β

c
Ut(ξ, t) +

γ

c
Ut(ξ, t− τ ),

t > 0,

Ut(ξ, t− τ ) = 0, t ∈ (0, τ ),

Ux(ξ
+, t− τ )− Ux(ξ

−, t− τ ) = 0, t ∈ (0, τ ),

(C̃)

where τ := d τ is the delay used here as a control
parameter, and τ is the corresponding normalized delay.

It has been shown in Ammari et al. (2024a) that the

normalized problem derived from (P̃) by using (1), in

closed-loop with the output feedback control law in (C̃)
leads to the characteristic function in the Laplace variable
s, denoted Γ(s, τ), that is depending on the control law’s
parameters α, β, γ and τ , and given by Γ(s, τ) =

1 +
2− β

2 + β
e−2 s +

2α+ γ

2 + β
e−τ s +

2α− γ

2 + β
e−(τ+2) s, (2)

for τ ̸= 2, and by

1 +
(2 + 2α− β + γ) e−2s

2 + β
+

(2α− γ) e−4s

2 + β
, (3)

for τ = 2. In both cases, by exploiting the Multiplicited
Induced Dominancy (MID) paradigm first proposed in
Boussaada et al. (2016), the partial pole placement of the
roots of either (2) or (3) can be handled in the following
way.

Theorem 2.2. Given a real number s0 < 0 and consider
the output feedback stabilization of the problem (P̃) with

the control law in (C̃) associated with an arbitrary but
given positive delay τ . Then the following assertions hold:

• If τ = 2, and α, β, γ are such that γ ̸= 2α and
γ ̸= β − 2α− 2, with

α =

(
1− e2 s0

)2
4

β − e2 s0 +
e4 s0

2
− 1

2
,

γ =

(
1

2
− e2 s0 − e4 s0

2

)
β −

(
1 + e2 s0

)2
,

(4)

then the solution’s exponential decay rate is assigned
at an arbitrary −s0 ; s0 is a double root of (3) and is

its spectral abscissa. Furthermore, all zeros of (3) are
double and lie on the vertical axis R {s} = s0.

• If τ = 2 k where k is an integer greater than one, and
α, β, γ are given by

α =
(τ − 2) e2 s0 − (τ + 2)

(τ + 2) e2 s0 − (τ − 2)
eτ s0 ,

β = −2
(τ + 2) e2 s0 + (τ − 2)

(τ + 2) e2 s0 − (τ − 2)
,

γ = −2
(τ − 2) e2 s0 + (τ + 2)

(τ + 2) e2 s0 − (τ − 2)
eτ s0 ,

(5)

then the solution’s exponential decay rate at an
arbitrary −s0; s0 is a triple root of (2) and is its
spectral abscissa.

• If τ ̸= 2 k, then the control parameter tuning pre-
scribed in (5) allows a closed-loop solution decaying
exponentially faster than −s0 − ρ̂(τ), where ρ̂ is de-
fined by

ρ̂(τ) :=
1

min{τ, 2}
ln

(
1 + 2

τ + 2

|τ − 2|

)
. (6)

The proof of this result is proposed in Ammari et al.
(2024a).

Remark 2.3. Notice that the total mechanical energy of
the string is given, up to a multiplicative coefficient, by

E(t) :=
1

2

∫ 1

0

(
|Ut(x, t)|2 + |Ux(x, t)|2

)
dx. (7)

The well-posedness of the closed-loop system {(P̃),(C̃)}
has been established in Ammari et al. (2024a) by using
this expression. Moreover, with this last, some sufficient
conditions have also been proposed in the same reference
for the dissipativity of a differential operator related to the
proposed problem.
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Fig. 1. Plot of the function ρ̂(τ) given by expression (6).

3. NUMERICAL IMPLEMENTATION

Simulating the time response of PDE-based system can
raise several issues related to the selected numerical
scheme. This is particularly acute when an output-to-
input mathematical relationship must be considered for
control purposes. The presence of delays in the control law
strengthens the difficulty. To validate numerically the per-
formances of the proposed control scheme, we first propose
performing a finite difference discretization of the problem
{(P̃),(C̃)} using the following approximations, suited to

the control structure (C̃).



