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Abstract

This article focuses on some properties of three tools used to measure economic inequalities
with respect to a distribution of wealth µ: Gini coefficient G, Hoover coefficient or Robin
Hood coefficient H, and the Lorenz concentration curve L. To express the distributions of
resources, we use the framework of random variables and abstract Borel measures, rather than
discrete samples or probability densities. This allows us to consider arbitrary distributions of
wealth, e.g. mixtures between discrete and continuous distributions.

In the first part (sections 1–4), we discuss alternate definitions of G, H and L that can
be found in economics literature. The Lorenz curve is defined as the normalized integral
of the quantile function ([Gas71]), which is not the same as saying “L(p) is the share of
wealth owned by the 100p first centiles of the population” (proposition 1.4). The Gini and
Hoover coefficients are introduced in terms of expectation of random variables. In section 3,
we interpret Gini and Hoover as geometrical properties of the Lorenz curve (theorem 3.3
and corollary 3.10). In particular, we give a more general and straightforward proof of
the main result of [Dor79]. Section 4 gives two direct applications. We en route prove the
(not trivial) fact that the Lorenz curve fully characterizes a distribution, up to a rescaling
(proposition 2.4).

The second part of the article (section 5–7) focuses on the consistency of G(µ), H(µ)
and Lµ as µ is approximated or perturbated. The relevant tool to use is the Wasserstein
metric W1, i.e. the L1 metric between quantile functions. W1(µn, µ∞) → 0 if and only
if underlying random variables converge in distribution and the total amount of wealth
converges. In theorem 5.2 and proposition 5.5, we show that if W1(µn, µ∞) → 0, then
G(µn) → G(µ∞), H(µn) → H(µ∞) and Lµn

→ Lµ∞ uniformly. Subsection 5.4 discusses
topological implications of this fact. Thus, applications 6.1, 6.3, 6.7, 6.8 and 6.12 justify that
the empirical Gini, Hoover indexes and Lorenz curves computed on a sample or rebuilt with
partial information converge to the real Gini, Hoover indexes and Lorenz curve as information
increases. Eventually, in section 7, we discuss the situations where the W1 convergence is not
ensured, but weaker asumptions can be made (convergence in distribution in 7.1, convergence
of means in 7.2.1 or uniform integrability in 7.2.2)

Introduction. We discuss inequality indexes
about a given resource, for instance income x,
capital k, hours of work w or economic utility
U(x, k, w).

The repartition of the resource can be mod-

elized by a random variable X on a probability
space (Ω,F ,P). Most articles either modelize
X as a discrete random variable, or as a den-
sity with respect to Lebesgue measure. (See for
instance [Cho08] on different ways to modelize
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incomes.) However, it is sensible to chose more
complex modelizations, for instance a mixture
of a Dirac mass in 0 (people with no gross in-
come) and a random variable with density such
as a gamma or a lognormal for the people with
a nonzero income.

What interests us in order to study inequal-
ities is not the variable X itself, which depends
on the underlying probability space, but its dis-
tribution µ, which is a Borel measure on R+

— we restrict to nonnegative variables. In the
following article, we will use the formalism of
measure theory, as fully introduced in [Le 22].
The details on the notations we use can be
found in appendix A. In particular, we note
B the Borel σ-algebra on a topological space
and L the Lebesgue measure on a measurable
subset of R. M1(X ,F ) is the set of measures
on the measurable space (X ,F ) with mass 1,
i.e. of probability distributions on X .

If µ is a distribution, Fµ is its cumulative
distribution function (c.d.f.), mµ its mean (i.e.
E[X] where X ∼ µ) and Qµ its quantile func-

tion. The definition and basic properties of
quantile functions, which will be used very often
in this article, are summed up in appendix B.1.
In particular, we freely use the “Galois inequal-
ities”, i.e. the fact that for all p ∈ [0, 1) and
q ∈ R+, Qµ(p) ⩽ q ⇐⇒ p ⩽ Fµ(q).

For any α > 0 we note Mα the set of
probability distributions on (R+,B) such that
mµ = α and M :=

⋃
α>0Mα the set of proba-

bility distributions with nonzero, finite means.
In most cases in socioeconomics, we want

inequality indicators not be affected by uniform
rescaling. (E.g. the indicators need not change
if the incomes are expressed in cents rather than
in dollars. To take into considelation the fact
that the marginal benefit of $1 is not constant,
we can apply a concave transformation U to the
variable X). We say that µ and ν are equal up
to a scale factor of α if and only if there exist
two random variables X and Y on some prob-
ability space such that X = αY almost surely
(a.s.), X ∼ µ and Y ∼ ν. We write µ ≡ ν iff µ
and ν are equal up to any scale factor α > 0.

Part I

Alternate definitions of Lorenz curve, Gini
index and Hoover index

1 Alternate definitions of the Lorenz curve

We introduce the definition of the Lorenz curve
formalized by [Gas71]. Then we discuss the
relations that exist between this formalization
and a more intuitive definition.

1.1 Integral of quantile definition and
elementary properties

Definition 1.1. Let µ ∈M and Qµ its quantile
function. The Lorenz function of the measure
µ is:

Lµ : [0, 1] −→ [0, 1]

p 7−→

∫ p

0
Qµ(t) dt∫ 1

0
Qµ(t) dt

.

The Lorenz concentration curve of µ is the
representative curve of the function Lµ in an
orthonormal frame.

If X is a random variable with X ∼ µ, we
allow to write LX :=Lµ.

The facts that Qµ is not defined in 1 and
that Qµ(1−) need not be finite are not an issue
in this definition. Indeed, the denominator inte-
gral is equal to mµ (see lemma B.5 in appendix).
Thus, it is nonzero and finite. It follows that
the numerator integral is also finite.

Basic properties. We give a few elementary
properties of the Lorenz function (see for in-
stance [Tho76]). Let µ ∈M, m its mean. We
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have:
• Lµ is nondecreasing.

• Lµ(0) = 0 and Lµ(1) = 1.

• Lµ is continuous, and even absolutely con-
tinuous (see for instance [HMB61, chap-
ter VII, theorem 1, p. 99]).

• For all t ∈ (0, 1], Lµ has a left deriva-
tive ∂−Lµ(t) =

Qµ(t)
m . Likewise, for

all t ∈ [0, 1), it has a right derivative
∂+Lµ(t) =

Qµ(t+)
m . These results are

inferred from the fact that Qµ is left-
continuous (proposition B.2 in appendix)
and has a right-limit everywhere.

• As a corollary, Qµ being nondecreasing,
Lµ is a convex function.

• Thus, for all p ∈ [0, 1], Lµ(p) ⩽ p.

• The transformation µ 7−→ Lµ is scale-
invariant, i.e. Lµ = Lν as soon as µ ≡ ν.

Finite case. Let n ∈ N∗. For any vector
x := (x1, . . . , xn) ∈ Rn

+, let x↑ the vector with
same components but reordered increasingly.
Let µ̂ the empirical measure associated with
sample x. Then for every k ∈ [0, n], we have∫ k/n
0 Qµ(p) dp =

1
n

∑k
i=1 x

↑
i . Hence:

Lµ̂
(
k
n

)
=

∑k
i=1 x

↑
i∑n

i=1 xi

and Lµ̂ is affine of the intervals of form
[
i
n ,

i+1
n

]
.

Majorization and the Lorenz order.
A vector x := (x1, . . . , xn) is said to ma-
jorize another vector y := (y1, . . . , yn) if∑n

i=1 xi =
∑n

i=1 yi and for every k ∈ [1, n],∑k
i=1 x

↑
i ⩽

∑k
i=1 y

↑
i . If so, a distribution

of incomes x1, . . . , xn is more unequal than
y1, . . . , yn and has same mean. See [MOA11]
for a complete course on majorization theory.

Let µ and ν the empirical measures asso-
ciated with x and y. for every k ∈ [0, n],
Lµ
(
k
n

)
⩽ Lν

(
k
n

)
. Hence, for all p ∈ [0, 1],

Lµ(p) ⩽ Lν(p).
We say that a measure µ ∈ M Lorenz-

dominates ν ∈ M if Lµ(p) ⩽ Lν(p) for all

p ∈ [0, 1], i.e. Lµ ⩽ Lν . From what preceeds,
follows that Lorenz domination naturally ex-
tends majorization. In particular, one can say
that µ is more inequal than ν if Lµ ⩽ Lν . See
[Arn87] and [MOA11, chapter 17.C] for a brief
introduction to Lorenz order.

1.2 Some other intuitive definitions
and how to deal with atoms

1.2.1 The pseudo-Lorenz function

The Lorenz function is often defined intuitively
by economists as “the function that maps p to
the proportion of the total resource owned by
the bottom 100p%-share of the total population”.
However, this definition is not appropriate.

Definition 1.2. Let µ ∈ M, Qµ its quantile
function. We call pseudo-Lorenz function of µ
the function Λµ : [0, 1] −→ [0, 1] such that for
all p ∈ [0, 1),

Λµ(p) :=

∫ Qµ(p)

0
u dµ(u)∫ ∞

0
u dµ(u)

.

and Λµ(1) := 1.

Λµ formalises the intuitive definition pre-
sented above, using the quantiles formalism.
Notice that the denominator is exactly mµ.

Do Λ and L coincide? It is clear that the
answer is no as soon as µ has nonzero atoms.
In this case, most properties of L proven be-
fore do not hold. For instance, if µ is a Dirac
mass µ := δx (with x > 0), then Qµ(0) = 0 and
Qµ(p) = x for all p ∈ (0, 1], hence Λµ(0) = 0
and Λµ(t) = 1 for all t > 0. Thus, Λµ is not
continuous at 0.

Actually, there is a relation between Λµ and
Lµ, as stated in the following lemma:

Lemma 1.3. Let µ ∈ M. Then, for all
p ∈ [0, 1),

Λµ(p)− Lµ(p) =
Qµ(p)

mµ
· [Fµ(Qµ(p))− p].

In order to ease the notation, we write Q,
F , m, L and Λ as an abbreviation for Qµ, Fµ,
etc. if no ambiguity.

3



Proof. We perform a pushforward change-of-
variable through Q. Let p ∈ [0, 1). First notice
that: ∫ Q(p)

0
u dµ(u) =

∫ Q(p)

0+
u dµ(u).

Then, applying the law of unconscious statis-
tician (lemma B.4 in appendix) with the func-
tion

f : R+ −→ R+

x 7−→ x · 1(0,Q(p)](x),

we have:∫ Q(p)

0+
x dµ(x) =

∫ ∞

0
f(x) dµ(x)

=

∫ 1

0
f(Q(u)) du

=

∫ 1

0
Q(u) · 1(0,Q(p)](Q(u)) du∫ Q(p)

0+
x dµ(x) =

∫
Q−1⟨(0,Q(p)]⟩

Q(u) du.

Yet by Galois inequalities,

Q−1⟨(0, Q(p)]⟩ = (F (0), F (Q(p))].

Furthermore, Q(F (0)) = 0 so Q(t) = 0 for
all t ∈ [0, F (0)]. Eventually, we get:∫ Q(p)

0
u dµ(u) =

∫ F (Q(p))

0
Q(t) dt.

As p ⩽ F (Q(p)), we deduce that for all
p ∈ [0, 1),

Λ(p)− L(p) = 1

m

∫ F (Q(p))

p
Q(u) du ⩾ 0.

Yet Q is a constant function over
[p, F (Q(p))], since it is nondecreasing and takes
same values at the endpoints of the interval.
This concludes the proof. ■

From this result and the immediate prop-
erties of the quantile function, we deduce the
conditions under which Λ and L match:

Proposition 1.4. Let µ ∈M.
For all p ∈ [0, 1], Lµ(p) ⩽ Λµ(p). Further-

more, Lµ(p) = Λµ(p) iff one of the following
assumptions holds:

(i) ∃x ∈ R+, p = F (x).

(ii) Q(p) = 0.

(iii) p = 1.

Thus, the “intuitive” definition of Lorenz
curve is valid as soon as µ has no atom (except
possibly in 0), but it fails in every other case.

1.2.2 Interpolling atomic Lorenz func-
tions with nonatomic ones?

Since the intuitive definition is valid as soon as µ
is nonatomic, it might be tempting to deal with
nondiffuse measures by approximating them
with nonatomic ones, e.g. by allocating the
mass of atoms on an interval, so the intuitive
definition would hold.

Such a hack is, for instance, sometimes used
to define the median of a measure with atoms.
To illustrate this, let µ = 1

2

(
δ{0} + δ{1}

)
. Some

authors define the median in such a way that
the median of µ would be 1

2 . (Whereas Qµ(0.5)
is equal to zero, not 1

2). This, however, does
not lead to any satisfying result.

Note that we land on our feet with the
integral-of-quantile-function definition. Indeed,
one can imagine taking the individuals corre-
sponding to an atom, splitting them into in-
finitely thin parts, and arbitrarily ordering them.
For instance, if µ = 1

3δ{1}+
2
3δ{2}, we would say

that the bottom half of the total population is
the set of individuals for which X = 1 plus one
quarter of those for which X = 2.

What looks like this approach of “joining
the points” best is in fact given by the following
approach.

1.2.3 Kendall’s parametric curve

A last way to formalize this definition, proposed
by [KS45, section 2.23], is to see the Lorenz
curve as a parametric curve.

Definition 1.5 (Kendall curve). Let µ ∈M.
The Kendall curve of µ is the parametrized
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curve Kµ of equation:

Kµ :



x =

∫ t

0
dµ(u) = Fµ(t),

y =

∫ t

0
u dµ(u)∫ ∞

0
u dµ(u)

,

(t ∈ R+).

Do K coincide with what we defined as the
Lorenz curve, i.e. the graph of L? In fact, if µ
has atoms then F has discontinuities, the curve
jumps along the x-axis, so it is not the graph of
a function. For instance, if µ = δx (with x > 0),
the Lorenz “curve” according to Kendall’s def-
inition is the reunion of two points (0; 0) and
(1; 1). So let’s describe the relations between
K and L.

K is included in the graph of L. This
point is easy to check. Let t ∈ R+. It suffices
to prove that m · L(F (t)) =

∫ t
0 u dµ(u). Using

Galois inequalities and the pushforward formula
(lemma B.4), we have:

m · L(F (t)) =
∫ F (t)

0
Q(u) du

=

∫ 1

0
1(u⩽F (t))Q(u) du

=

∫ 1

0
1(Q(u)⩽t)Q(u) du

=

∫ ∞

0
1(x⩽t)x dµ(x)

m · L(F (t)) =
∫ t

0
x dµ(x).

What happens outside of F ⟨R+⟩? So the
only difference between K and the graph of
L lies in the values of x that are not reached
by F (t), t ∈ R+. These points belong to two
categories:

• x = 1 (if the support of µ is not bounded).

• The x such that F is discontinuous at
x. In other words, if x ∈ F ⟨R+⟩ and
x < 1, then there exists t such that
F (t−) ⩽ x < F (t). The first inequality
can be either srict or an equality.

We successively deal with the three cases.

Case x = 1. As t → ∞, F (t) → 1 and∫ t
0 u dµ(u) →

∫∞
0 u dµ(u) = m. Hence,

(1;L(1)) = (1; 1) is a limit point of the curve
K .

Case F (t−) = x < F (t). As in previous
caise, if u → t, then F (u) → F (t−) = x. Fur-
thermore, by Galois inequalities (inverse ver-
sions, see appendix B.1.2):

1

m

∫ u

0
v dµ(v) −−→

u→t
u<t

1

m

∫ t−

0
v dµ(v)

=
1

m

∫ ∞

0
1(v<t) v dµ(v)

=
1

m

∫ 1

0
1(Q(z)<t) Q(z) dz

=
1

m

∫ 1

0
1(z<F (t−)) Q(z) dz

1

m

∫ u

0
v dµ(v) −−→

u→t
u<t

L(F (t−)) = L(x).

Hence, (x;L(x)) is a limit point of K .

Case F (t−) < x < F (t). By the Galois
inequalities, x ⩽ F (t) ⇐⇒ Q(x) ⩽ t. Further-
more, x > F (t−) ⇐⇒ Q(x) ⩾ t.

Thus, Q is constant over the interval
(F (t−), F (t)]. Hence, L is affine over the same
interval; since it is continuous, it is affine
over [F (t−), F (t)]. It follows that (x, L(x))
belongs to a line joining (F (t−);L(F (t−)) to
(F (t);L(F (t))). (F (t−);L(F (t−)) is either a
point of K or a limit point thereof (see case 2),
while (F (t);L(F (t))) ∈ K .

These results can be summarized as follow:

Proposition 1.6. Let µ ∈M.
The Lorenz curve of µ, i.e. the graph of the

function Lµ, is the union of the following sets:
• The Kendall curve Kµ;

• The set of limit points of Kµ;

• For every t ∈ R+ such that Fµ is not
continuous at t, the segment joining the
points of coordinates (Fµ(t−);Lµ(Fµ(t−)))
and (Fµ(t);Lµ(Fµ(t))).

We show the differences between Lµ, Λµ and
Kµ for µ := 1

2

(
L[0,1] + δ0.5

)
in fig. 1, p. 7.
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2 The Lorenz curve and the mean fully characterize a distribution

The goal of this section is to formally prove the
(not so trivial) fact that Lµ = Lν only if µ ≡ ν.

2.1 Bijection between M and Q

In appendix B.1, we recall that quantile func-
tions of measures taken in M1(R+,B) are non-
decreasing, left-continuous and take the value 0
in 0. In fact, these properties fully characterize
the set of quantile functions.

Let Q the set of nondecreasing, left-
continuous functions [0, 1) −→ R+ taking value
0 in 0.

If f is a function and µ a measure, we note
f♯(µ) the pushforward of µ through f (see ap-
pendix A for details).

Proposition 2.1. The following mappings are
inverse bijections:

M1(R+,B)
∼←→ Q

µ 7−→ Qµ
q♯
(
L[0,1)

)
7−→ q.

Proof. It is a well known fact that for all
µ ∈M1(R+,B), (Qµ)♯ (L[0,1]) = µ (see propo-
sition B.3 in appendix). Hence, it suffices to
prove that for every q ∈ Q, q is the quantile
function of the measure µ = q♯

(
L[0,1)

)
.

First, notice that for all x ∈ R+,

Fµ(x) = µ([0, x])

= L
(
q−1⟨[0, x]⟩

)
= L ({u ∈ [0, 1) : 0 ⩽ q(u) ⩽ x})

Fµ(x) = L ({q ⩽ x}) ,

where we note:

{q ⩽ x} := {u ∈ [0, 1) : q(u) ⩽ x}.

As q is nondecreasing, the set {q ⩽ x}
is an interval of form [0, s) or [0, s], so
Fµ(x) = sup{q ⩽ x}. As we assume that q is
left-continuous, s belongs to this interval, so the
c.d.f. of µ is given by:

Fµ(x) = max{q ⩽ x}. (2.2)

Now, fix p ∈ [0, 1); we need to prove that
q(p) = Qµ(p). We distinguish two cases:

• This is immediate for p = 0.

• Now assume p > 0. By definition of
Qµ(p), having Qµ(p) = q(p) is equivalent
to having both the following assertions
true:

(i) Fµ(q(p)) ⩾ p;
(ii) ∀r ∈ R+, r < q(p) =⇒ Fµ(r) < p.

By (2.2), (i) is equivalent to having
p ∈ {q ⩽ q(p)}, which is true.

Furthermore, by (2.2), (ii) is equivalent
to

∀r ∈ R+, r < q(p) =⇒ p /∈ {q ⩽ r}

which is also true. ■

Notice that this latest equivalence fails if we
do not have a max but only a sup in (2.2), i.e.
is q is not left-continuous.

2.2 Bijection between M and L×R∗
+

Definition 2.3. L is the subspace of functions
ℓ ∈ [0, 1][0,1] that satisfy all four following con-
ditions:

(i) ℓ is continuous,

(ii) ℓ is convex,

(iii) ℓ(0) = 0,

(iv) ℓ(1) = 1.

Notice that (i) can be replaced by: (i’) ℓ is
continuous at 1. Indeed, if ℓ is convex, then it
is continuous over (0, 1). Hypotheses (ii), (iii)
and (iv) imply that, ℓ(p) ⩽ p for all p ∈ (0, 1);
hence ℓ(0+) = 0 and ℓ is continuous at 0.

Proposition 2.4. The following mapping is a
bijection M ≈ L×R∗

+:

Φ : M
∼−→ L×R∗

+

µ 7−→ (Lµ,mµ).

Its inverse is:

Φ−1 : L×R∗
+

∼−→ M
(ℓ, n) 7−→ (n · ∂−ℓ)♯(L[0,1)).

This means, in particular, that the space of
Lorenz functions is exactly L.

To prove this proposition, we first need a
technical lemma:
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O

1

1

0.25

0.75

0.5

F

(a) Cumulative distribution function of µ. F has
a discontinuity in 0.5 and is right-continuous.

O

1

10.25 0.75

0.5
Q

(b) Quantile function of µ.

O

1

1

0.125

0.25 0.75

0.625

L

Λ

(c) The thin line represents the Lorenz function
of µ as we defined it in 1.1. The thick, dashed
line is the graph of the pseudo-Lorenz Λ, which
has a discontinuity in 0.25. These functions co-
incide at all p such that there exists an x ∈ R+,
with p = F (x).

O

1

1

0.125

0.25 0.75

0.625

L

K1

K2

(d) Here again, the thin line is the graph of the
Lorenz function L. The thick dotted line is the
Kendall curve K . This one is divided in two
connected components K1 and K2. K2 is closed,
while K1 does not include its end (0.25; 0.125).
These two components are included in the graph
of L, the rest being a segment joining the ends
of K1 and K2.

Figure 1: Illustration of the differences between the Lorenz function L, the Kendall curve K
and the pseudo-Lorenz function Λ of a measure µ = 1

2(L[0,1] + δ0.5).

Consider any probability space (Ω,F ,P). Let U a random variable uniformly distributed in
[0, 1] and X Bernoulli with parameter 0.5 with X ⊥⊥ U . Let Y = 0.5 if X = 0 and Y = U if
X = 1. µ is the distribution of Y .
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Lemma 2.5. Let (a, b] be an interval of R and
f a convex function defined over (a, b]. The
left derivative function x 7−→ ∂−f(x) is left-
continuous.

Proof. For any a < x < y ⩽ b, let
S(x, y) := f(y)−f(x)

y−x . As f is convex, the
“chordal slope lemma” ensures that S is nonde-
creasing with respect to each variable. Hence,
for all x ∈ (a, b], S(x−, x) exists (it may be
equal to +∞); it is by definition equal to ∂−f(x).
Thus, x 7−→ ∂−f(x) is nondecreasing. Thus, it
admits a left-limit everywhere.

Fix z ∈ (a, b]. We immediately have
∂−f(z

−) ⩽ ∂−f(z). Let us prove the opposite
inequality.

For any x < y < z, we have by con-
vexity: S(x, y) ⩽ ∂−f(y). Hence taking the
left limit y → z−, we get S(x, z) ⩽ ∂−f(z

−).
But then taking the left limit x → z−,
we get S(z−, z) ⩽ ∂−f(z

−); in other words
∂−f(z) ⩽ ∂−f(z

−).
Then, ∂−f is left-continuous at z. ■

Proof of the proposition 2.4. The proof lies in
two parts: (i) proving Φ is an injection, (ii) prov-
ing for all (L,m) ∈ L × R∗

+, Φ(µ) = (L,m)
where µ = (m · ∂−L)♯(L[0,1)).

Φ is an injection. Assume µ and ν are mea-
sures such that Lµ = Lν and mµ = mν .

By taking the left derivative at any
u ∈ (0, 1): Qµ(u)

mµ
= Qν(u)

mν
. The equality also

stands for u = 0. Thus, Qµ = Qν . By proposi-
tion 2.1, µ = ν.

Φ is a surjection. Let ℓ ∈ L and m ∈ R∗
+.

By convexity, ℓ admits a finite left-derivative
everywhere on (0, 1] and a finite right deriva-
tive everywhere on [0, 1). Furthermore, ∂−ℓ
and ∂+ℓ are nondecreasing, and we have for all
x ∈ (0, 1),

0 ⩽ ∂+ℓ(0) ⩽ ∂−ℓ(x) ⩽ ∂+ℓ(x).

We define q : [0, 1) −→ R+ by setting
q(0) = 0 and q(p) = ∂−ℓ(p) for p > 0. q is
a nondecreasing function.

By lemma 2.5, q is left-continuous. So is the
function n · q. Hence, by proposition 2.1, the
measure µ = (n · q)♯(L[0,1)) fullfills q = Qµ

n .

Now we need to prove that mµ = n and that
ℓ is the integral of function q. Contrary to what
may seem at first glance, this is non-trivial. (See
for instance the discussion in the preliminary
section of [HMB61, chapter VI, p. 83].) This
requires a few steps:

• First, as q is nondecreasing, it is B-
measurable.

• ℓ is derivable almost everywhere, and we
have ℓ′(x) = q(x) at every x ∈ (0, 1)
where ℓ is derivable.

• Take any 0 < x < 1. The function q is
bounded by q(x) over the interval [0, x].
Thus, ℓ is q(x)-Lipschitz over this interval,
hence absolutely continuous over it.

• Hence, we infer from [HMB61, chapter
VII, theorem 3, p. 100] that q is integrable
over [0, x] and:∫ x

0
q(t) dt = ℓ(x). (2.6)

• Now we deal with x = 1. We set for ev-
ery n ∈ N: gn = 1[0,1−2−n]. Then the
sequence of functions (q ·gn)n∈N is nonde-
creasing and converges pointwise to q over
[0, 1). Hence, by monotone convergence
theorem:∫ 1−

0
q(t) dt =

∫ 1−

0
lim
n→∞

q(t) gn(t) dt

= lim
n→∞

∫ 1−

0
q(t) gn(t) dt∫

[0,1)
q(t) dt = lim

n→∞
ℓ(1− 2−n).

By continuity of ℓ, this limit is equal to
ℓ(1), i.e. to 1. Then, q is integrable over
[0, 1). From proposition B.5, we get:

mµ =

∫ 1−

0
n · q(t) dt = n.

• Eventually, for all x ∈ [0, 1), (2.6) can be
rewritten as

1

mµ

∫ ∞

0
Qµ(x) dx = ℓ(x)

i.e. Lµ(x) = ℓ(x). ■

Corollary 2.7. Let µ, ν ∈M. Lµ = Lν if and
only if µ is a rescaling of ν.
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2.3 The quotient set M/R∗
+

The relation ≡ is an equivalence relation. Let
µ ∈M and [µ] the equivalence class of µ. The
mapping ν ∈ [µ] 7−→ mν ∈ R∗

+ is one-to-one.
Thus, we note M/R∗

+ the quotient set M/≡.
It is immediate to check that the mapping:

M
∼−→ (M/R∗

+)×R∗
+

µ 7−→ ([µ],mµ)

is a bijection.
Furthermore, for all α > 0, the mapping

µ ∈Mα 7−→ [µ] ∈M/R∗
+ is a bijection.

Finally, an immediate corollary of proposi-
tion 2.4 is:

Corollary 2.8. The mapping

Ψ : M/R∗
+

∼−→ L
[µ] 7−→ Lµ

is a bijection.

In section 5, we will show that all these bi-
jections are in fact homeomorphisms for some
natural topologies.

3 Alternate definitions of the Gini and Hoover indicators

In the following section, we introduce two com-
monly used inequality indexes: the Gini index
and the Hoover index.

These indexes are directly related to geomet-
ric properties of the Lorenz curve. Regarding
Gini index, this relation is known since [Gin14]
and commonly used by economists. As far as
we know, only [Dor79] gives a proof which is
valid in almost all generality, but some restric-
tions remain and the redaction of the proof is
somehow surprising. Hence, we give a full proof,
valid in all generality as soon as µ ∈M. A more
detailed motivation of this section is given in
appendix C.

3.1 Gini and Hoover as mean differ-
ences and mean deviation

Definition 3.1. Let µ ∈ M, X,X ′ ∼ µ inde-
pendent and identically distributed (i.i.d.), and
m = E[X] the mean of µ.

The Gini coefficient of µ is the ratio:

G(µ) :=
E[|X −X ′|]

2m
.

The Hoover coefficient of µ is the ratio:

H(µ) :=
E [|X −m|]

2m
.

If X is a random variable on a probability
space (Ω,F ) with distribution µ, we allow to
write G(X) = G(µ) and H(X) = H(µ).

The Hoover coefficient is sometimes called
the Pietra index.

Elementary properties. Let µ ∈ M and
(X,X ′) ∼ µ⊗ µ. Then:

• G and H are scale-invariant.

• G(µ), H(µ) ∈ [0, 1], by triangle inequality.

• H(µ) ⩽ G(µ). Indeed, Jensen’s inequality
implies that∣∣E[X −X ′|X]

∣∣ ⩽ E[|X −X ′| | X]
(3.2)

where E[ • | X ] denotes the expectation
conditional to X.

Since E[X|X] = X and E[X ′|X] = mµ,
the left-hand side equal to |X −mµ|. Tak-
ing the expectation of the inequality con-
cludes.

• The following assertions are equivalent:

(i) G(µ) = 0.
(ii) H(µ) = 0.
(iii) µ is a Dirac mass.

This can be deduced from the equality
case of the triangle inequality in (3.2).

• The upper bound 1 is strict, i.e. G(µ) < 1.
Otherwise, we would have

E[|X −X ′|] = E[|X|] +E[| −X ′|],

implying that X and −X ′ have same sign
almost surely. This would imply that
X = X ′ = 0 a.s., which is absurd.
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• But 1 is the best upper bound for both
indicators, i.e. supµ∈MG(µ) = 1. For
instance, for all α ∈ [0, 1), let:

µα = α · δ0 + (1− α) · δ1,

then G(µα) = H(µα) = α.

*

Until the end of the subsection, we fix a
distribution µ ∈ M and let m, F , Q and L
respectively the mean, the c.d.f., the quantile
function and the Lorenz function of µ.

3.2 Gini coefficient as area between
the Lorenz curve and the diago-
nal

Theorem 3.3. Let µ be a distribution in M,
G(µ) its Gini coefficient, and Lµ its Lorenz
function. We have:

G(µ) = 1− 2

∫ 1

0
Lµ(p) dp.

In other words, the Gini coefficient is (up to
a factor 2) the area between, on the one hand,
the Lorenz curve of the considered definition,
and on the other hand the diagonal. Notice
that the diagonal is the Lorenz curve associated
to a perfectly equal distribution.

We propose two proofs of this result. The
first one is directly inspired from [Dor79], but
more straightforward and with no hypothese
on µ except 0 < mµ < ∞. The second one is
a new proof, which general idea is courtesy of
David Leturcq. We present it under the asump-
tion that µ has no atom. The general idea of
the proof is still valid if µ has atoms but needs
a few refinements, that are fully detailed in
appendix D.1.1.

3.2.1 First proof (via
∫ 1
0 (1 − F (t))2 dt)

Lemma 3.4 (Dorfman, 1979). Let µ ∈M, F
its cumulative distribution function, G its Gini
coefficient. Then:

G = 1−

∫ ∞

0
(1− F (t))2 dt∫ ∞

0
(1− F (t)) dt

.

Proof. Notice that for any real numbers a and
b, we have : |a− b| = a+ b− 2min(a, b).

Let X and Y be independent random vari-
ables of same distribution µ on (Ω,F ,P). We
have:

E[|X − Y |] = 2E[X]− 2E[min(X,Y )].

Let Z = min(X,Y ). We thus have:

G =
E[|X − Y |]

2E[X]
= 1− E[Z]

E[X]
.

Notice that:∫ ∞

0
(1− F (t)) dt = E[X]

(see lemma A.1 in appendix).
Now let’s focus on the numerator. Let FZ

the c.d.f. of Z. We notice that for all t ∈ R+,

1− FZ(t) = P(Z > t)

= P((X > t) ∩ (Y > t))

1− FZ(t) = (1− F (t))2

since X ⊥⊥ Y .
Lemma A.1 now gives us that:

E[Z] =

∫ ∞

0
(1− F (t))2 dt. ■

Proof of theorem 3.3. Let

N :=

∫ ∞

0
(1− F (t))2 dt

N =

∫ ∞

t=0

∫ 1

u=F (t)
2(1− u) du dt.

Since the Lebesgue measure is nonatomic,
we can drop the lower bound of the inner in-
tegral, and then use Galois inequalities and
Fubini’s theorem:

N = 2

∫ ∞

t=0

∫ 1

u=F (x)+
(1− u) du dt

= 2

∫ ∞

t=0

∫ 1

u=0
(1− u)1u>F (t) du dt

= 2

∫ ∞

t=0

∫ 1

u=0
(1− u)1Q(u)>t du dt

= 2

∫ 1

u=0

∫ Q(u)−

t=0
dt (1− u) du

10



N = 2

∫ 1

0
Q(u)(1− u) du.

Given the definition of L(u) = 1
m

∫ u
0 Q(t) dt,

an integration by parts shows that:

N = 2m

∫ 1

0
L(u) du.

(For a general proof of the integration by part
formula in case where the “primitives” are not
differentiable everywhere but only absolutely
continuous, see for instance [HMB61, chap-
ter VII, theorem 4, p. 103].)

Injecting this latter expression of N in the
numerator of the formula in lemma 3.4 con-
cludes the proof. ■

3.2.2 Second proof (direct computation)
for nonatomic measures

Proof. The proof lies in switching between in-
tegrals with respect to µ and with respect to
Lebesgue measure. As µ is assumed to be dif-
fuse, one can include of exclude the bounds of
the integrals without having to be cautious.

Let I :=m
∫ 1
0 L(p) dp. As µ is diffuse,

thanks to proposition 1.4, one has

I =

∫ 1

0
m · Λ(p) dp =

∫ 1

p=0

∫ Q(p)

u=0
u dµ(u) dp.

Using Galois inequalities and Fubini’s theo-
rem, the integral can be rewritten as:

I =

∫ 1

p=0

∫ ∞

u=0
u1u<Q(p) dµ(u) dp

=

∫ 1

p=0

∫ ∞

u=0
u1F (u)<p dµ(u) dp

=

∫ ∞

0

∫ 1

p=F (u)
u dp dµ(u)

I =

∫ ∞

0
u · (1− F (u)) dµ(u) (3.5)

=

∫ ∞

0
u

∫ ∞

s=u
dµ(s) dµ(u)

I =

∫∫
0⩽u⩽s

u dµ(u) dµ(s). (3.6)

But from (3.5), we also deduce that:

I =

∫ ∞

0
u dµ(u)−

∫ ∞

0

∫ u

s=0
u dµ(s) dµ(u)

I = m−
∫∫

0⩽s⩽u
u dµ(s) dµ(u).

Then, performing the permutation of vari-
ables u↔ s, we write:

I =

∫
0⩽u⩽s

s dµ(u) dµ(s). (3.7)

Summing up the equations (3.6) and (3.7)
gives us:

I =
m

2
− 1

2

∫∫
0⩽u<s

(s− u) dµ(s) dµ(u).

By symmetry, we have:

m ·G(µ) = 1

2

∫∫
R2

+

|s− u| dµ(u) dµ(s)

m ·G(µ) =
∫∫

0⩽u<s
(s− u) dµ(s) dµ(u).

Thus,
I =

m

2
− m

2
·G(µ)

which concludes the proof. ■

3.3 Interpretations of the Hoover co-
efficient

3.3.1 Preliminary computations

Let:

P :=

∫ m−

0
(m− x) dµ(x)

R :=

∫ 0

m+

(x−m) dµ(x).

P (resp. R) is the share of income that the
people poorer (resp. richer) than the average
own above (resp. below) the average. We have:

H(µ) =
R(µ) + P (µ)

2m

Furthermore:

R− P =

∫ ∞

m+

x dµ(x)− (1− F (m))m

+

∫ m−

0
x dµ(x)− F (m−)m

=

∫ ∞

0
x dµ(x)− µ({m})m

−m+mF (m)−mF (m−)

11



R− P = 0.

This implies in particular that:

H(µ) =
R(µ)

m
=
P (µ)

m
. (3.8)

3.3.2 Hoover coefficient as Robin Hood
index

Share redistributed. Another classical way
to see the Hoover coefficient is that it is the
share of wealth to take to the people richer than
the average and to redistribute to the poors in
order to reach a perfect equality.

Indeed, the previous result simply means
that the Hoover index is the relative share of
wealth that the rich have above the average.
This one is equal to the relative share of wealth
that that the poors need to reach the average.
Hence, taking a share H(µ) of wealth (to the
people above the average) and redistributing
it (to the people below the average), we reach
perfect equality.

This is why the Hoover coefficient is some-
times called “Robin Hood index”. (Even though
Robin Hood would not steal from the riches to
give tho the poors, but from greedy government
that was over-taxing their people.)

Most efficient way to redistribute. Is
there a more efficient way to redistribute the
money in order to reach the perfect equality?
Our intuition doubts it.

The answer lies in optimal transportation
theory. Searching for the most efficient way to
redistribute money means solving the optimal
transformation problem from distribution µ to
distribution δm with nonsymetric cost function
c(x, y) = x − y if x > y, c(x, y) = 0 other-
wize. (One only counts the taxes taken, not
the aids and subsidies paid.) Adopting Kan-
torovitch’s optimal transport problem frame-
work (see [Vil03, introduction]), we are faced to
the minimization problem:

I = min
π∈Π(µ,δm)

∫∫
R+

2
c(x, y) dπ

where Π(µ, δm) is the set of measures on
(R+,B) with marginals µ and δm.

However, as δm is deterministic, there is
only one measure in the set Π(µ, δm), namely
the tensor product µ⊗δm. Hence, the minimum
we are looking can be written:

I =

∫ ∞

x=0

(∫ ∞

y=0
1x⩾y(x− y) dδm(y)

)
dµ(x)

=

∫ ∞

x=0
(x−m)1x⩾m dµ(x)

=

∫ ∞

m
(x−m) dµ(x)

I = R = m ·H(µ).

Thus, H(µ) is the optimal share of incomes
to be redistributed.

Open question. Can the Gini coefficient be
interpreted in a similar, natural way?