3.1 Finite difference scheme

Let us define the constant space step ∆x > 0, the constant
time step ∆t > 0 and the numerical sequences

xi := i∆x (i = 0, 1, 2, . . . , N),

tj := j∆x (j = 0, 1, 2, . . . , n)

and Ui,j := U(xi, tj),

(8)

where M , N , n ∈ N are such that

M ∆x =
l

2
, N = 2M and n∆t = Tf (9)

where Tf stands for the final time for the simulation. Let us

denote Uti,j :=
∂U(x, t)

∂t

∣∣∣∣x=xi,
t=tj

, Uxi,j :=
∂U(x, t)

∂x

∣∣∣∣x=xi,
t=tj

,

Utti,j :=
∂2U(x, t)

∂t2

∣∣∣∣x=xi,
t=tj

and Uxxi,j :=
∂2U(x, t)

∂x2

∣∣∣∣x=xi,
t=tj

.

For all t > 0, the boundary conditions in (P̃) are tran-
scribed as follows with j ∈ N∗:

U(0, t) = 0 −→ U0,j = 0,

Ut(0, t) = 0 −→ Ut0,j = 0,

Utt(0, t) = 0 −→ Utt0,j = 0.

For all ∀x ∈ (0, l), the initial conditions read, for i =
0, 1, 2, . . . , N ,

U(x, 0) = f(x) −→ Ui,0 = f(i∆x),

Ut(x, 0) = g(x) −→ Uti,0 = g(i∆x),

Ux(x, 0) = f ′(x) −→ Uxi,0 = f ′(i∆x),

Uxx(x, 0) = f ′′(x) −→ Uxxi,0 = f ′′(i∆x).

By continuity of U(x, t) in the variable t, the initial
conditions are then

U(0, 0) = 0 ⇒ f(0) = 0 −→ U0,0 = 0,

Ux(l, t) = 0 ⇒ Ux(l, 0) = 0 ⇒ f ′(l) = 0 −→ UxN,j = 0,

Ut(0, t) = 0 ⇒ Ut(0, 0) = 0 ⇒ g(0) = 0 −→ Ut0,0 = 0.

Moreover, at i = 0 and j = 0, it turns out that f ′′(0) = 0.
To summarize, at this stage, the functions f and g should
satisfy

f(0) = 0, f ′′(0) = 0, f ′(l) = 0,

g(0) = 0.
(10)

Consider the following approximations of the first-order
partial derivatives

Uti,j =
1

2∆t
(3Ui,j − 4Ui,j−1 + Ui,j−2) , (11)

Uxi,j =
1

2∆x
(Ui+1,j − Ui−1,j) , (12)

and the ones for the second-order partial derivatives

Utti,j =
1

∆t2
(Ui,j − 2Ui,j−1 + Ui,j−2) , (13)

Uxxi,j =
1

∆x2 (Ui+1,j − 2Ui,j + Ui−1,j) , (14)

defined for i = 1, 2, . . . , N and j = 2, 3, . . . , n. For j = 1,
we set

Ui,1 = Ui,0 +∆t Uti,0 ,

= f(i∆x) + ∆t g(iDx). (15)

The delay-based autoregressive control law (C̃) is turned
into a numerical sequence given by



UxM+1,j − UxM−1,j =
β

c
UtM,j ,

for j = 0, 1, . . . , δ − 1,

UxM+1,j − UxM−1,j = −α (UxM+1,j−δ − UxM−1,j−δ)

+
β

c
UtM,j +

γ

c
UtM,j−δ , for j = δ, δ + 1, . . . , n

(16)

where δ := ⌊τ/∆t⌋ denotes the integer part of τ/∆t close
to −∞, and α, β, γ are real scalar parameters that set the
control law as indicated by Theorem 2.2. Here, UM−1,j and
UM+1,j stands for U(ξ−, tj) and U(ξ+, tj) respectively.
Therefore, it comes