At this point, the answers seems to be nega-
tive. This is a usual criticism against the Gini in-
dex: for instance, Piketty writes — among other
criticisms — that the Gini coefficient gives “an
abstract and sterile view of inequality” [Pik14,
p. 408].

3.3.3 Hoover coefficient as maximum
vertical distance between the
Lorenz curve and the diagonal

Another classic interpretation of the Hoover
coefficient involves the Lorenz curve.

Proposition 3.9. Let µ ∈M, m its mean, L
its Lorenz function and F its cumulative distri-
bution function. Then:

H(µ) = F (m)− L(F (m)).

Proof. From (3.8), we can write:

H(µ) =
1

m

∫ m−

0
(m− x) dµ(x)

=
1

m

∫ m

0
(m− x) dµ(x)

H(µ) = F (x)− 1

m

∫ m

0
x dµ(x).

Now, we apply the pushforward theorem
(lemma B.4 in appendix) with function

f : R+ −→ R+

x 7−→ x · 1x⩽m.
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Hence,∫ m

0
x dµ(x) =

∫ 1

0
Q(p)1Q(p)⩽m dp

=

∫ 1

0
Q(p)1p⩽F (m) dp

=

∫ F (m)

0
Q(p) dp∫ m

0
x dµ(x) = mL(F (m)). ■

Theorem 3.10. Let µ be a distribution in M
and L its Lorenz function. We have:

H(µ) = max
p∈[0,1]

(
p− L(p)

)
.

Proof. Let Φ : p 7−→ p − L(p). Using proposi-
tion 3.9, it is enough to prove that the concave
function Φ reaches its maximum in F (m).

As per L, Φ has a left-derivative ∂−Φ and
a right-derivative ∂+Φ in every point of (0, 1).
We have for t ∈ (0, 1): ∂−Φ(t) = 1 − Q(t)

m and

∂+Φ(t) = 1− Q(t+)
m . Φ reaches its maximum in

p⋆ if and only if ∂−Φ (p⋆) ⩾ 0 and ∂+Φ (p⋆) ⩽ 0.
This is equivalent to having both Q (p⋆) ⩽ m
and Q (p+⋆ ) ⩾ m.

On the one hand, the Galois inequalities
imply that Q(F (m)) ⩽ m. On the other hand,
they ensure that if x > F (m), then Q(x) > m.
Taking the infimum, Q(F (m)+) ⩾ m. ■

4 Some direct applications of these results

4.1 G and H are nondecreasing with
respect to Lorenz-domination

Proposition 4.1. Let µ, ν ∈M. Assume that
for all p ∈ [0, 1], Lµ(p) ⩽ Lν(p). Then:

1. G(ν) ⩽ G(µ) and H(ν) ⩽ H(µ);

2. Furthermore, G(µ) = G(ν) if and only if
µ ≡ ν (µ = ν up to some scale factor).

Proof. The first part is an immediate conse-
quence of theorems 3.3 and 3.10.

Now assume G(µ) = G(ν). Then, by the-
orem 3.3, we have

∫ 1
0 Lν(t) − Lµ(t) dt = 0.

Lν−Lµ is nonnegative, continuous, so Lµ = Lν
on [0, 1]. Hence, by corollary 2.7, µ ≡ ν. ■

From part 2 of the proposition, we can say
that G is strictly increasing with respect to
Lorenz-majorization. However, H is insensitive
to redistribution either among the group of peo-
ple with incomes higher (resp. lower) than the
average, and thus not increasing. For instance,
let

µ :=
1

4
(2δ0 + δ1 + δ3) , ν :=

1

4
(2δ0 + 2δ2)

then Lµ ⩽ Lν , H(µ) = H(ν) = 1
2 , but µ ̸≡ ν.

4.2 Extreme values of Gini index un-
der constraint on Hoover index

Theorem 3.3 states that the Gini index of a
measure µ ∈ M is two times the area of the

surface

Sµ := {(x, y) : x ∈ [0, 1], Lµ(x) ⩽ y ⩽ x}.

We have Sµ = T ∩ Γµ, where T is the (full)
triangle

T := {(x, y) : 0 ⩽ y ⩽ x ⩽ 1}

and Γµ is the epigraph of Lµ, i.e.

Γµ := {(x, y) : x ∈ [0, 1], Lµ(x) ⩽ y ⩽ 1}.

As Lµ is a convex function, Γµ is a convex sur-
face; so is T . Hence, the surface Sµ is convex.

Theorem 3.10 ensures that a measure µ has
a Hoover index of h if, and only if, its Lorenz
curve touches the line of equation y = x − h
but never goes below (see fig. 2a, p. 15). We
can describe the measures reaching the extreme
values.

Proposition 4.2. Fix h ∈ (0, 1).

1. We have:

{G(µ) : µ ∈M, H(µ) = h} = [h, 2h−h2).

2. The measures µ for which

G(µ) = H(µ) = h

are exactly the bimodal measures of form:

µ = α · δm·(1− h
α)

+ (1− α) · δm·(1+ h
1−α)

where m > 0 and α ∈ [h, 1).
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m is the mean of the distribution, and α a
form parameter that is the relative share of the
group of poors. In this configuration, the total
group of poors owns a share α− h of the total
resource. At the same time, the group of rich
(share 1 − α of the population) owns a share
1− α+ h of the resource.

Proof. Consider an orthonormal frame of origin
O. Let I the point of coordinates (1; 1). For
any h, the line of equation y = x− h is the one
containing the points A(h; 0) and B(1; 1 − h).
The surface Sµ is delimited by the segment [OI]
and the curve of Lµ.

Proof of the lower bound & the lower
bound is reached (fig. 2b). Minimizing
G(µ) under the constraint H(µ) = h is equiva-
lent to minimizing the surface of the epigraph
of Lµ under the constraint that Lµ touches the
line [AB].

Assume Lµ fillfills the constraint. There ex-
ists α ∈ [h, 1) such that L passes through the
point Cα with coordinates (α;α − h). Hence,
the surface Sµ must be convex and contain the
points O, I and Cα. Yet, the surface with mini-
mal area containing these three points is their
convex envelope, i.e. the triangle OCαI. The
surface of this triangle is h

2 whatever the chosen
value of α.

Hence, G(µ) is minimized by any µ such
that Lµ is piecewise affine, which graph is made
of the segments [OCα] and [CαI]. This corre-
sponds to the measures of form:

µα,m = α · δm·(1− h
α)

+ (1− α) · δm·(1+ h
1−α)

for some m > 0. The proposition 2.4 ensures
that there is no other measures with such a
graph.

Eventually, the set

{µα,m : α ∈ [h, 1),m > 0}

is the set of functions minimizing G(µ) under
the constraint H(µ) = h; for these functions,
we have G(µα,m) = h.

Proof of the upper bound & proof that
the upper bound is never reached (fig. 2c).
If H(µ) = h, then Lµ must be contained within
the trapezoid OABI. Thus, the area of Sµ must
be at most the area of OABI, i.e. h− h2

2 . Hence,
G(µ) ⩽ 2h− h2.

We now prove that this value cannot be
reached. As Lµ is continuous at 1, there exist
η > 0 such that for all x ⩾ 1−η, Lµ(x) > 1− h

2 .
Let R be the rectangle:

R = [1− η, 1]×
[
1− h, 1− h

2

]
.

We have that:
• The epigraph Γµ cannot intersect R, so
Sµ ∩R = ∅.

• But R is contained in the (full) trapezoid
OABI.

This implies that the surface of Sµ is at most
the surface of OABI, minus the surface of R,
i.e.:

G(µ) ⩽ 2h− h2 − ηh.

That is, the upper bound is never reached.

Proof that every value between the upper
bound and the lower bound is reached
(fig. 2d). In order to achieve any value in the
interval (h, 2h − h2), we just propose a three-
group distribution such that the Lorenz curve
is composed of three segments [OA], [ACα] and
[CαI] where Cα has coordinates (α;α−h), with
h ⩽ α < 1 is to be determined (note that for
h = α, Ch and A are combined). Such a µ
exists by proposition 2.4.

Some elementary geometry ensures that the
area of the quadrilateral OACαI is:

Aα =
1

2
(h+ αh− h2).

The Gini index of the distribution is 2Aα.
Thus, G(µ) reaches every value of h+ αh− h2
for h ⩽ α < 1, i.e. G(µ) reaches every value of
the interval [h, 2h− h2]. ■
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O

1

1

I

A

BSµ

h

(a) To match the condition H(µ) = h, the curve
Lµ must touch the line [AB] without crossing
it. The dotted surface Sµ, delimited by the line
[OI] and the Lorenz curve Lµ, has area 1

2G(µ).

O

1

1

I

A

B

Cα

(b) To minimize the Gini index, the Lorenz curve
must minimize the surface Sµ while still touch-
ing the line [AB]. This condition is checked if
and only if Lµ touches the line in a single point
Cα and if surface Sµ is the convex envelope of
the points O, Cα and I, i.e. the dotted triangle.

O

1

1

I

A

B

η

h
2

(c) The dotted surface Sµ needs be contained
within the trapezoid OABI, which area is h−
h2

2 . However, it need not include the hatched
rectangle of dimensions η × h

2 .

O

1

1

I

A

B
Cα

(d) If α moves between A (included) and B
(excluded), then the dotted surface takes every
possible area between h

2 (included) and h− h2

2
(excluded).

Figure 2: Illustration of the geometric arguments used in the proof of corollary 4.2.

In all figures, we fix some h ∈ (0, 1). The points A and B have coordinates (h; 0) and (1; 1− h).
The line (AB) has equation y = x − h. The point Cα is the point of this line having absciss
α ∈ [h, 1).
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Part II

Convergence properties of Lorenz curve, Gini
index and Hoover index

5 Convergence of L, G and H when the measures converge in
W1

It has been known for an long time that if µ
is a random variable and X1, . . . , Xn is a ran-
dom sample of µ (i.i.d. variables of distribu-
tion µ), then the empirical Gini index G((Xi)i)
converges to the theoretical Gini index G(µ).
Under some good hypotheses of integrability,
we do even get the asymptotic normality of√
n(G((Xi)1⩽i⩽n)−G(µ)) [Hoe48, section 9.b].

We do not intend to explore the asymptotic
distributions of empirical indexes. However, we
do not restrict on convergence of random sam-
ples: we will determine necessary and sufficient
conditions for having uniform convergence of
the Lorenz curves as soon as the underlying
distributions converge.

5.1 W1 distance, weak convergence
and uniform integrability

Recall that a collection (Ui)i∈I of real random
variables defined on a space (Ω,F ,P) is said
uniformly integrable (u.i.) if

sup
i∈I

E
[
|Ui| 1|Ui|>α

]
−−−−−→
α→+∞

0.

It is known (see [Bil95, theorem 16.14,
corollary]) that if U is a random variable,
E[|Un − U |] −−−→

n→∞
0 if and only if Un −−−→

n→∞
U

in distribution and (Un)n∈∞ is u.i.
Define the Wasserstein-1 metric W1 on

M1(R+) as:

W1(µ, ν) :=

∫ 1

0
|Qµ(t)−Qν(t)| dt.

Convergence with respect to metric W1 is equiv-
alent to L1 convergence of quantile functions.

We say that (µi)i∈N is uniformly integrable
if the collection (Qµi)i∈N is uniformly integrable

in the measure space
(
[0, 1),B,L

)
. Keep in

mind that this notion of uniform integrability
of measures is nonstandard; most authors do
only define uniform integrability for measurable
functions or for random variables.

Finally, we say (µn)n∈N converges weakly to
µ∞ if Fµn(x) −−−→n→∞

Fµ∞(x) for all x at which

Fµ∞ is continuous. We note µn
W−−−→

n→∞
µ∞. This

is equivalent to having Qµn −−−→n→∞
Qµ∞ , L -

almost surely.
The pertinence of these concepts and the

elementary properties are detailed in appen-
dices B.2, B.3 and B.4.

Theorem 5.1 (Scheffé–Lebesgue).
Let (µn)n∈N ∈MN and µ∞ ∈M. The follow-
ing are equivalent:

(i) µn
W1−−−→
n→∞

µ∞;

(ii) µn
W−−−→

n→∞
µ∞ and mµn −−−→n→∞

m∞;

(iii) µn
W−−−→

n→∞
µ∞ and (µn)n∈N is uniformly

integrable.

For a detailed proof, see propositions B.18
and B.25 in appendix.

5.2 Necessary and sufficient condi-
tions for convergence of Lorenz
curves

Proposition 5.2. Let (µn)n∈N and µ∞ mea-
sures in M. We denote L• their Lorenz func-
tions and and m• their means. The following
assertions are equivalent:

(i) µn
W1−−−→
n→∞

µ∞;
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(ii) Ln −−−→
n→∞

L∞ pointwise over [0, 1] and
mµn −−−→n→∞

mµ∞;

(iii) Ln −−−→
n→∞

L∞ uniformly over [0, 1] and
mµn −−−→n→∞

mµ∞.

We split the proof in two part.

Proof of the easy implications. (i) =⇒ (ii) is
trivial using definition 1.1, triangle inequality
and the definition of the W1 metric.

Implication (ii) =⇒ (iii) is a direct applica-
tion of Dini’s lemma, that we hereby recall. ■

Lemma 5.3 (Dini). Let [a, b] be a segment.
Let for n ∈ N, fn and f∞ : K −→ R. Assume:

(i) fn −−−→
n→∞

f∞ pointwise;

(ii) fn’s are nondecreasing functions;

(iii) f∞ is continuous on [a, b].

Then fn
∥.∥∞−−−→
n→∞

f∞ (uniform convergence on
[a, b]).

(See [PS78, problem 127] for a proof.)
Now the implication (iii) =⇒ (i) remains

to be proven. To do so, we introduce the follow-
ing lemma.

Lemma 5.4. Let I an open interval of R.
Let Fn : I −→ R convex functions that uni-
formly converge to F∞ over I. Let δ−• the
left-derivative of a function.

∂−Fn(x) −−−→
n→∞

∂−F∞(x) pointwise for ev-
ery x at which ∂−F∞ is continuous.

Proof. First, for all ε > 0, there exists Nε ∈ N
such that for every n ⩾ Nε, ∥Fn − F∞∥∞ < ε2.

Let, for every n ∈ N ∪ {∞} and a, b, p ∈ I
and p ∈ I,

Sn(a, b) :=
Fn(b)− Fn(a)

b− a
.

Notice that F∞, as a uniform limit of convex
functions, is itself convex.

To ease the notations, let fn := ∂−Fn for
every n ∈ N ∪ {∞}.

Minoring lim infn fn(p). First, fix ε > 0.
for every n ⩾ Nε, we have:

|Sn(p− ε, p)− S∞(p− ε, p)|

=
|Fn(p− ε)− Fn(p)− F∞(p− ε) + F∞(p)|

ε

⩽
|Fn(p− ε)− F∞(p− ε)|

ε
+
|Fn(p)− F∞(p)|

ε

⩽
ε2

ε
+
ε2

ε
= 2ε.

Hence, by convexity of Fn,

S∞(p− ε, p)− 2ε ⩽ Sn(p− ε, p) ⩽ fn(p).

Furthermore, we have by definition of f∞:

S∞(p− h, p)− 2h −−−→
h→0
h>0

f∞(p)− 0.

Hence, for every δ > 0, there exists εδ > 0
such that

S∞ (p− εδ)− 2εδ > f∞(p)− δ.

So for every δ > 0, there exists N :=Nεδ

such that ∀n ⩾ Nεδ ,

fn(p) > f∞(p)− δ.

Majoring lim supn fn(p). Similarly, for all
ε > 0, for every n ⩾ Nε,

|Sn(p, p+ ε)− S∞(p, p+ ε)| ⩽ 2ε.

By convexity of Fn,

fn(p) = ∂−Fn(p) ⩽ Sn(p, p+ ε).

Hence,

fn(p) ⩽ S∞(p, p+ ε) + 2ε.

By convexity of F∞, for all η > 0:

∂−F∞(p) ⩽ ∂+F∞(p) ⩽ ∂−F∞(p+ η).

Thus, since f∞ is continuous at p,

∂+F∞(p) = ∂−F∞(p+) = ∂−F∞(p) = f∞(p).

Hence,

S∞(p, p+ h) + 2h −−−→
h→0
h>0

f∞(p).

Hence, for all δ > 0, there exists ε′δ such
that S∞(p, p+ ε′δ) + 2ε′δ < f∞(p) + δ. Finally,
for every n ⩾ Nε′δ

,

fn(p) < f∞ + δ. ■
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Proof of the remaining part of theorem 5.2.
Assume hypothesis (iii). The functions

Ln are convex. As stated in section 1.1, for
all p ∈ (0, 1] and for every n ∈ N ∪ {∞},
∂−Lµn(p) = Qµn(p)/mµn

As Lµn −−−→n→∞
Lµ∞ uniformly, lemma 5.4

ensures that the sequence of functions
(Qµn/mµn)n∈N converges to Qµ∞/mµ∞ point-
wise over (0, 1), except at the points of discon-
tinuity of Qµ∞ . The convergence also stands at
0.

As we assumed mµn −−−→n→∞
mµ∞ , we get

Qµn −−−→n→∞
Qµ∞ pointwise over (0, 1), ex-

cept in the points of discontinuity of Q∞.
Hence, µn

W−−−→
n→∞

µ∞. By Scheffé–Lebesgue,
(i) stands. ■

5.3 Sufficient condition for Gini and
Lorenz convergence

Proposition 5.5. Let (µn)n∈N and µ∞ mea-
sures of M. If µn

W1−−−→
n→∞

µ, then:
1. Lµn −−−→n→∞

Lµ∞ uniformly over [0, 1].

2. G(µn) −−−→
n→∞

G(µ∞).

3. H(µn) −−−→
n→∞

H(µ∞).

Proof. Theorem 5.2 ensures that (Lµn)n∈N
converges to Lµ∞ uniformly on [0, 1]. So
does (id − Lµn)n∈N to id − Lµ∞ , where
id : x ∈ [0, 1] 7−→ x.

Thus,∫ 1

0
p− Lµn(p) dp −−−→n→∞

∫ 1

0
p− Lµ∞(p) dp ;

max
p∈[0,1]

p− Lµn(p) −−−→n→∞
max
p∈[0,1]

p− Lµ∞(p).

We conclude the proof by applying theo-
rem 3.3 and theorem 3.10. ■

5.4 Topological formulation: homeo-
morphism between (M,W1) and
L × R∗

+

5.4.1 Basic result

Recall that a topological space is called sequen-
tial if its sequentially closed sets are closed. A

mapping from a sequential space to any topolog-
ical space is continuous iff it is sequentially con-
tinuous. Being first countable is a sufficient con-
dition for being sequential; thus, metric spaces
are sequential.

Now, we embed:
• R∗

+ with its standard norm | · |;

• M with the metric W1;

• L with the uniform norm ∥.∥∞.

R∗
+, M and L, embedded with the under-

lying topologies, are sequential spaces. Hence,
propositions 2.4 and 5.2 can be reworded as
follow:

Theorem 5.6. The following mapping is a
homeomorphism:

Φ : (M,W1) ≈ (L, ∥ · ∥∞)× (R∗
+, | · |)

µ 7−→ (Lµ,mµ).

5.4.2 W1 topology on M/R∗
+

Now, let’s focus on the quotient space M/R∗
+

of distributions on (R+,B) modulo equality
up to a rescaling. Let π : M −→ M/R∗

+ the
canonical projection. M/R∗

+ can be endowed
with the quotient W1 topology: U is open in
(M/R∗

+,W1) iff π−1⟨U⟩ is open in (M,W1).

A description of the W1 topoology on
M/R∗

+. For α > 0 and µ ∈M, call Sα(µ) the
distribution of α ·X where X ∼ µ. For ε > 0
and µ ∈ M, call B(µ, ε) the W1-open ball of
center µ and radius ε.

Let U a W1-open subset of M. Call
U ′ = π−1⟨π⟨U⟩⟩ its saturate for ≡. If µ ∈ U ′,
there exists µ0 ∈ U and α > 0 such that
µ = Sα(µ0). Since U is open, there exists ε > 0
such that B(µ0, ε) ⊆ U . Now consider the open
ball V ′ :=B(µ, αε). It suffices to prove that
V ′ ⊆ U ′. For ν ∈ V ′, let ν0 = S1/α(ν). We
have (see lemma B.6 in appendix for details):

W1(ν0, µ0) =

∫ 1

0
|Qν0(p)−Qµ0(p)| dp

=

∫ 1

0

∣∣∣∣ 1αQν(p)− 1

α
Qµ(p)

∣∣∣∣ dp
=

1

α
W1(µ, ν)
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W1(ν0, µ0) < ε

thus ν0 ∈ B(µ0, ε) ⊆ U , so ν ∈ U ′. Hence,
V ′ ⊆ U ′. Hence, U ′ is open.

This proves that π : M −→ M/R∗
+ is an

open mapping. Hence, the W1 topology on
M/R∗

+ is generated by the elementary opens
π⟨B(µ0, ε)⟩ for µ0 ∈M and ε > 0.

Notice that the quotient W1 metric need
not induce the quotient W1 topology. In fact, it
does not; one can check that the quotient W1

metric is a trivial pseudometric d([µ], [ν]) = 0
for all µ and ν.

Quotient mapping [µ] 7−→ Lµ. The map-
ping Ψ : µ ∈M 7−→ Lµ is continuous and goes
to the quotient. Hence, it induces a continuous
mapping: Ψ̃ : [µ] ∈M/R∗

+ 7−→ Lµ. One can
directly check that its reciprocate function is
given by:

Ψ̃−1(ℓ) =
[
Φ−1(µ, 1)

]
which is also continuous.

Finally, we have:

Proposition 5.7. The following mappings are
homeomorphisms:

Ψ̃ : M/R∗
+ ≈ L

[µ] 7−→ Lµ

M ≈ M/R∗
+ ×R∗

+

µ 7−→ ([µ],mµ)

∀α ∈ R∗
+, Mα ≈ M/R∗

+

µ 7−→ [µ]

∀µ ∈M, [µ] ≈ R∗
+

ν 7−→ mν

where M, Mα, [µ] and M/R∗
+ are embedded

with the W1 topology or the topology induced by
it; L is embedded with the ∥ · ∥∞ norm and R∗

+

is embedded with its standard topology.

5.4.3 Embedding L with the pointwise
convergence topology

What can we say if L is not embedded with the
topology of uniform convergence, but pointwise

convergence, i.e. the topology induced by the
product topology on R[0,1]? As the pointwise
convergence topology is not sequential, a priori
proposition 5.2 tells nothing.

However, we can adapt Dini’s theorem to
prove that for given a, b ∈ R, the ∥ · ∥∞ topol-
ogy and the product topology on R[a,b] induce
the same topology on the subset of continuous
nondecreasing functons.

Proposition 5.8 (generalization of Dini).
Let [a, b] ⊆ R, E :=R[a,b] and C ↑ ⊆ E the set
of continuous, nondecreasing functions.

Let τ∞ the topology on E induced by the
norm ∥ · ∥∞ and τ× the product topology on E.
Let τ ′∞ (resp. τ ′×) the trace topoolgy induced by
τ∞ (resp. τ×) on C ↑.

We have τ ′∞ = τ ′×.

Proof. For f ∈ E and ε > 0, let B(f, ε) the
∥ · ∥∞-ball of center f and radius ε.

τ∞ is thinner than τ×. Let n ∈ N∗ and for
i = 1, . . . , n: xi ∈ [a, b], yi ∈ R and εi > 0. Let

U := {g ∈ E : ∀i ∈ [1, n], |g(xi)− yi| < εi}

an elementary open set of τ×. Let g0 ∈ U . for
every i = 1, . . . , n, let ai = g0(xi) − (yi − εi)
and bi = (yi + εi)− g0(xi). Let:

m = min{ai, bi : i = 1, . . . , n}.

Then g0 ∈ B(g0,m) ⊆ U , so U is τ∞-open.
It follows that τ∞ is thinner than τ×. Hence,

τ ′∞ is also thinner than τ ′×.

τ ′
× is thiner than τ ′

∞. First, notice that the
topology τ ′∞ admits as a basis the trace balls of
form B(f, ε) ∩ C ↑ with ε > 0 and f ∈ C ↑.

Now consider a trace ball B(f, ε)∩C ↑ with
f ∈ C ↑. It suffices to prove that there exists an
elementary open U ∈ τ× such that:

f ∈ U and U ∩ C ↑ ⊆ B(f, ε).

To do so, we use the same argument
as for Dini’s theorem. By Heine–Cantor
theorem, f is uniformly continuous. Let
η > 0 such that for all x, y ∈ [a, b],
|x− y| < η =⇒ |f(x)− f(y)| < ε

5 .
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Let a0 := a < a1 < · · · < an := b with
ai − ai−1 < ε for every i = 1, . . . , n. Let U
the elementary τ×-open:{

g ∈ E : ∀i ∈ [0, n], |g(ai)− f(ai)| <
ε

5

}
.

It is immediate that f ∈ U . Now assume
g ∈ U ∩ C ↑. Let x ∈ [a, b]. There exists
i ∈ [0, n − 1] such that ai ⩽ x ⩽ ai+1. We
have:

|g(x)− f(x)|
⩽ |g(x)− g(ai)|+ |g(ai)− f(ai)|

+ |f(ai)− f(x)|

< |g(ai+1)− g(ai)|+
2ε

5
⩽ |g(ai+1)− f(ai+1)|+ |f(ai+1)− f(ai)|

+ |f(ai)− g(ai)|+
2ε

5

< ε. ■

Consequence. Since L ⊆ C ↑, the theo-
rem 5.6 remains valid if L is embedded with
pointwise convergence topology.

5.4.4 G and H as continuous applica-
tions

To prove proposition 5.5, we merely used
the fact that the mappings Lµ 7−→ G(µ) and
Lµ −→ H(µ) are continuous. Thus, the map-
pings G : M −→ [0, 1) and H : M −→ [0, 1) are
continuous, where M is embedded with the W1

topology. Since G and H go to the quotient, the
quotient mappings G̃ and H̃ : M/R∗

+ −→ [0, 1)
are continuous too.

6 Applications of the W1 convergence

The main practical interest of the proposition
5.5 is that it justifies that the Lorenz curves,
the Gini and the Hoover are consistent with
small perturpations an approximations. In the
following section, we will show that the W1 con-
vergence occurs in several cases, allowing us to
apply proposition 5.5.

Let µ ∈M. With increasing complexity, we
deal with the following situations:

1. µ is perturbated by a noise, which van-
ishes.

2. µ is approximated by a random sample,
and the size n of the sample increases.

3. µ is approximated by a discrete distribu-
tion corresponding to ℓ regularly-chosen
quantiles, and ℓ grows.

4. µ is approximated by ℓ regularily chosen
quantiles of a sample of size n, as ℓ and n
grow. This corresponds to a more realistic
situation: in practice, the public offices
for statistics do only publish the quantiles
of the population’s revenue, based on a
sample.

5. µ is approximated with the kernel density
estimate of a sample of size n with window

ε, as n grows and ε shrinks.

Notation. In what follows, the notation ⊗
refers to the tensor product of measures. Recall
that if X ∼ µ and Y ∼ ν are independent, then
(X,Y ) ∼ µ ⊗ ν. Likewise, (Xn)n∈N ∼ µ⊗N

iff the Xn’s are i.i.d. random variables with
distribution µ, etc.

6.1 Vanishing noise

Consider a probability space (Ω,F ,P).
Let X a nonnegative L1 random variable.

Let (Yn)n∈N a sequence of real, variables
converging to 0 P-almost surely, such that
(E[|Yn|])n∈N is bounded, and let for n ∈ N:

Zn := max(X + Yn, 0).

By dominated convergence theorem,
E[|Zn −X|] −−−→

n→∞
0. Since L1 convergence of

random variables implies W1 convergence of the
underlying measures (see proposition B.18 in ap-
pendix), one can apply proposition 5.5. We have
LZn −−−→n→∞

LX uniformly, G(Zn) −−−→
n→∞

G(X)

and H(Zn) −−−→
n→∞

H(X).
In particular, this is the case if Yn represents

a “noise” that decreases. (We cut in 0 to avoid
dealing with negative values.)
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For instance:

Application 6.1. Let (Ω,F ,P) a probability
space. Let X a nonnegative random variable
with X ∼ µ ∈M.

Let Y ∈ L1(Ω,F ,P) and (εn)n∈N a series
with limit 0. Let:

Zn := max(X + εnY, 0)

and νn the distribution of Zn. Then:
1. νn

W1−−−→
n→∞

µ.

2. Lνn
∥.∥∞−−−→
n→∞

Lµ.

3. G(νn) −−−→
n→∞

G(µ).

4. H(νn) −−−→
n→∞

H(µ).

6.2 Sampling

Recall the following the following, fundamental
theorem, proven in [Bil95, theorem 20.6].

Theorem 6.2 (Glivenko–Cantelli). Let
µ ∈M1(R+,B) and (Xn)n∈N ∼ µ⊗N. Let µ̂n
be the empirical measure of (X1, . . . , Xn). Then,
almost surely, ∥Fµ̂n − Fµ∥∞ −−−→n→∞

0, where F•

denotes the cumulative distribution functions
associated to measures.

Application 6.3. Let µ ∈M. Let X1, . . . , Xn,
. . . i.i.d with distribution µ. Let µ̂n the em-
pirical measure of the subsample (X1, . . . , Xn).
Then, almost surely,

1. µ̂n
W1−−−→
n→∞

µ.

2. Lµ̂n
∥.∥∞−−−→
n→∞

Lµ.

3. G(µ̂n) −−−→
n→∞

G(µ).

4. H(µ̂n) −−−→
n→∞

H(µ).

Proof. From Glivenko–Cantelli, we infer that
µ̂n −−−→

n→∞
µ weakly. Furthermore, by the strong

law of large numbers, mµ̂n −−−→n→∞
mµ. Then, by

Scheffé’s lemma, µ̂n
W1−−−→
n→∞

µ. The three other
assertions follow from proposition 5.5. ■

The results can be reworded in terms of
consistency of estimators.

Corollary 6.4. Let µ ∈M. Let X1, . . . , Xn,
. . . i.i.d with distribution µ. Let µ̂n the em-
pirical measure of the subsample (X1, . . . , Xn).
Then, almost surely,

(i) The following estimator of Gµ is strongly
consistent:

Ĝn :=

n∑
i=1

n∑
j=1

|Xi −Xj |

2n
n∑
i=1

Xi

.

(ii) The following estimator of Hµ is strongly
consistent:

Ĥn :=

n∑
i=1

∣∣∣Xi − 1
n

∑n
j=1Xj

∣∣∣
2

n∑
i=1

Xi

.

(iii) The estimators L(x)
n of Lµ(x) are strongly

consistent, uniformly in x ∈ [0, 1], where

L̂
(x)
n :=

∑nx
i=1

(
X↑

(1:n)

)
i

n∑
i=1

Xi

,

with the following notations:

•
(
X↑

(1:n)

)
i
is the i-th term of the sub-

sequence (X1, . . . , Xn), reordered in-
creasingly;

•
∑0

i=1 ai = 0;

• if x = k + f with k ∈ N and
0 < f < 1, then

x∑
i=1

ai := f

k+1∑
i=1

ai + (1− f)
k∑
i=1

ai.

Uniform integrability of empirical mea-
sures. The following result can be directly
deduced from the W1 convergence of (µ̂n)n∈N.
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Corollary 6.5. Let µ ∈M and (Xn)n∈N∗ i.i.d.
with distribution µ. Let µ̂n the empirical mea-
sure of (X1, . . . , Xn). Then, almost surely, the
collection of measures (µ̂n)n∈N∗ is uniformly
integrable.

An alternate proof is given in ap-
pendix D.3.1.

6.3 Quantile approximation

For ℓ ∈ N∗, the ℓ-quantile approximation of µ
is a discretization µ̃ℓ that has ℓ atoms in the
0th, 1st, . . . , (ℓ − 1)th ℓ-quantiles of µ, each
with probability 1

ℓ .

Lemma 6.6. Let µ ∈M and ℓ ∈ N∗. Consider
the ℓ-quantile approximation of µ:

µ̃ℓ :=
1

ℓ

ℓ−1∑
k=0

δQµ( k
ℓ )
.

For all x ∈ R+,

Fµ(x) ⩽ Fµ̃ℓ(x) ⩽ Fµ(x) +
1

ℓ
.

In other words, µ dominates µ̂ℓ at first order
and ∥Fµ̂ℓ − Fµ∥∞ ⩽ 1

ℓ .

Proof. Let x ∈ R+. Consider the unique in-
teger k0 ∈ [0, ℓ] such that k0

ℓ ⩽ Fµ(x) <
k0+1
ℓ .

We have:

Fµ̃ℓ(x) = µ̃ℓ([0, x])

=
1

ℓ

ℓ−1∑
k=0

δQµ( k
ℓ )
([0, x])

=
1

ℓ

ℓ−1∑
k=0

1Qµ( k
ℓ )⩽x

Fµ̃ℓ(x) =
1

ℓ

ℓ−1∑
k=0

1 k
ℓ
⩽Fµ(x)

The inequality k
ℓ ⩽ Fµ(x) is true for

k = 0, . . . , k0, and false otherwise. Hence,

Fµ̃ℓ(x) =
k0 + 1

ℓ
. ■

Application 6.7. Let µ ∈ M. for every
ℓ ∈ N∗, let

µ̃ℓ :=
1

ℓ

ℓ∑
k=1

δQµ( k
ℓ )
.

Then µ̃ℓ
W1−−−→
ℓ→∞

µ, and the conclusions of
proposition 5.5 stand.

Proof. Lemma 6.6 ensures that Fµ̃ℓ −−−→
ℓ→∞

Fµ

pointwise. Thus, µ̃ℓ −−−→
ℓ→∞

µ weakly.
Furthermore, by lemma 6.6, for every

ℓ ∈ N∗, Fµ ⩽ Fµ̃ℓ . It follows that Qµ̃ℓ ⩽ Qµ
(see proposition B.7 in appendix for details).

Qµ is integrable over [0, 1) and has finite
integral mµ (proposition B.5). Thus, the col-
lection (Qµ̃ℓ)ℓ∈N∗ is uniformly dominated by a
L1 random variable; hence it is uniformly inte-
grable.

By Scheffé–Lebesgue µ̃ℓ
W1−−−→
n→∞

µ. ■

6.4 Quantile-of-sample approxima-
tion

In the application 6.7, the uniform integrabil-
ity followed from the facts that all Qµ̃ℓ were
dominated by the same L1 random variable. In
fact, this result can be easily generalized: a
collection of random random variables (Xj)j∈J
is u.i. as soon as there exists a collection of
u.i. variables (Yi)i∈I and for every j ∈ J , there
exists an i such that Xj ⩽ Yi a.s. (just write
it — or see proposition B.24 in appendix for
detailed proof).

Notation. If (un,m) is a double-indexed se-
quence of numbers, we write:

un,m −−−−−−−−−−→
n→∞ ⊥⊥ m→∞

u∞

if for every mappings φ,ψ : N −→ N with limit
∞ we have:

uφ(i),ψ(i) −−−→
i→∞

u∞.

Mutatis mutandis for other modes of con-
vergence (weak or W1 convergence of measure,
uniform or pointwise convergence of functions,
etc.). Mutatis mutandis for convergence in the
neighbourhood of a real number, etc.
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Application 6.8 (quantiles of sample). Let
µ ∈M and (Xn)n∈N ∼ µ⊗N random variables
defined on a probability space (Ω,F ,P). Let
µ̂n the empirical measure of (X1, . . . , Xn). For
every ℓ ∈ N∗, let:

µ̊n,ℓ =
1

ℓ

ℓ−1∑
k=0

δQµ̂n(
k
ℓ )
.

Then, P-almost surely,

µ̊n,ℓ
W1−−−−−−−−−−→

n→∞ ⊥⊥ ℓ→∞
µ

and the conclusions of proposition 5.5 stands.

Notice that µ̊n,ℓ is the quantile approxima-
tion (with ℓ quantiles) of the empirical distribu-
tion µ̂n.

Proof. We note F• the cumulative distribution
functions of the considered measures.

By lemma 6.6 applied to measure µ̂n, for
each n ∈ N∗,

∥∥Fµ̊n,ℓ
− Fµ̂n

∥∥ ⩽ 1
ℓ . By Glivenko–

Cantelli, ∥Fµ̂n − Fµ∥∞ converges to 0 P-a.s. as
n→∞. Hence P-a.s., ∥Fµ̂n,ℓ

− Fµ∥∞ −→ 0, i.e.

µ̊n,ℓ
W−−−−−−−−−→

n→∞ ⊥⊥ ℓ→∞
µ.

Furthermore, by lemma 6.6, for each n ∈ N∗,
ℓ ∈ N∗, the measure µ̊n,ℓ is stochastically domi-
nated by µ̂n. As we proved that (µ̂n)n∈N is u.i.
(corollary 6.5), so is (µ̊n,ℓ)n∈N,ℓ∈N∗ . Hence, by
theorem 5.1, the P-a.s. convergence of µ̊n,ℓ is
W1. ■

6.5 Kernel density estimation of a
sample

The kernel density estimate (KDE), or Parzen-
Rosenblatt estimate, is classical way of approxi-
mating a distribution using a sample, by con-
volving the empirical distribution thereof with
a continuous random variable (the “density ker-
nel”) with a scale parameter h (the bandwidth).

In what follows, we will prove that the
Lorenz curve, Gini and Hoover indexes are con-
sistent with the KDE under the following loose
hypotheses:

• the kernel density is L1;

• the bandwidth h holds to 0 and the sam-
ple size n hords to +∞, independently.

Note that to avoid tricks with negative val-
ues, we “cut” the kernel density estimate in zero.
More precisely, we define:

Definition 6.9 (cut-in-zero KDE). Let µ
a measure over (R,B), K a density function
over R, and h > 0. Let (Ω,F ,P) a probability
space.

Let (X,Y ) a couple of random variables
over (Ω,F ,P) with distribution µ⊗KL (i.e.,
X ∼ µ, Y has density K with respect to the
Lebesgue measure and X ⊥⊥ Y ).

We note KDE(µ,K, h) the distribution of
the random variable max(X + hY, 0).