UM+1,j = UM−1,j = UM,j , (17)

for the sake of consistency when ∆x → 0. The autore-
gressive control law carries on the gradient jump term
Ux(ξ

+, t)− Ux(ξ
−, t) leading to the following finite dif-

ference approximation

Ux(ξ
+, t)− Ux(ξ

−, t) −→ UxM+1,j − UxM−1,j ,

UxM+1,j − UxM−1,j =
UM+2,j − 2UM,j + UM−2,j

2∆x
,

∀j ∈ N∗.

(18)

Using (17), one should pay attention to the following fact

Ux(ξ, tj) −→ UxM,j =
UM+1,j − UM−1,j

2∆x
= 0,

∀j ∈ N.
(19)

As a consequence, in addition to (10), the following addi-
tive constraints should be taken into account for f

f ′(M ∆x) = 0, f ′′(M ∆x) = 0. (20)

Now we are ready to write the finite difference scheme
for both the uncontrolled wave equation in (P̃), and the

closed-loop system combining (P̃) and (C̃).

3.2 Open-loop case

Let µ :=
c∆t

∆x
. When there is no output feedback control

applied to (P̃), the finite difference scheme writes

Utti,j = c2 Uxxi,j , i = 0, 1, 2, . . . , N − 1, ∀j ∈ N\ {0, 1} ,
UN,j = UN−1,j , ∀j ∈ N,

leading to the following implicit scheme

−µ2 Ui+1,j + (1 + 2µ2)Ui,j − µ2 Ui−1,j =

2Ui,j−1 − Ui,j−2.
(21)

3.3 Closed-loop case

When the output feedback control given by (C̃) is applied
to (P̃), the finite difference scheme becomes

Utti,j = c2 Uxxi,j ,

i = 0, 1, 2, . . . ,M − 2,M + 2, . . . , N − 1, ∀j ∈ N\ {0, 1} ,
UN,j = UN−1,j , ∀j ∈ N,



UM+2,j − 2UM,j + UM−2,j

2∆x
=

− α
UM+2,j−δ − 2UM,j−δ + UM−2,j−δ

2∆x

+
β

c

3UM,j − 4UM,j−1 + UM,j−2

2∆t

+
γ

c

3UM,j−δ − 4UM,j−1−δ + UM,j−2−δ

2∆t
,

∀j ∈ N\ {0, 1} ,
where, for all i, j ∈ N, Ui,j−k = 0 for any k ∈ N such that
j − k < 0. It comes,

− µ2 Ui+1,j + (1 + 2µ2)Ui,j − µ2 Ui−1,j =

2Ui,j−1 − Ui,j−2, ∀j ∈ N\ {0, 1} ,
UN,j = UN−1,j , ∀j ∈ N,

UM+2,j −
(
2 + 3β

∆x

∆t

)
UM,j + UM−2,j =

− 4β
∆x

∆t
UM,j−1 + β

∆x

∆t
UM,j−2

+

(
2α+ 3 γ

∆x

∆t

)
UM,j−δ

− α (UM+2,j−δ − UM−2,j−δ)

− 4 γ
∆x

∆t
UM,j−1−δ + γ

∆x

∆t
UM,j−2−δ,

(22)

where, for all i, j ∈ N, Ui,j−k = 0 for any k ∈ N such that
j − k < 0.

Even if naturally implicit, the open-loop and the closed-
loop numerical schemes can easily be transformed into
explicit numerical schemes and written in an appropriate
matricial form. For the sake of brevity, the study of stabil-
ity, consistency, and convergence of both these numerical
schemes is left in this paper.

3.4 Numerical simulations

In the sequel, we use the numerical values of Table 1 for
the considered string of problem (P̃).

Length (m) ℓ 10

Wave propagation speed (m/s) c 1.118

Time scaling factor (s) d 8.944

Wave magnitude A 0.5

Table 1. Features of the string.