In the most common case, when knowing a
sample (X1, . . . , Xn), the original distribution
µ is approximated as KDE(µ̂n,K, h) where µ̂n
is the empirical measure associated with the
sample.

We first need two lemmas involving KDEs.

Lemma 6.10. Let µ ∈M1(R+,B), h > 0,
K a density function over R and
G : x 7−→

∫ x
−∞K(t) dt.

Then, for all t ∈ R+, the c.d.f. of
KDE(µ,K, h) can be written:

FKDE(µ,K,h)(t) =

∫
R+

G

(
t− x
h

)
dµ(x).

Proof. We have for all t ∈ R+:

FKDE(µ,K,h)(t)

=

∫∫
x∈R+
y∈R

1(max(x+hy,0)⩽t) dµ(x)K(y) dy

=

∫∫
x∈R+
y∈R

1(x+hy⩽t) dµ(x)K(y) dy

=

∫
R+

(∫
R
1(x+hy⩽t)K(y) dy

)
dµ(x).

Let Y ∼ KL on a probability space
(Ω,F ,P). Then:∫ ∞

0
1(x+hy⩽t)K(y) dy = P(x+ hY ⩽ t)

= P

(
Y ⩽

t− x
h

)
∫ ∞

0
1(x+hy⩽t)K(y) dy = G

(
t− x
h

)
. ■
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Lemma 6.11. Let K : R −→ R+ a density.
For all ε > 0, there exists MK,ε > 0 such that
for all t ∈ R+, h ∈ R and µ ∈M1(R+,B):∣∣FKDE(µ,K,h)(t)− Fµ(t)

∣∣
< 2ε+ 2µ

(
(t−MK,εh, t+MK,εh]

)
Proof. Let M ∈ R+ such that∫M
−M K(u) du > 1− ε. We fix t, h and µ for

the rest of the proof of the lemma.
We note ν :=KDE(µ,K, h). Let G the c.d.f.

associated with density K.
By lemma 6.10, write Fν(t) = A+B + C

where:

A :=

∫ (t−Mh)+

0
G

(
t− x
h

)
dµ(x);

B :=

∫ (t+Mh)+

(t−Mh)−
G

(
t− x
h

)
dµ(x);

C :=

∫ ∞

(t+Mh)−
G

(
t− x
h

)
dµ(x).

G is nondecreasing, with values in [0, 1], and
we haveG(−M) < ε andG(M) > 1− ε. Hence,
we can bound A, B and C:

• (1 − ε)Fµ(t −Mh) ⩽ A ⩽ Fµ(t −Mh),
hence:

−ε ⩽ −ε Fµ(t−Mh)

⩽ A− Fµ(t−Mh) ⩽ 0;

• 0 ⩽ B ⩽ µ
(
(t−Mh, t+Mh]

)
;

• 0 ⩽ C ⩽ ε µ
(
(t+Mh,∞]

)
⩽ ε.

Thus:

|Fν(t)− Fµ(t)|
⩽ |Fν(t)− Fµ(t−Mh)|

+ |Fµ(t−Mh)− Fµ(t)|
⩽ |A+B + C − Fµ(t−Mh)|

+ µ
(
(t−Mh, t]

)
⩽ |A− Fµ(t−Mh)|+ |B|+ |C|

+ µ
(
(t−Mh, t]

)
⩽ ε+ µ ((t−Mh, t+Mh]) + ε

+ µ
(
(t−Mh, t]

)
⩽ 2ε+ 2µ

(
(t−Mh, t+Mh]

)
.

Hence, the lemma stands with MK,ε :=M . ■

Application 6.12. Let µ ∈M and K a proba-
bility density over R which is L1.

Let (Ω,F ,P) a probability space,
(Xn)n∈N ∼ µ⊗N, and µ̂n the empirical mea-
sure of (X1, . . . , Xn).

Then, P-almost surely:

KDE(µ̂n,K, h)
W1−−−−−−−−−−→

n→∞ ⊥⊥ h→0+
µ

and the conclusions of proposition 5.5 stand.

Proof. F• denotes the cumulative distribution
functions associated to measures. P-almost
surely, Fµ̂n −−−→n→∞

Fµ uniformly (Glivenko-
Cantelli). We saw (corollary 6.5) that, P-almost
surely, (µ̂n)n∈N is uniformly integrable.

Fix ω ∈ Ω such that both previous assertion
stand.

Weak convergence. We prove that the dis-
tributions KDE(µ̂n,K, h) weakly converge to µ
as h→ 0+ and n→∞ independently.

Let t ∈ R+ such that Fµ is continuous at t.
Let ε > 0. We chose Nε > 0 and Hε,t > 0 as
follows:

• Nε is given by Glivenko-Cantelli, such
that for every n ⩾ Nε, ∥Fµ̂n − Fµ∥∞ < ε.

• Let Uε,t > 0, given by continuity of Fµ
at t, such that for all u with |u| < Uε,t,
|F (t+ i)− F (t)| < ε.

Thanks to lemma 6.11, there exists
Mε > 0 such that for all ν ∈M1(R+,B)
and for all r > 0,∣∣FKDE(ν,K,r)(t)− Fν(t)

∣∣
< 2ε+ 2ν

(
(t−Mr, t+Mr]

)
.

We set: Hε,t :=Uε,t/Mε.

Now, let n ⩾ Nε. We have:

|FKDE(µ̂n,K,h)(t)− Fµ(t)|
⩽ |FKDE(µ̂n,K,h)(t)− Fµ̂n(t)|+|Fµ̂n(t)− Fµ(t)|
⩽ |FKDE(µ̂n,K,h)(t)− Fµ̂n(t)|+ε.

Assume 0 < h < Hε,t. By definition of Hε,t:

|FKDE(µ̂n,K,h)(t)− Fµ(t)|
⩽ 3ε+ 2µ̂n((t−Mh, t+Mh])
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= 3ε+ 2Fµ̂n(t+Mh)− 2Fµ̂n(t−Mh)

⩽ 7ε+ 2Fµ(t+Mh)− 2Fµ(t−Mh)

⩽ 11ε.

which proves the weak convergence.

Uniform integrability. Let Xn ∼ µ̂n
(n ∈ N) and Y ∼ K L defined on a probability
space (Ω′,F ′,P′).

The random variable Y is integrable.
Hence, the collection {hY : 0 < h ⩽ 1}
is u.i. Furthermore, the collection

(µ̂n)n∈N∗ is u.i. Hence, by sum, the
collection {Xn + hY : n ∈ N∗, 0 < h ⩽ 1}
is u.i. Eventually, the collection
{max(Xn + hY, 0) : n ∈ N∗, 0 < h ⩽ 1} is u.i.
too. This means that the collections of mea-
sures {KDE(µ̂n,K, h) : n ∈ N∗, 0 < h ⩽ 1} is
u.i. (See appendix B.4.3 for details about
operations on u.i. collections.)

Conclusion. By theorem 5.1, the W1 conver-
gence holds. ■

7 Weaker asumptions

By Scheffé–Lebesgue, W1 convergence is equiv-
alent to weak convergence plus (either uniform
integrability or convergence of means). The
goal of this section is to analyse what happens
if only one of these hypotheses stands.

7.1 Weak convergence without W1

convergence

7.1.1 Weak convergence is not enough
for convergence of L, G and H

We first give two counter-examples to illustrate
the fact that, if µn −−−→

n→∞
µ∞ weakly but not in

W1, almost anything can happen to the Lorenz
curves, Gini and Hoover indexes.

Counter-example 7.1. Let Xn random vari-
ables such that P(Xn = 1) = 1 − 1

n2 and
P(Xn = n2) = 1

n2 . Let µn the distribution
of Xn.

Then, Borel–Cantelli’s lemma states that
thet set of n’s such that Xn ̸= 1 is finite, i.e.
(Xn)n holds to the deterministic random vari-
able 1 P-a.s. Thus, µn

W−−−→
n→∞

δ1 weakly. We
have H(δ1) = G(δ1) = 0 and Lδ1 = id.

for every n ∈ N, the expectation of Xn is
mµn = E[Xn] = 2− 1

n2 . Hence, the convergence
of µn’s is not W1.

Direct computations show that
E[|Xn −mµn |] −−−→n→∞

2. Hence, H(µn) −−−→
n→∞

1

and G(µn) −−−→
n→∞

1. Furthermore, the point-
wise limit of Lµn ’s is a discontinuous function ℓ
such that ℓ(t) = 0 for t < 1 and ℓ(1) = 1.

Counter-example 7.2. Consider the probabil-
ity space (Ω,F ,P) :=

(
[0, 1),B,L

)
.

For every n ∈ N∗ and ω ∈ [0, 1), let:

Yn(ω) =


0 if ω ⩽ 0.5;
1 if 0.5 < ω ⩽ 1− 1

n2 ;
n2 otherwise.

The random variables Yn converge P-a.s. to
a random variable Y∞ such that Y∞(ω) = 0 if
ω ⩽ 0.5, Y∞(ω) = 1 otherwise. Call νn and ν∞
the underlying distributions.

We have: mν∞ = E[Y∞] = 0.5. However,
mνn = E[Yn] =

3
2 −

1
n2 . Hence, νn

W−−−→
n→∞

ν∞

but not W1.
G (ν∞) = H (ν∞) = 0.5, Lν∞(t) = 0 if

t ⩽ 0.5 and Lν∞(t) = 2t− 1 if t ⩾ 0.5.
However, direct computations show that

G(νn) −−−→
n→∞

5
6 , H(νn) −−−→

n→∞
2
3 and that Lνn

converges pointwise to a limit f such that
f(t) = 0 if t ⩾ 0.5, f(t) = 2

3 t−
1
3 if 0.5 ⩽ t < 1

and f(1) = 1.

7.1.2 Topological properties of
Φ : (M,W ) −→ L × R∗

+

Now consider the bijection Φ : M −→ L×R∗
+

of proposition 2.4, defined by Φ(µ) = (Lµ,mµ).
Contrary to theorem 5.6, we embed M with the
topology of weak convergence W . W is at least
as coarse than the topology induced by metric
W1. Hence, Φ−1 is continuous. However, from
the previous counterexamples, follows that Φ is
not continuous.
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What can we say about the results of propo-
sition 5.7 if M, its subspaces and quotients are
embedded with W rather than with W1?

Restrictions. It is easy to see that some re-
strictions of Φ are continuous, because W1 and
W induce the same topologies. For instance:

• Let α > 0. Due to Scheffé’s lemma the
weak convergence of (µn)n∈N ∈ MN

α to
some µ∞ ∈Mα is equivalent to W1 con-
vergence.

• Let µ ∈ M1. Let (νn)n∈N ∈ [µ]N

weakly converging to some ν∞ ∈ [µ]. We
have Qνn(t) −−−→n→∞

Qν∞(t) almost every-
where. For every n ∈ N ∪ {∞}, Qνn =
mνnQµn . As {t ∈ [0, 1) : Qµ(t) ̸= 0} has
strictly positive measure, it follows that
mνn −−−→n→∞

mν∞ . Finally, due to Scheffé’s

lemma, νn
W1−−−→
n→∞

ν∞.

Since W1 convergence always implies W con-
vergence and both topologies are metrizable, it
follows that they induce the same topologies on
Mα and on [µ].

Quotient. The quotient space M/R∗
+ can be

embedded with the quotient topology induced
by W , i.e. the thinest topology making the
mapping µ 7−→ [µ] continuous whence M is
embedded with W .

This topology is coarser than the quotient
topology induced by W1. Hence, if Ψ̃ is the
quotient mapping:

Ψ̃ : (M/R∗
+, W ) −→ L

[µ] 7−→ Lµ

then Ψ̃−1 is continuous. However, Ψ̃ is not
continuous. This proves that the quotient topol-
ogy induced by W is strictly coarser than the
quotient topology induced by W1.

7.2 Convergence of means without
weak convergence

In fact, in both previous counterexamples, the
Lorenz curves converge in [0, 1][0,1], but the limit

is not a Lorenz curve itself, as it is not continu-
ous at 1. On [0, 1), they converge to a “shrinked”
Lorenz curve. The following results explore
what we may say about the limit behaviour of
Lorenz curves in the neighbourhood of 1, with
no asumption about weak convergence.

First, recall that if ℓn’s are Lorenz curves
and if they converge pointwise to any function
ℓ∞ : [0, 1] −→ R, then ℓ∞ is nondecreasing,
convex, continuous on [0, 1) with ℓ∞(0) = 0
and ℓ∞(1) = 1. Furthermore, ℓ∞ is continuous
at 1 if and only if ℓ∞ ∈ L, if and only if the
convergence is uniform.

7.2.1 Pointwise convergence of Lorenz
function implies weak conver-
gences of the measures

The following proposition shows what may hap-
pen in the convergence in distribution holds.

Proposition 7.3. Let (µn)n∈N ∈ MN. Let
mµn the mean of µn. Assume that (Lµn) con-
verges pointwise to a function ℓ : [0, 1] −→ R
and (mµn) converges to some limit α ∈ R+.
Then:

1. (µn)n∈N has a weak limit µ∞ in
M1(R+,B).

2. The mean of µ∞ satisfies:

mµ∞ = ℓ(1−) · α ⩽ α <∞.

3. If mµ∞ > 0, i.e. µ∞ ∈M, then for all
x ∈ [0, 1):

ℓ(x) = ℓ(1−)Lµ∞(x).

Proof. Let mn, Qn and Ln the mean, quantile
function and Lorenz function of µn.

Case α·ℓ(1−) = 0. First, assume that either
α = 0 or ℓ(1−) = 0. In both cases,∫ 1−

0
Qn(p) dp −−−→

n→∞
0

hence for all x ∈ [0, 1),∫ x

0
Qn(p) dp −−−→

n→∞
0.
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By Dini (lemma 5.3), the convergence is
uniform over every interval of the form [0, b],
b ∈ [0, 1). By lemma 5.4, Qn −−−→

n→∞
0 pointwise

over (0, b). Hence, Qn −−−→
n→∞

0 pointwise over
(0, 1). The convergence also stands in 0. Thus
the µn’s weakly converge to the Dirac mass δ0,
and the proposition stands.

General case. Now consider the function:

ℓ̃ : [0, 1] −→ [0, 1]

x 7−→

{
ℓ(x)
ℓ(1−)

if x < 1

1 if x = 1.

ℓ̃ is a convex, continuous function taking
values 0 in 0 and 1 in 1. By proposition 2.4,
there exists an unique measure µ∞ with mean
α · ℓ(1−) such that ℓ̃ is the Lorenz function of
µ∞. It suffices to prove that (µn)n∈N weakly
converges to µ∞. Let Q∞ the quantile function
of µ∞.

For all x ∈ [0, 1), 1
ℓ(1−)

Ln(x) −−−→
n→∞

ℓ̃(x).
By Dini, the convergence is uniform over every
compact of form [0, p]. Hence, by lemma 5.4,
for every p ∈ (0, 1) such that Q∞ = ∂−ℓ̃ is
continuous at p,

1

ℓ(1−)
∂−Ln(p) −−−→

n→∞
∂−ℓ̃(p)

1

ℓ(1−)

Qn(p)

mn
−−−→
n→∞

Q∞(p)

ℓ(1−) · α
Qn(p) −−−→

n→∞
Q∞(p).

The convergence also stands for p = 0.
Finally, (µn)n∈N weakly converges to µ∞,

which concludes the proof. ■

7.2.2 Uniform integrability and the infi-
mum of the Lorenz curves

Now we do not necessarily consider sequences
of measures, but any collection. We have the
following characterization:

Proposition 7.4. Let (µi)i∈I a collection of
measures in M, with means mi and Lorenz func-
tions Li.

1. If the pointwise lim infi∈I Li is continuous
at 1 and supi∈I mi < ∞, then (µi)i∈I is
uniformly integrable.

2. If (µi)i∈I is uniformly integrable and
infi∈I mi > 0, then the pointwise infi∈I Li
is continuous at 1.

Notice that to define the pointwise lim inf
in point 2, I need not be countable. In all
generality, lim inf Li(x) is defined as the lowest
accumulation point of the set {Li(x) : i ∈ I}.

Proof. Recall that both lim infi∈I Li and
infi∈I Li take value 1 in 1.

Continuity of pointwise liminf implies uni-
form integrability. Let :

A := sup
i∈I

mi <∞.

Let L := lim infi∈I Li. Let x < y. There
exists (in)n∈N such that limn∈N Lin(y) = L(y).
Yet for every n ∈ N, Lin(x) ⩽ Lin(y). Thus,

L(x) = lim inf
i∈I

Li(x) ⩽ lim inf
n∈N

Lin(x) ⩽ L(y).

Hence, L is nondecreasing.
Consider the probability space(

[0, 1),B,L
)
. Let x ∈ [0, 1). For all i ∈ I,

let Qi the quantile function of µi. We have:

(1− x) Qi(x) ⩽
∫ 1

x
Qi(x) dx

⩽
∫ 1

0
Qi(x) dx ⩽ A.

Hence, we have for all u ∈ [0, 1]:

u ⩽ x =⇒ Qi(u) ⩽ Qi(x) ⩽
A

1− x
. (7.5)

Now let M > A. Taking the contraposition
of (7.5) and letting x = 1− A

M , we have:

Q(u) > M =⇒ u > 1− A

M
.

Thus, for all i ∈ I:

E [Qi 1Qi>M ] =

∫ 1

0
Qi(u) 1Qi(u)>M du

⩽
∫ 1

0
Qi(u)1(u>1− A

M ) du

=

∫ 1

1− 1
M

Qi(u) du
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= mi

[
Li(1)− Li

(
1− A

M

)]
E[Qi1Qi>M ] ⩽ A

[
1− Li

(
1− A

M

)]
.

Hence, to prove that (µi)i is u.i., it suffices
to prove that the rightmost side is arbitrarly
small for M big enough, uniformly in i. Let
ε > 0.

Since L is continuous at 1, there exists
M > 0 such that L

(
1− A

M

)
> 1 − ε

A . Fur-
thermore, by definition of lim inf, there exists
J ⊆ I such that I \ J is finite and or all j ∈ J ,

Lj

(
1− A

M

)
> L

(
1− A

M

)
− ε

A
.

Then in particular, for all x > 1 − A
M , for all

j ∈ J , Lj(x) > 1− 2 εA .
Hence, for all j ∈ J , E

[
Qj1Qj>M

]
< 2ε,

and I \ J is finite. This is enough to show that
the µi’s are u.i. (see lemma B.23 in appendix).

Uniform integrability implies continu-
ity of the pointwise infimum. Let
A := supi∈I

1
mi

<∞.
Let ε > 0. Notice that for all M > 0,

x ∈ [0, 1) and i ∈ I, we have:∫ 1

x
Qi(t) dt

=

∫ 1

x
Qi(t)1Qi(t)>M dt+

∫ 1

x
Qi(t)1Qi(t)⩽M dt

⩽
∫ 1

x
Qi(t)1Qi(t)>M dt+ (1− x)M

As the Qi’s are uniformly integrable, there
exists M such that the first term is less than ε.
Let η = ε

M . If x > 1− η, then we have:∫ 1

x
Qi(t) dt ⩽ 2ε.

Furthermore, for all i ∈ I,

1− Li(x) =
1

mi

∫ 1

x
Qi(t) dt ⩽ 2Aε.