To guarantee stability and convergence of both numerical
schemes (21) and (22), we set ∆x = 0.05, ∆t = 0.005 and
Tf = 100.

Finally, to cope with all the requirements described in
subsection 3.1, the initial conditions are chosen as follows:

f(x) = A

(
3
x

ℓ
− 17

(x
ℓ

)3
+ 27

(x
ℓ

)4
− 12

(x
ℓ

)5)
,

g(x) = 0.

For illustration purposes, we precise the computation of
the Energy function in (7) using the previous numerical
scheme for both the open-loop and the closed-loop cases.
More precisely, for j ≥ 2, this function is computed as

E(j∆t) =
∆x

2

((
U1,j − U0,j

∆x

)2

+

N−1∑
i=2

(
Ui+1,j − Ui−1,j

2∆x

)2

+

(
UN,j − UN−1,j

∆x

)2

+

N∑
i=0

(
3Ui,j − 4Ui,j−1 + Ui,j−2

2∆t

)2
)
,

which for j ≥ 2, given the boundary conditions in (P̃),
reduces to

E(j∆t) =
∆x

2

(
U1,j

2

∆x2 +

N−1∑
i=2

(
Ui+1,j − Ui−1,j

2∆x

)2

+

N∑
i=0

(
3Ui,j − 4Ui,j−1 + Ui,j−2

2∆t

)2
)
.

(23)

Moreover, for j = 0 and j = 1 and by considering (15)

E(0) = E(1∆t) =
∆x

2

((
f(∆x)

∆x

)2

+

N−1∑
i=2

(
f ((i+ 1) x)− f ((i− 1) x)

2∆x

)2
)
.

(24)

Several simulation cases have been performed. They are
summarized in Table 2.

s0 −2
−1.005 ρ̂(τ)

≃−14.481

−2.01 ρ̂(τ)

≃−28.961

τ 2 3 4 0.08

α 0.2046 0.01359 0.001058 -0.3401 -0.1068

β 3.0 2.150 1.997 1.789 1.789

γ 0.40758 0.02450 0.001917 -0.6085 -0.1910

MID Met Unmet Met Unmet Unmet

Time
plot

Fig. 2d Fig. 2e Fig. 2f Fig. 2b Fig. 2c

Table 2. Feedback parameters, various cases.

Figure 2a shows the free time response of the wave equa-
tion of problem (P̃), i.e. only subjected to initial condi-
tions and without any control. Figures 2b, 2c, 2d, 2e and
2f show the closed-loop time response to the same initial
conditions for the various cases described in Table 2.

In Figure 3, the total energy logarithm is plotted for the
various closed-loop cases, where the energy is the one
defined in (7) and computed through (23). The blue curve
illustrates the case where there is no feedback control.

In Figure 4, the time response of the closed-loop control
signals for the various cases is plotted. One can notice
the periodic occurrence of impulsive peaks on the control
signal, whose magnitude seems to be lower as the delay
parameter increases.

In Figure 3, one can observe the exponential decay in
closed-loop, in particular its controlling by the assignment
of s0. Moreover, it can also be noticed that for the same
s0 = −2 and for different values of τ , the best decay rate is
achieved with the MID case described in Theorem 2.2, say
for a triple multiplicity of s0 with τ = 4. One also notices
that this case provides a similar exponential decay as the
one with s0 ≃ −28.961 and τ = 0.08, but gives a closed-



loop control signal with a lower magnitude in comparison
with the other cases.

(a) Without control.

(b) Case s0 ≃ −14.481 triple and τ = 0.08, without
MID property.

4. CONCLUSION

This note discusses controlling the wave equation by
applying an autoregressive output feedback control law
at the midpoint. The aim is to ensure the exponential
stability of the system while dictating the decay of the
solution. Conditions on the control parameters are derived
to achieve this stability. Numerical results demonstrate
the effectiveness of this approach, particularly in scenarios
like a vibrating string with specific boundary and initial
conditions.
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