Finally, 1− infi∈I Li(x) ⩽ 2Aε. This proves
that infi∈I Li is continuous at 1. ■

Notice that for all x ∈ [0, 1],

inf
i∈I

Li(x) ⩽ lim inf
i∈I

Li(x) ⩽ 1.

Hence, if inf Li is continuous at 1, so is lim inf Li.
In other words, we have the following (less
strong, but more elegant) characterization:

Corollary 7.6. Let (µi)i∈I a collection of mea-
sures in M with means mi and Lorenz func-
tions Li. Assume that both mi’s and 1/mi’s are
bounded. The following are equivalent :

(i) (µi)i∈I is uniformly integrable;

(ii) The pointwise infimum function infi∈I Li
is continuous at 1;

(iii) The pointwise liminf function lim infi∈I Li
is continuous at 1.

7.2.3 Conclusion

The following corollary can be directly deduced
from each of the propositions 7.3 and 7.4 and
the use of Scheffé–Lebesgue and proposition 2.4.

Corollary 7.7. Assume (µn)n∈N ∈MN is uni-
formly integrable, (Lµn)n∈N converges pointwise
to some ℓ ∈ [0, 1][0,1] and (mµn)n∈N converges
to some α ∈ R∗

+.

Then ℓ ∈ L and µn
W1−−−→
n→∞

µ∞, where

µ∞ = Φ−1(ℓ, α) is the only distribution with
Lorenz curve ℓ and mean α.
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Appendices

A Details of notations and basic definitions

The notations of this article are chosen to be
consistent with [Le 22].

Let R+ the set of nonnegative real numbers,
R∗

+ the set of strictly positive numbers, and
R+ the set R+ ∪ {∞}.

Elementary notations. If S is a set, we note
1S the indicator function of S. idS is the iden-
tity function of S. In the absence of ambiguity,
we simply write id.

Let A an assertion. We note 1(A) = 1 if A
is true, 0 otherwise. If no ambiguity, we simply
write 1A.

If f : A −→ B is a mapping, α ⊆ A and
β ⊆ B, we note f⟨α⟩ the direct image of α and
f−1⟨β⟩ the inverse image of β through f .

If f is a real-valued function defined over a
real interval I and x ∈ I, we note f(x−) (resp.
f(x+)) the left-limit (resp. right-limit) of f in
x (if exists). We note ∂−f(x) (resp. ∂+f(x))
the left derivative (resp. right derivative) of f
in x (if exists).

Lebesgue integrals. If X , is a topological
space, we note note B(X ) the σ-algebra of
Borel sets of I (i.e. the σ-algebra generated
by the open sets of X ). If I is a subset of R,
we embed I with the trace topology induced
by the standard topology of R; then B(I) is
the trace σ-algebra of B(R) on I. We call
LI : B(I) −→ R+ the Lebesgue measure over
the measurable space (I,B(I)). If no ambiguity,
we simply note B and L .

For any Borel measure ν over I and
any measurable function f : I −→ R+, if
a, b ∈ I ∪ {−∞,+∞} with a ⩽ b, we denote:

∫ b−

a
f(x) dν(x) :=

∫
[a,b)

f dν =

∫
I
1[a,b) f dν

mutatis mutandis for intervals of form (a, b],
[a, b] and (a, b). If f is defined on the interval
[a, b) but not in b and if no confusion is possible,

we allow to write:∫ b

a
f(x) dν(x) :=

∫
[a,b)

f dν.

When the integral is computed with respect
to the Lebesgue measure, we drop the symbol
L , i.e. we simply write:∫ b

a
f(x) dx :=

∫
[a,b]

f dL .

Measures and probability distributions.
Let (Ω,F ) a measurable space. We note
M (Ω,F ) the set of measures over it, and
M1(Ω,F ) the subset of probability measures,
i.e. the measures µ such that µ(Ω) = 1. If
no ambiguity on the measurable space, we may
simply write M and M1.

Let (Ω′,F ′) another measurable space,
f : (Ω,F ) −→ (Ω′,F ′) a measurable function,
ν ∈M (Ω,F ). Then we note f♯(ν) the push-
forward of ν through f , i.e. the measure
over (Ω′,F ′) such that for all A ∈ F ′,
f♯(ν)(A) = ν(f−1⟨A⟩).

Let µ ∈M (Ω,F ). A point ω ∈ Ω is called
an atom of µ if µ({ω}) > 0. A measure µ is
called nonatomic or diffuse if it has no atom.

If ω ∈ Ω, we note δω the Dirac mass in
ω, i.e. the measure such that for any A ∈ F ,
δω(A) :=1A(ω).

Let (Ω,F ,P) a probability space and (X , d)
a metric space. Fix any x0 ∈ X . For p > 0,
a random variable Ω −→ X is said to be Lp if∫
Ω d(x0, X)p dP <∞ (this does not depend on

the choice of x0).
Let X : (Ω,F ) −→ (A,G ) a random

variable. If µ ∈ M1(A,G ), then we note
X ∼ µ when the distribution of X is µ, i.e.
when X♯(P) = µ. Recall that in such case,
the law of the unconscious statistician [Le 22,
proposition 8.5] states that for every measur-
able (resp. µ-integrable) function f : A −→ R+

(resp. f : A −→ R):

E[f(X)] =

∫
Ω
f(X(ω)) dP(ω) =

∫
A
f dµ.
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Cumulative distribution functions. Let
µ a probability distribution over (R+,B). We
note Fµ : R+ −→ [0, 1) the cumulative distri-
bution function (c.d.f.) of µ, i.e. the function
such that for all x ∈ R+,

Fµ(x) :=µ([0, x]).

Recall this function is nondecreasing, right-
continuous. Its left-discontinuities correspond
to the atoms of µ. It admits a limit equal to 1
in +∞.

If µ and ν are two measures over (R+,B)
such that Fµ = Fν , then they match over all the
sets of form [0, x]. Yet, the class of sets of form
[0, x] is closed under finite intersections and gen-
erates B(R+) as a σ-algebra. Furthermore, the
class of the sets A such that µ(A) = ν(A) is a
monotone class. Hence, the monotone class the-
orem [Le 22, theorem 1.18, p. 13] ensures that
µ and ν match on every set. In other words, Fµ
fully characterizes µ.

First-order stochastic domination. Let
µ, ν ∈ M1(R+,B). We say that µ stochasti-
cally dominates ν at first-order (FSD) if for all
x ∈ R+, Fν(x) ⩾ Fµ(x).

Notice that most authors add an hypothe-
sis that Fν and Fµ differ in at least one point.
For the whole article, we choose to keep this
non-strict definition.

Mean and expectation. If X and Y are
real-valued, nonnegative random variables over
the same probability space (Ω,F ,P), we note
E[X] the expectation of X and E[X | Y ] the
expectation of X conditional to Y . We allow
them to be equal to +∞.

If µ is a probability measure on (R+,B),
we note:

mµ :=

∫ ∞

0
x dµ(x) ∈ [0,∞]

the average or mean of µ. Notice that if X ∼ µ,
then E[X] = mµ.

Lemma A.1. Let µ ∈ M1(R+,B), mµ its
mean, Fµ its c.d.f. The following equality holds
in R+:

mµ =

∫ ∞

0
(1− Fµ(x)) dx.

Proof. We use Fubini’s theorem so we can swap
two integrals:∫ ∞

0
(1− Fµ(x)) dx =

∫ ∞

0
µ
(
x,∞)

)
dx

=

∫ ∞

x=0

∫ ∞

u=x+
dµ(u) dx

=

∫ ∞

u=0

∫ u−

x=0
dx dµ(u)

=

∫ ∞

0
u dµ(u)∫ ∞

0
(1− F (xµ)) dx = mµ. ■

Measures on product spaces. Let (X, , µ)
and (X ′,Σ′, µ′) two measure spaces. We note
Σ⊗ Σ′ the product σ-algebra on X ×X ′, and
µ⊗ µ′ ∈M (X ×X ′,Σ⊗ Σ′) the tensor prod-
uct of measures µ and µ′, mutatis mutandis for
products indexed by collections.

Notice that µ ⊗ µ′ is the distribution of a
couple of independent variables of distributions
µ and µ′; µ⊗N the distribution of a countable
collection of i.i.d. variables, each one having
distribution µ; etc.

Rescalings. For all α > 0, let
Sα : x ∈ R+ 7−→ α · x. If µ ∈M1(R+,B) and
X is a random variable with distribution α on
some probability space, (Sα)♯(µ) is the distri-
bution of α · X. We say that (Sα)♯(µ) is the
rescaling of µ of factor α.

The relation:

µ ≡ ν ⇐⇒ ∃α > 0, µ = (Sα)♯(ν)

(“µ and ν are equal up to a rescaling”) is an
equivalence relation on M. Since every equiv-
alence class [µ] is one-to-one with R+ (take
ν 7−→ mν), we write M/R∗

+ for the quotient
M/ ≡.
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B Some elementary results and prerequisites

We assume all results about elementary theory
of measure (e.g. chapters 1–3 and 5 in [Le 22])
and the foundations of probability theory (chap-
ter 8 in [Le 22]). The following appendix recalls
and gives a proof of the most important results
in probability theory needed for the present
article.

B.1 Quantile functions

B.1.1 Definition and elementary proper-
ties

Let µ ∈ M1(R+,B) and Fµ its c.d.f. For all
p ∈ [0, 1), the set

Sp = {q ∈ R+ : Fµ(q) ⩾ p}

is nonempty, because F has a limit equal to 1 in
+∞. Hence, it admits a greatest lower bound
inf Sx. By right-continuity of F , inf Sx ∈ Sx.
Hence, we can define the quantile function of µ
as follows:

Definition B.1. Let µ ∈ M1(R+,B), Fµ its
cumulative distribution function. The quantile
function of µ is the function Qµ : [0, 1) −→ R+

such that for all p ∈ [0, 1),

Qµ(p) := min {q ∈ R+ : Fµ(q) ⩾ p}.

We immediately have:
• Qµ(0) = 0.

• Qµ is nondecreasing.

Furthermore, we can show that:

• If Fµ is a surjection, then Qµ is strictly
increasing.

• For all p ∈ [0, 1), Fµ(Qµ(p)) ⩾ p, with
equality if and only if p ∈ Fµ⟨R+⟩.

B.1.2 Galois inequalities and immediate
applications

The definition of the quantile function immedi-
ately leads to the following equivalence, known
as the “Galois inequalities”:

for all p ∈ [0, 1), q ∈ R+,
Qµ(p) ⩽ q ⇐⇒ p ⩽ Fµ(q),

q < Qµ(p) ⇐⇒ Fµ(q) < p.

We directly deduce from the Galois inequal-
ities that for all µ ∈M1(R+,B):

• For all x ∈ R+, Qµ(Fµ(x)) ⩽ x, and the
inequality is strict if and only if there ex-
ists ε > 0 such that F (x− ε) = F (x).

• Qµ ◦Fµ ◦Qµ = Qµ and Fµ ◦Qµ ◦Fµ = Qµ.

• Qµ is constant on all interval of form
[p, Fµ(Qµ(p))] (which may be a singleton).

• If Qµ is strictly increasing, then Fµ⟨R+⟩
contains [0, 1).

An important proposition is the following.

Proposition B.2 (continuity of Qµ). Let
µ ∈M1(R+,B).

1. Qµ is left-continuous at every point of
(0, 1).

2. Furthermore, Qµ is right-continuous at
p ∈ [0, 1) if and only if F−1

µ ⟨{p}⟩ con-
tainst at most one element.

Proof. 1. Let p ∈ (0, 1). As Qµ is nonde-
creasing, it admits a left-limit Q(p−) in p.
We immediately have Q(p−) ⩽ Q(p).

Furthermore, for all π < p, Q(p−) ⩾ Q(π).
By Galois inequalities, F (Q(π−)) ⩾
π. Taking the lowest upper bound for
π < p, it follows that F (Q(p−)) ⩾ p, so
Q(π−) ⩾ Q(p).

Hence, Q(p−) = Q(p).

2. • Assume that F−1
µ ⟨{p}⟩ is empty.

Then Fµ(Qµ(p)) > p and
Qµ(Fµ(Qµ(p))) = Qµ(p). Hence, Qµ
is constant between p and Fµ(Qµ(p)),
thus in particular right-continuous
at p.

• Suppose that F−1
µ ⟨{p}⟩ is a single-

ton {x}. Then Fµ(x) = p. By
right-continuity of Fµ, for every
n ∈ N, there exists εn such that
p < Fµ(x + εn) < p + 2−n. Then,
Qµ(p

+) = limn→∞Qµ(Fµ(x + εn)).
But Qµ(Fµ(x + εn)) ⩽ x + εn.
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Since εn −−−→
n→∞

0, it implies that

Q(p+) ⩽ Q(p). Hence, Qµ is right-
continuous at p.

• Assume F−1
µ ⟨{p}⟩ contains at least

two elements x < y. Then Qµ(p) ⩽
x and for all ε > 0, Qµ(p + ε) > y,
so Qµ(p

+) ⩾ y. Hence, Qµ is not
continuous at p. ■

Inverse Galois. The Galois inequalities are
invalid if the sign is changed. However, for
q ∈ R+, p ∈ [0, 1), one has:

Qµ(p) < q ⇐⇒ ∃ε > 0, Qµ(p) ⩽ q − ε
⇐⇒ ∃ε > 0, p ⩽ Fµ(q − ε)

Qµ(p) < q ⇐⇒ p ⩽ Fµ(q
−).

Notice that since Fµ must be constant in the
neighbourhood of q, the latter inequality may
be an equality.

Hence, taking the negation, one has:

q ⩽ Qµ(p) ⇐⇒ Fµ(q
−) < p.

By the same reasoning,

Fµ(q) ⩽ p ⇐⇒ q < Qµ(p
+).

B.1.3 Characterizing measures from
quantile function

Let µ ∈M1(R+,B). SinceQn is nondecreasing,
it is a measurable function:

Qµ :
(
[0, 1),B

)
−→ (R+,B).

Lemma B.3 (Qµ characterizes µ). Let
µ ∈M1(R+,B) and Qµ its quantile function.
Then, µ = (Qµ)♯

(
L[0,1)

)
.

In other words, Qµ is a random variable on
the space

(
[0, 1),B,L

)
, and we have: Qµ ∼ µ.

This means, in particular, that a probability
measure over (R+,B) is fully characterized by
its quantile function.

Proof. Let us work in the probability space(
[0, 1),B,L

)
. By definition, the random vari-

able Qµ has distribution ν := (Qµ)♯(L[0,1)). It
suffices to prove that it also has distribution µ.

Thanks to Galois inequalities, Fν is such
that for all x ∈ R+:

Fν(x) := ν([0, x]) = (Qµ)♯L ([0, x])

= L ({ω ∈ [0, 1) : Qµ(ω) ⩽ x})
= L ({ω ∈ [0, 1) : ω ⩽ Fµ(x)]})
= L ([0, Fµ(x)])

Fν(x) = Fµ(x).

Since they have same c.d.f, µ and ν are
equal. ■

Thanks lemma to this lemma and LOTUS,
the integrals with respect to µ can be expressed
as integrals with respect L implying the func-
tion Qµ:

Proposition B.4 (LOTUS with Qµ). Let
µ ∈M1(R+,B), Qµ its quantile function. Let
f : R+ −→ R+ is a measurable function. Then
the following equality holds in R+:∫ 1

0
f(Qµ(p)) dp =

∫ ∞

0
f(x) dµ(x).

B.1.4 Several properties that can be
characterized through the quan-
tile function

The three following results consist in character-
izing some properties of measures through their
quantile functions.

Proposition B.5. Let µ ∈M1(R+,B), mµ its
mean, and Qµ its quantile function. We have,
in R+:

mµ =

∫ 1

0
Qµ(u) du.

Proof. This is a direct application of proposi-
tion B.4 where f is the identity function. ■

Proposition B.6 (rescaling). Let µ and ν el-
ements of M1(R+,B), α ∈ R∗

+. ν is a rescaling
of µ of factor α if, and only if, Qν = α ·Qµ.

Proof. Assume Qν = α · Qµ. Thanks to
lemma B.3, we know that Qν and Qµ can be
seen as random variables over the probability
space

(
[0, 1),B,L

)
such that Qν ∼ ν and

Qµ ∼ µ. Thus, ν is a rescaling of µ with a
factor α.
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Conversely, assume that there exists a
random variable X on any probability space
(Ω,F ,P) such that X ∼ µ and αX ∼ ν. Let
Fµ and Fν be the c.d.f. of those distributions.
We have for any t ∈ [0, 1):

Qν(t) = min{q : Fν(q) ⩾ p}
= min{q : P(αX ⩽ q) ⩾ p}
= αmin{q : P(αX ⩽ αq) ⩾ p}
= αmin{q : P(X ⩽ q) ⩾ p)}
= αmin{q : Fµ(q) ⩾ p}

Qν(t) = α Qµ(t). ■

Proposition B.7 (FSD). Let µ and ν ele-
ments of M1(R+,B), Fµ and Fν their c.d.f.,
and Qµ and Qν their quantile functions. The
three following statements are equivalent:

(i) For all x ∈ R+, Fµ(x) ⩽ Fν(x), i.e. µ
stochastically dominates ν at first order.

(ii) For all p ∈ [0, 1), Qµ(p) ⩾ Qν(p).

(iii) There exists a probability space (Ω,F ,P)
and two random variables X and Y over
it such that X ∼ µ, Y ∼ ν and X ⩾ Y
P-almost surely.

Proof.
• Assume (i). Let p ∈ [0, 1). Setting
x :=Qµ(p), we have,

Fµ(Qµ(p)) ⩽ Fν(Qµ(p)).

By Galois inequalities, we get

Qν(Fµ(Qµ(p))) ⩽ Qµ(p).

Furthermore, p ⩽ Fµ(Qµ(p)). Qν being
nondecreasing, we get:

Qν(p) ⩽ Qν(Fµ(Qµ(p))).

Hence, (ii) stands.

• Assume (ii). Consider the probability
space

(
[0, 1),B,L

)
. Let X = Qµ and

Y = Qν . According to lemma B.3, they
match the conditions of (iii).

• Assume (iii). Let t ∈ R+. Then
with probability 1, 1(X⩽t) ⩾ 1(Y ⩽t).
Taking the expectation, we get
P(X ⩽ t) ⩾ P(Y ⩽ t), which proves (i).

■

B.1.5 Extensions to [0, 1] and [0,∞]

We rigorously defined F and Q as mappings
between the sets [0, 1) and [0,∞).

In fact, it can be sensible to “extend by
left-continuity” the function Q to 1, by letting
Q(1) :=Q(1−). This notation is consistent with
the definition, since we have:

Q(1) = min{q ∈ R+ : F (q) ⩾ 1}

if we set F (∞) :=µ([0,∞)) = 1.
With these notations, F and Q are extended

to mappings between the sets [0, 1] and [0,∞].
However, until the end of the article, to avoid
confusions, we chose to keep the rigorous defini-
tions of F and Q, and we will restrict ourselves
to the right-open intervals [0, 1) and R+.

B.2 Weak convergence of measures

B.2.1 Generalities

For this subsection, fix (X , d) a separable, com-
plete metric space. We call Cb(X ) the set
of continuous, bounded functions X −→ R.
If no ambiguity, we simply note M1 for the
set M1(X ,B(X )) of probability measures on
(X ,B(X )).

Definition B.8. 1. The weak topology on
M1 is the topology W generated by the
elementary balls of form{

ν ∈M1 :

∣∣∣∣∫
X
f dν −

∫
X
f dµ

∣∣∣∣ < ε

}
for given f ∈ Cb(X ), µ ∈M1 and ε > 0.
In other words, the open sets are arbitrary
unions of finite intersections of elementary
balls.

2. We call weak convergence the convergence
with respect to the topology W . We
write µn

W−−−→
n→∞

µ∞ if (µn)n∈N weakly con-
verges to µ∞. It is immediate to check
that this is equivalent to having∫

X
f dµn −−−→

n→∞

∫
X
f dµ∞

for all f ∈ Cb(X ).
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3. Let X1, . . . , Xn, . . . , X∞ random vari-
ables taking values in X , each being de-
fined on a probability space (Ωn,Fn,Pn).
Let µ1, . . . , µn, . . . , µ∞ their distributions.
We say that (Xn)n∈N converges in distri-
bution to X∞ if µn

W−−−→
n→∞

µ∞. By LO-
TUS, this is equivalent to having, for all
f ∈ Cb(X ),∫
Ωn

f(Xn) dPn −−−→
n→∞

∫
Ω∞

f(X∞) dP∞.

Most authors only define the weak conver-
gence for sequences. However, a priori, there
is no reason for (M1,W ) to be sequential, i.e.
there is no guarantee that convergent sequences
fully characterize the topology.

We immediately have the following fact:

Proposition B.9. Let (Ω,F ,P) a probabil-
ity space and X1, . . . , Xn, . . . , X∞ random vari-
ables such that Xn −−−→

n→∞
X∞, P-almost surely.

Then Xn −−−→
n→∞

X∞ in distribution.

Proof. Let f ∈ Cb(X ). By continuity of f ,
f(Xn) −−−→

n→∞
f(X∞) P-a.s. Furthermore,

(f(Xn))n∈N is uniformly bounded by max f .
Hence, by dominated convergence theorem,∫

Ω
f(Xn) dP −−−→

n→∞

∫
Ω
f(X∞) dP. ■

Portmanteau’s theorem. The following
strong version of Portmanteau’s theorem gives
other characterizations of the weak topology on
M1.

Theorem B.10 (Portmanteau). The follow-
ing collections of subsets of M1(,B) each gen-
erate W as a subbase:

(i)
{
ν ∈M1 :

∣∣∫
X f dν −

∫
X f dµ

∣∣ < ε
}

for
f ∈ Cb(X ) uniformly continuous, µ ∈M1

and ε > 0.

(ii) {ν ∈M1 : ν(F ) < µ(F )+ε} for µ ∈M1,
F closed subset of X and ε > 0.

(iii) {ν ∈M1 : ν(G) > ν(G)−ε} for µ ∈M1,
G open subset of X and ε > 0.

(iv) {ν ∈ M1 : |ν(A) − µ(A)| < ε} for
µ ∈M1, A ∈ B(X ) such that µ(∂B) = 0
(where ∂B is the topological boundary of
B) and ε > 0.

Each characterization of the topology imme-
diately gives a characterization of the weakly
convergent sequences of M1. For instance, from
point (iv), follows that µn

W−−−→
n→∞

µ∞ if and
only if for all A ∈ B(X ) such that µ∞(∂A) = 0,
µn(A) −−−→

n→∞
µ∞(A).

For a proof, see [Bil68, appendix III, the-
orem 3]. The book does not explicitely state
point (i); however, it is a free consequence of
Billingsley’s proof.

From (i), follows this implication:
Proposition B.11. Let (Ω,F ,P) a probabil-
ity space and X1, . . . , Xn, . . . , X∞ random vari-
ables with values in X . Let µ1, . . . , µ∞ their
distributions.

If E[d(Xn, X∞)] −−−→
n→∞

0, then

µn
W−−−→

n→∞
µ∞.

Proof. Let f : X −→ R bounded, uniformly
continuous. Let M := sup f . Chose ε > 0.

By uniform continuity of f , there exists
δ > 0 such that for all x, y ∈ X ,

d(x, y) < δ =⇒ |f(x)− f(y)| ⩽ ε.

For each n ∈ N, let An := {d(Xn, X∞) < δ}.
We have: ∣∣E[f(Xn)]−E[f(X∞)]

∣∣
⩽ E[|f(Xn)− f(X∞)|]

=

∫
An

|f(Xn)− f(X∞)| dP

+

∫
Ω\An

|f(Xn)− f(X∞)|

⩽ εP(An) + 2MP(Ω \An).

Yet P(An) ⩽ 1, and by Markov’s inequality,

P(Ω \An) ⩽
E[d(Xn, X∞)]

δ
.

Hence, if N is chosen such that for every
n ⩾ N, E[d(Xn, X∞)] < δε

2M , we have:∣∣E[f(Xn)]−E[f(X∞)]
∣∣ ⩽ 2ε.
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Thus, E[f(Xn)] −−−→
n→∞

E[f(X∞)]. By Port-
manteau’s theorem, this is enough to state the
convergence in distribution. ■

Metric inducing W . A nice property of W
is that it is metrizable. For all A ∈ B(X ) and
ε > 0, let:

Aε := {x ∈ X : ∃a ∈ A, d(x, a) < ε}

which is immediately an open set.

Definition B.12 (Prokhorov metric). For
all µ, ν ∈M1, we call dP (µ, ν) the infi-
mum of positive ε such that the inequalities
µ(A) < ν(Aε) + ε and ν(A) < µ(Aε) + ε stand
for all A ∈ B(X ).

We note dP : M1(X )2 −→ R+ the Prohko-
rov metric.

It is known that dP is a metric, and that
µn

W−−−→
n→∞

µ∞ if and only if dP (µn, µ∞) (see for
instance [Bil99, p. 72, remark (i)]). However,
this is not enough to prove that dP induces the
topology W . This more difficult result is proven
in [Bil68, appendix III, theorem 5]∗.

Now, we know that W is metrizable, hence
sequential.

B.2.2 The real line

Now we restrict on real numbers. For this arti-
cle, we only need to consider X = R+, but all
the following results can be extended to X = R.

We give a few characterization of weak con-
vergence that will freely be used in the article.

Theorem B.13. Let µ1, . . . , µn, . . . , µ∞ distri-
butions on (R+,B), Fµ• their cdf and Qµ• their
quantile functions. The following are equivalent:

(i) µn
W−−−→

n→∞
µ∞;

(ii) Fµn(x) −−−→n→∞
Fµ∞(x) for every x ∈ R+

where Fµ∞ is continuous;

(iii) Fµn(x) −−−→n→∞
Fµ∞(x) for L -almost all

x ∈ R+;

(iv) Qµn(p) −−−→n→∞
Qµ∞(p) for every p ∈ [0, 1)

where Qµ∞ is continuous;

(v) Qµn(p) −−−→n→∞
Qµ∞(x) for L -almost all

p ∈ [0, 1);

(vi) There exist a probability space
(Ω,F ,P) and nonnegative random vari-
ables X1, . . . , Xn, . . . , X∞ such that
Xn −−−→

n→∞
X∞ P-almost surely, Xn ∼ µn

for every n ∈ N∗ and X∞ ∼ µ∞.

Proof. • (i) =⇒ (ii) is a direct
consequence of Portmanteau’s theorem
(point (iv) of theorem B.10), tak-
ing µ = µ∞ and A = [0, x], thus
µ∞(∂A) = µ∞({x}) = 0 by continuity of
Fµ∞ . (Notice that 0 is not in ∂A, since
[0, x) is open in R+.)

• Assume (ii). Since Fµ∞ is nondecreasing,
the set of its discontinuity points is at
most countable. Hence, it has Lebegue
measure 0, i.e. (iii) stands.

• Assume (iii). Consider the prob-
ability space (R+,B,P) where
P(dt) = e−tL (dt) (P is the measure
with density t 7−→ e−t with respect to
L ). The Fµ• ’s can be seen as random
variables on (R+,B,P).

Let C ⊆ R+ the set of ω ∈ R+ such
that Fµn(ω) −−−→n→∞

Fµ∞(ω). We know
that L (Cc) = 0, hence P(Cc) = 0, thus
P(C) = 1.

Consider x ∈ R+ such that Qµ∞ is contin-
uous at x. Let D the set of ω ∈ R+ such
that Fµ∞(ω) = x. By proposition B.2,
D is either a singleton or empty. Hence,
L (Lx) = 0, thus P(Lx) = 0.

Now, for all ω ∈ C \ D, we have
Fµn(ω) −−−→n→∞

Fµ∞(ω) ̸= x. Since the
function 1[0,x) is continuous everywhere
but in x,

1[0,x)(Fµn(ω)) −−−→n→∞
1[0,x)(Fµ∞(ω)).

∗The proof has been removed in the Second Edition of the book and can only be found in the 1968 edition.
[Bil68] generalizes the result by releasing the separability hypothesis.
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Since P(C \ D) = 1 and 1[0,x)(Fµn) is
bounded by 1, by dominated convergence
theorem, we have:

E
[
1[0,x)(Fµn)

]
−−−→
n→∞

E
[
1[0,x)(Fµ∞)

]
P(Fµn < x) −−−→

n→∞
P(Fµ∞ < x).

However, for n ∈ N ∪ {∞}, ω ∈ R+,
Fµn(ω) < x ⇐⇒ ω < Qµn(x). Hence,

P
(
[0, Qµn(x))

)
−−−→
n→∞

P
(
[0, Qµ∞(x))

)
The function t 7−→ P([0, t)) = 1− e−t has
inverse p 7−→ − ln(1− p), which is contin-
uous over R+. Hence,

Qµn(x) −−−→n→∞
Qµ∞(x),

i.e. (iv) is true.

• (iv) =⇒ (v) is proven exactly the same
way as (ii) =⇒ (iii).

• (v) =⇒ (vi) is immediate since for every
n ∈ N∗ ∪ {∞}, Qµn is a random variable
on
(
[0, 1),B,L

)
with distribution µn (see

lemma B.3).

• (vi) =⇒ (i) is a direct consequence of
proposition B.9. ■

B.3 W1 metric and W1 convergence

B.3.1 The W1 metric

For this subsection, we work on the set M′ of
probability measures on (R+,B) with finite ex-
pectations, i.e. M′ = M ∪ {δ0}. In the article,
the following results will be restricted to M,
since we exclude the distribution δ0.

Definition B.14 (Wasserstein-1 metric).
Let µ, ν ∈M′. We let W1(µ, ν) := ∥Qµ −Qν∥1,
i.e.

W1(µ, ν) =

∫ 1

0
|Qµ(t)−Qν(t)| dt.

It is immediate that W1 is a pseudomet-
ric. Now assume W1(µ, ν) = 0. This implies
that Qµ−Qν = 0 almost everywhere. However,
Qµ−Qν is left-continuous. Hence Qµ−Qν = 0

everywhere. By proposition 2.1, µ = ν. Hence,
W1 is a metric.

The name of Wassertein-p metric more usu-
aly refers to the optimal cost of transportation
for Lp cost in the Kantorovitch optimal trans-
portation problem framework: for (X , d) a Pol-
ish space and µ, ν measures on (X ,B), Wp(µ, ν)
is equal to:

min
π∈Π(µ,ν)

(∫
(x,y)∈X 2

d(x, y)p dπ(x, y)

) 1
p

where Π(µ, ν) is the set of distributions on X 2

with marginals µ and ν. Happily those defini-
tions are consistant. For a proof that for the

minimum has value
(∫ 1

0 |Qµ(p)−Qν(p)|
p dp

) 1
p ,

see for instance [Vil03, theorem 2.18 and re-
marks 2.19].

Another way to express the W1 metric is
the following:

Proposition B.15. Let µ, ν ∈M′, Fµ and Fν
their cdf. Then W1(µ, ν) = ∥Fµ − Fν∥1.

Proof. We have:∫ ∞

0
|Fµ(x)− Fν(x)| dx

=

∫ ∞

x=0

(∫ Fν(x)

y=Fµ(x)
1 dy +

∫ Fµ(x)

y=Fν(x)
1 dy

)
dx

=

∫ ∞

x=0

(∫ Fν(x)

y=Fµ(x)+
1 dy +

∫ Fµ(x)

y=Fν(x)+
1 dy

)
dx

=

∫ ∞

x=0

∫ 1−

y=0

(
1Fµ(x)<y⩽Fν(x)

+ 1Fν(x)<y⩽Fµ(x)

)
dy dx

=

∫ ∞

x=0

∫ 1−

y=0

(
1Qν(y)⩽x<Qµ(x)

+ 1Qµ(y)⩽x<Qν(x)

)
dy dx

=

∫ 1−

y=0

∫ ∞

x=0

(
1Qν(y)⩽x<Qµ(x)

+ 1Qµ(y)⩽x<Qν(x)

)
dx dy

=

∫ 1−

0
|Qµ(y)−Qν(y)| dy.

using, in order, the nonatomicity of Lebesgue
measure, the Galois inequalities, Fubini’s theo-
rem, and making the same computations back-
wards. ■
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B.3.2 The W1 convergence and its char-
acterization

By definition, the W1 convergence of a sequence
(µn)n∈N to a limit µ∞ is equivalent to the L1

convergence of the random variables (Qµn)n∈N
to Qµ∞ in the probability space

(
[0, 1),B,L ]

)
.

We give some other characterizations.

Lemma B.16 (Scheffé). Let (X ,F , µ) a prob-
ability space and f1, . . . , fn, . . . , f∞ measurable
functions X −→ R+.

If fn −−−→
n→∞

f∞ µ-almost everywhere and∫
X fn dµ −−−→

n→∞

∫
X f∞ dµ <∞, then:

∫
X
|fn − f∞| dµ −−−→

n→∞
0.

Proof. For g : X −→ R, call g+ = max(g, 0)
and g− = max(−g, 0). We have g = g+ − g−
and |g| = g+ + g−. Hence, |g| = 2g+ − g. It
follows that:

∥g∥1 =
∫
X
|g| dµ = 2

∫
X
g+ dµ−

∫
X
g dµ.

(B.17)

Since fn −−−→
n→∞

f∞ µ-a.e. and x 7−→ x+ is
continuous, it follows that (f∞ − fn)+ −−−→

n→∞
0,

µ-a.e. Furthermore,

0 ⩽ (f∞ − fn)+ ⩽ f∞.

Since f∞ is integrable, by dominated con-
vergence theorem,∫

X
(f∞ − fn)+ dµ −−−→

n→∞
0.

Furthermore, by hypothesis:∫
X
(f∞ − fn) dµ −−−→

n→∞
0.

Injecting this in (B.17) with g = f∞ − fn,
we get ∥f∞ − fn∥1 −−−→

n→∞
0. ■

Scheffé’s lemma gives us an important char-
acterization of W1-convergence:
Proposition B.18. Let (µn)n∈N ∈ MN,
µ∞ ∈M and mµ1 , . . . ,mµ∞ their means. The

following assertions are equivalent:
(i) µn

W1−−−→
n→∞

µ∞.

(ii) µn
W−−−→

n→∞
µ∞ and mµn −−−→n→∞

mµ∞.

(iii) There exists a probability space
(Ω,F ,P) and nonegative random vari-
ables X1, . . . , Xn, . . . , X∞ such that
Xn ∼ µn for every n ∈ N ∪ {∞} and
E[|Xn −X∞|] −−−→

n→∞
0.

Proof. • (i) =⇒ (iii) : take Ω = [0, 1),
F = B and P = L and for all x ∈
N ∪ {∞}, let Xn = Qµn .

• Assume (iii). By triangle inequality,
mµn = E[Xn] −−−→

n→∞
E[X∞] = mµ∞ .

Furthermore, since L1 convergence im-
plies weak convergence (proposition B.11),
µn

W−−−→
n→∞

µ∞. Hence, (ii) stands.

• (ii) =⇒ (i) lies in applying Scheffé’s
lemma to the Qµn ’s. ■

B.4 Uniform integrability

B.4.1 Definition

Recall the definition of uniform integrability
of random variables. We restrict ourselves to
nonnegative-valued random variables. In or-
der to simplify the following redaction, we also
consider “uniformly integrable measures”, i.e.
measures which are the distributions of a uni-
formly integrable collection of random variables
— this concept is nonstandard.

Definition B.19 (u.i. for random vars). Let
(Ωi,Fi,Pi)i∈I a collection of probability spaces
and for all i ∈ I, Ui : Ωi −→ R a random
variable.

The collection (Ui)i∈I is said uniformly in-
tegrable (u.i.) if

sup
i∈I

∫
Ωi

|Ui| 1|Ui|>α dPi −−−−−→
α→+∞

0.

Definition B.20 (u.i. for measures). Let I
a set and (µi)i∈I ∈M1(R+,B)I . We say that
(µi)i∈I is uniformly integrable if

sup
i∈I

∫
R+

x 1x>α dµi(x) −−−−−→
α→+∞

0.
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These definitions are coherent, thanks to the
following proposition:

Proposition B.21. Let I a set and
(µi)i∈I ∈M1(R+,B)I . The following are equiv-
alent:

(i) (µi)i∈I is uniformly integrable.

(ii) There exists probability spaces
(Ωi,Fi,Pi)i∈I and random variables
Ui : Ωi −→ R+ such that for all i ∈ I,
Ui ∼ µi and (Ui)i∈I is uniformly inte-
grable.

(iii) For all probability spaces (Ωi,Fi,Pi)i∈I
and random variables Ui : Ωi −→ R+

such that Ui ∼ µi, (Ui)i∈I is uniformly
integrable.

Proof. Immediate consequence of LOTUS and
the fact that Qµ ∼ µ. ■

In particular, a collection (µi)i∈I of probabil-
ity measures is u.i. if, and only if, the collection
of random variables (Qµi)i∈I defined on the
probability space

(
[0, 1),B,L

)
is u.i.

We will freely use the following technical
lemma.

Lemma B.22. Let (Ui)i∈I real, integrable ran-
dom variables on probability spaces (Ωi,Fi,Pi).
(Ui)i∈I is uniformly integrable if and only if for
all ε > 0, there exists αε > 0 and Jε > 0 such
that I \ Jε is finite and

sup
i∈Jε

Ei
[
|Ui| 1|Ui|>αε

]
< ε. (B.23)

Proof. Assume (Ui)i∈I is u.i. Let ε > 0. By
definition, there exists α > 0 such that:

sup
i∈I

Ei
[
|Ui| 1|Ui|>αε

]
< α

and (B.23) holds for βε = α and Jε := I.
Conversely, assume that for all ε > 0, there

exists Jε and βε such that I ⊆ Jε is finite and
(B.23) holds.

Let j ∈ I \ Jε. Since |Uj | is integrable, by
dominated convergence theorem,

E
[
|Uj |1|Uj |>α

]
−−−−−→
α→+∞

0

hence there exists αj such that

E
[
|Uj |1|Uj |>αj

]
< ε.

Now if we take A = max
(
βε,maxj∈I\Jε αj

)
,

for all α > A and i ∈ I:

• either i ∈ Jε and

E
[
|Ui| 1|Ui|>α

]
< sup
i∈Jε

Ei
[
|Ui| 1|Ui|>αε

]
< ε;

• or i ∈ I \ Jε, and

E
[
|Ui| 1|Ui|>α

]
< E

[
|Uj |1|Uj |>αj

]
< ε.

Hence, (Ui)i∈I is u.i. ■

One can directly check that if a collection
(Ui)i∈I of real random variables is u.i., then
for all i ∈ I, Ei[|Ui|] < ∞. Hence, only
need to deal with integrable random variables
and measures in M. In fact, uniform inte-
grability even implies that Ei[|Ui|] are uni-
formly bounded. Indeed, take α > 0 such that
supi∈I E

[
|Ui|1|Ui|>α

]
< 1; we have for all i ∈ I,

E[|Ui|] < αPi({|Ui| ⩽ α}) + 1 ⩽ α + 1. The
converse is false.

B.4.2 Some sufficient conditions for hav-
ing uniform integrability

Uniform Lp bound. On the other hand,
for p > 1, if there exists M > 0 such that
Ei[|Xi|p] < M for all i ∈ I, then (Xi)i∈I is u.i,
the converse being false. Indeed,

1(|Xi|>α)|Xi| = 1(
|Xi|p−1>αp−1

)|Xi| ⩽
|Xi|p

αp−1

hence

Ei
[
1(|Xi|>α)|Xi|

]
⩽

M

αp−1
−−−→
n→∞

0.

L1 singleton. If X is an integrable random
variable on any probability space, then the col-
lection {X} is uniformly integrable. Indeed,
|X|1|X|>n −−−−−→

n→+∞
0 pointwise and those func-

tions are dominated by |X|, which is integrable.
Hence, the dominated convergence theorem
states that

E [1X>nX] −−−→
α→∞

E[0] = 0.
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B.4.3 Operations on uniformly inte-
grable collections

Multiplication by bounded scalars. As-
sume (Xi)i∈I is u.i. and (aj)j∈I is bounded.
Immediately, (ajXi)i∈I,j∈J is u.i.

Sum. Let Xi, i ∈ I and Yj , j ∈ J real random
variables defined on the same probability space
(Ω,F ,P). Assume (Xi)i∈I is u.i. and (Yj)j∈J
is u.i. Then (Xi + Yj)i∈I,j∈J is u.i.

Indeed, for all (a, b) ∈ R and c ∈ R+, the
following statement holds:

|a+ b|1(|a+b|>2c) ⩽ 2|a|1(|a|>c) + 2|b|1(|b|>c)

(this is trivial if |a+ b| ⩽ 2c; otherwise one can
directly check it in cases |a| ⩾ |b| and |a| ⩽ |b|).

Thus:

E
[
|Xi + Yj |1|Xi+Yj |>2α

]
⩽ 2E

[
|Xi|1|Xi|>α

]
+ 2E

[
|Yj |1|Yj |>α

]
⩽ 4ε

for α large enough.

Proposition B.24 (u.i. and FSD). Let
(µi)i∈I and (νj)j∈J collections of measures in
M. Assume that:

(i) The collection (µi)i∈I is uniformly inte-
grable;

(ii) For all j ∈ J , there exists a ι(j) ∈ I such
that νj is stochastically dominated at first
order by µι(j).

Then (νj)j∈J is uniformly integrable.

Proof. Consider the probability space(
[0, 1),B,L

)
. For every i ∈ I, j ∈ J , let

the random variables Ai = Qµi and Bj = Qνj .
The proposition B.7 and the hypothesis of

stochastic dominance ensure that for all j ∈ J ,
Bj ⩽ Aι(j).

Fix α ∈ R+ and j ∈ J . L -almost surely,

1(Bj>α) ⩽ 1(Aι(j)>α)

Bj1(Bj>α) ⩽ Aι(j)1(Aι(j)>α).

Hence,

E
[
Bj1(Bj>α)

]
⩽ E

[
Aι(j)1(Aι(j)>α)

]
.

Taking the lowest upper bound over j ∈ J ,
we get:

sup
j∈J

E
[
Bj1(Bj>α)

]
⩽ sup

i∈I
E
[
Ai1(Ai>α)

]
The hypothesis of uniform integrability of

collection (µi)i∈I ensures that the right-hand
side converges to 0 as α→∞. ■

B.4.4 Uniform integrability and W1 con-
vergence

The main result that justifies to use uniform in-
tegrability in this article is the following, which
is a measure-based adaptation of [Bil95, theo-
rem 16.14].

Proposition B.25. Let (µn)n∈N ∈ MN and
µ∞ in M. Assume that µn

W−−−→
n→∞

µ∞. The
following assertions are equivalent:

(i) mµn −−−→n→∞
mµ∞ .

(ii) (µn)n∈N is uniformly integrable.

Proof. Consider the probability space(
[0, 1),B,L

)
. For every n ∈ N, let Qn :=Qµn

and Q :=Qµ∞ .
For α > 0, let fα : x 7−→ x1x⩽α and

gα : g 7−→ x1x>α.
For every n ∈ N, by lemma B.5,

mµn = E[fα(Qn)] +E[gα(Qn)] ;

mµ∞ = E[fα(Q)] +E[gα(Q)]. (B.26)

Furthermore, by proposition B.3,
Qn −−−→

n→∞
Q L -a.s. Hence, if µ({α}) = 0,

then:

fα(Qn) −−−→
n→∞

fα(Q) ; gα(Qn) −−−→
n→∞

gα(Q).

Since E[fα(Qn)] ⩽ α for every n ∈ N, by
dominated convergence theorem,

E[fα(Qn)] −−−→
n→∞

E[fα(Q)]. (B.27)

Now we can prove both implications.
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(i) =⇒ (ii). For every n ∈ N, by (B.26):

E[gα(Qn)] ⩽ E[gα(Q)] + |mµ∞ −mµn |
+
∣∣E[fα(Qn)]−E[fα(Q)]

∣∣.
Fix ε > 0. Since {Q} is u.i., there exists

α1 > 0 such that for all α > α1, E[gα(Q)] < 0.
Since µ has at most countably many atoms, fix
α2 > α1 such that µ({α2}) = 0. By (B.27)
applied to α :=α2 and (i), there exists N ∈ N
such that for every n ⩾ N ,

E[gα(Qn)] < 3ε.

Hence, by lemma B.22, (ii) holds.

(ii) =⇒ (i). For every n ∈ N, by (B.26):

|mµ∞ −mµn | ⩽
∣∣E[fα(Qn)]−E[fα(Q)]

∣∣
+E[gα(Qn)] +E[gα(Q)].

By the same reasoning, for all ε > 0,
there exists some α1 such that for all α > α1,
E[gα(Q)] < ε. Assume (ii); there exists α2

such that for every n ∈ N and α > α2,
E[gα(Qn)] < ε.

Hence, take α3 > max(α1, α2) such that
µ({α2}) = 0. There exists N ∈ N such that for
every n ⩾ N ,

∣∣E [fα3(Qn)] − E [fα3(Q)]
∣∣ < ε.

Finally,
|mµn −mµ∞ | < 3ε.

Thus, (i) holds. ■

C Motivation of the alternate definitions of the Gini index (or:
Why Is The Section 3.2 Useful?)

The Gini inequality index is one of the best-
known mathematical objects used to measure
economic inequalities. This index was first ap-
proached by Corrado Gini in his 1912 book
Variabilità e Mutabilità [Gin12]†. In this paper,
Gini considers n nonnegative, not all zero quan-
tities (ai)1⩽i⩽n (for instance, the incomes of n
individuals) and gives several formula to express
the mean difference between the n quantities, i.e.
the value

1

n2

∑
1⩽i,j⩽n

|ai − aj |.

Normalizing this mean difference of a non-
negative series by its arithmetic mean and by
a factor of two gives a number between 0 (in-
cluded) and 1 (excluded). This value is precisely
the Gini index as defined, without ambiguity,
by economists and sociologists:

G((ai)1⩽i⩽n) =
1

n

∑
1⩽i,j⩽n |ai − aj |
2
∑

1⩽i⩽n ai
.

The value 0 is reached if and only if the series
(ai)i is constant, and 1 is the limit of more and
more concentrated distributions.

If A is a random variable which follows the
empirical distribution associated to‡ the sample
(ai)1⩽i⩽n, then:

G((ai)i) =
E[|A−A′|]

2E[A]
,

where E denotes the expectation, and A′ is an
independent copy of A.

Modelization leads us to consider the case
of variables with densities. For instance, the in-
come of households could be, very roughly, mod-
elized as a random variable following a gamma
or a lognormal distribution§. Thus, one can
extend the definition of G, and set:

G(A) =
E[|A−A′|]

2E[A]
(C.1)

for any nonnegative random variable for which
this quantity is defined — the latter is equiva-
lent to having 0 < E[A] < ∞. Notice that G
does only depend of the distribution of A; thus
we can write G(µ) for a probability measure µ.

*
†See [CV11] for a partial translation and comment in English.
‡I.e. if the probability of the event (A = x) is the number of occurrences of x in series (ai)1⩽i⩽n, divided by n.
§See [Cho08] for a collection of articles about probability distributions for modelling household incomes.
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It is well known that the Gini index has a
strong relation with the Lorenz curve. This one
is, roughly, defined as follows: “L(u) is the share
of the total income earned by the 100u % of the
total population” — this definition is challenged
in section 1.2.

Gini himself noticed in [Gin14]¶ that the
inequality index, for a sample (ai)i, is equal (up
to a multiplicative factor of two) to the area
between the Lorenz curve associated to this sam-
ple and the one corresponding to a situation of
strict equality, i.e. the diagonal line y = x. In
other words, one has:

G = 1− 1

2

∫ 1

0
L(u) du. (C.2)

However, Gini did only define this index for
discrete distributions. Hence, he proved that
(C.1) = (C.2) only whene A is discrete. Some
proofs were early proposed when A has a den-
sity (understand: with respect to the Lebesgue
measure), for instance [KS45, section 2.33].

From this and on, it seems that most authors
would use freely the result that (C.1) = (C.2).
For instance, [Atk70] uses (C.2) with continuous
variables as a definition; [New70] uses (C.2) as
a definition for every kinds of variables; [She72]
and [DSS73] use definition (C.1) with discrete
variables; [Sen73] and [FRK78] use both defini-
tions in the discrete case. [Gas72] states that
the equality holds as soon as F is increasing on
its support and cites [KS45] for a proof, but this
latter proof does only stand if F has a density.
Furthermore, while most of these authors only
deal with discrete variables, the definition of
the Lorenz curve they use does not correctly
deal with the case of atoms, as shown in lemma
1.3.

Hence, two issues appear when using the
equality (C.1) = (C.2):

1. Limiting to either distributions with den-
sity with respect to Lebesgue measure or
empirical distributions of samples seems
artificially restrictive. One may want to

consider more complex distributions, such
as mixture models of a sample and a con-
tinuous random variable. For instance, it
is sensible to model the distribution of the
gross income as a mixture of a Dirac in
0 (people with no income) and a random
variable with a density such as a gamma
or a lognormal.

2. Having two completely different proofs for
the same equality depending if we use dis-
crete or continuous distributions is some-
how unsatisfying.

The most general proof of (C.1) = (C.2) we
found is [Dor79]. In this paper, Dorfman proves,
in substance, that both quantities E[|X −X ′|]
and

∫ 1
0 L(u) du are related to

∫∞
0 (1−F (t))2 dt,

where F is the c.d.f. of the considered variable;
he then proposes to consider

G = 1− 1

E[X]

∫ ∞

0
(1− F (t))2 dt (C.3)

as a formula for the Gini coefficient, either for
discrete and for continuous variables. Dorfman
first defines G with equation (C.2) and derives
formula (C.3) — which is a rather complex
proof. Then, at the end of the article, a bit
out of the blue, he reminds that G can also be
defined through (C.1) and derives (C.3) with a
really straightforward proof. Such a redacting is
somehow surprising, and tends to suggest that
the author assumes the equality (C.1) = (C.2)
was already proven in every case. Furthermore,
Dorfman needs to keep a few restrictions‖ on
F .

*

Hence, we propose two proofs of
(C.1) = (C.2) that deal with the widest pos-
sible spectrum of nonnegative distributions, i.e.
every distributions on R+ with finite, nonzero
mean.

To achieve the first proof, we begin with
deriving (C.1) = (C.3) using the straightfor-
ward argument by Dorfman. Then, we propose

¶See [Gin05] for a translation in English. The relation between the Gini index (noted ∆) and the area between
the Lorenz curve and the diagonal (noted R) is derived in [Gin05, section 9, pp. 27–29].

‖The set of its discontinuities needs have no point of accumulation, and F needs be differentiable between
its discontinuities. It is true that most nice probability distributions used in economics match these constraints;
however there is no a priori reason to be restrictive.
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a different, more straightforward derivation of
(C.3) = (C.2).

We also propose a second proof of the equal-
ity, more technical, based on an idea of David

Leturcq.
In order to carry this out, we need to use a

convenient definition of Lorentz curve, proposed
by [Gas71].

D Alternate proofs of some results

D.1 Two alternate proofs of the re-
lation between Gini index and
Lorenz curve

D.1.1 Direct computation dealing with
atoms

Proof. We adapt the proof of theorem 3.3 pre-
sented in section 3.2.2 in the case where µ may
have atoms. It becomes necessary to make some
“splits” to isolate the effects of the atoms, that
will, at the end, sum up to 0.

First split. Let I :=m
∫ 1
0 L(p) dp. As L is

diffuse, we have:

I = m

∫ 1−

0
L(p) dp.

Let Λ the pseudo-Lorenz function of µ. Us-
ing lemma 1.3, we write I = J −K, with:

J :=

∫ 1−

0
m · Λ(p) dp ;

K :=

∫ 1−

0
Q(p) · [F (Q(p))− p] dp.

We first deal with the integral K. As F
is nondecreasing, the set of its discontinuities
is at most countable. Let {xi : i ∈ A } an enu-
meration of this set. We note for all i ∈ A ,
ℓi :=F (x−i ) and ri :=F (xi). Then:

[0, 1) = F ⟨R+⟩ ⊔
∐
i∈A

(ℓi, ri)

where ⊔ and
∐

denote disjoint unions.
Recall that if p ∈ F ⟨R+⟩, then p = F (Q(p)).

Hence, using the σ-additivity of the integral and
the elementary properties of F and Q, one can
write:

K =
∑
i∈A

∫ ri

ℓi

Q(p) · [F (Q(p))− p] dp

=
∑
i∈A

∫ ri

ℓi

xi · (ri − p) dp

=
∑
i∈A

xi ·
(ri − ℓi)2

2

K =
∑
i∈A

xi · µ({xi})2

2
.

Second split. Now, let us consider the inte-
gral

J =

∫ 1−

p=0

∫ Q(p)

u=0
u dµ(u) dp.

We first isolate the upper bound of the inner
integral, and we write J = J1 + J2, where:

J1 :=

∫ 1−

0

∫ Q(p)−

u=0
u dµ(u) dp ;

J2 :=

∫ 1−

0
Q(p) · µ({Q(p)}) dp.

The value of µ({Q(p)}) is nonzero if and
only if p belongs to one of the semi-open inter-
vals (ℓi, ri]. If so, Q(p) = xi. Thus, we have:

J2 =
∑
i∈A

∫ ri

ℓi

xi · µ({xi}) dp

=
∑
i∈A

xi µ({xi}) (ri − ℓi)

=
∑
i∈A

xi µ({xi})2

J2 =2K.

Let us deal with J1. To do so, we make
the same computations than in the “simplified”
proof (equations (3.5) to (3.7)). We need to be
careful about the endpoints of the integrals.

J1 =

∫ 1−

p=0

∫ ∞

u=0
u1u<Q(p) dµ(u) dp

44



=

∫ 1−

p=0

∫ ∞

u=0
u1F (u)<p dµ(u) dp

=

∫ ∞

0

∫ 1

p=F (u)+
u dp dµ(u)

J1 =

∫ ∞

0
u · (1− F (u)) dµ(u) (D.1)

=

∫ ∞

0
u

∫ ∞

s=u+
dµ(s) dµ(u)

J1 =

∫∫
0⩽u<s

u dµ(u) dµ(s). (D.2)

From (D.1), we also deduce that:

J1 =

∫ ∞

0
u dµ(u)−

∫ ∞

0

∫ u

s=0
u dµ(s) dµ(u)

J1 = m−
∫∫

0⩽s⩽u
u dµ(s) dµ(u).

Third split. We write J1 = m− J11 − J12,
with:

J11 :=

∫∫
0⩽s<u

u dµ(s) dµ(u) ;

J12 :=

∫∫
0⩽s=u

u dµ(s) dµ(u).

Using Fubini’s theorem, we directly find

J12 =

∫ ∞

0
u

∫ ∞

0
1{u}(s) dµ(s) dµ(u)

=

∫ ∞

0
uµ({u}) dµ(u)

=
∑
i∈A

xiµ({xi})2

J12 = 2K.

Then, performing the permutation of variables
u↔ s, we write:

J11 =

∫
0⩽u<s

s dµ(u) dµ(s).

We get:

J1 = m−
∫∫

0⩽u<s
s dµ(s) dµ(u)−2K. (D.3)

Summation. Then, summing up the equa-
tions (D.2) and (D.3) gives us:

J1 =
m

2
− 1

2

∫∫
0⩽u<s

(s− u) dµ(s) dµ(u)−K.

The last thing to notice is that, by symme-
try, we have:

m ·G(µ) = 1

2

∫∫
R2

+

|s− u| dµ(u) dµ(s)

m ·G(µ) =
∫∫

0⩽u<s
(s− u) dµ(s) dµ(u).

Thus,

J1 =
m

2
− m

2
·G(µ)−K.

Hence,

I = J1 + J2 −K =
m

2
− m

2
·G(µ)

which concludes the proof in the general
case. ■

D.1.2 Approximating atoms with diffuse
measures 3.3

Corollary 5.5 gives another path for proving
theorem 3.3.

Indeed, the proof of theorem 3.3 could be
simplified in the case where µ is nonatomic (sec-
tion 3.2.2). The general case can then be proven
using approximations with nonatomic measures.

We give the sketch of an alternative proof
based on this idea. For what follows, we let G
the Gini index as we defined with the expecta-
tion (E[|X − X ′|]/2m), and Γ the alternative
definition using Lorenz curve (1− 2

∫ 1
0 L(p) dp):

1. Prove that G(µ) = Γ(µ) as soon as µ has
no atom. This can be done either with the
simplified proof of section 3.2.2 or using
[KS45]’s proof.

2. Now take µ ∈ M, with no asumption.
We approximate µ with nonatomic mea-
sures as follows. Consider a probability
space (Ω,F ,P) with random variables
X,X ′ ∼ µ and εn, ε′n ∼ U ([0, 2−n]) (uni-
form over [0, 2−n]), all of them being mu-
tually independent. Let µn the distribu-
tion of X + εn and νn the distribution of
εn.
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3. For all a ∈ R+, by Fubini, we have:

µn({a})

=

∫
Ω
1(X(ω)+εn(ω)=a) dP(ω)

=

∫∫
R+×R+

1(x+ε=a) d(µ⊗ νn)(x, ε)

=

∫
x∈R+

∫
ε∈R+

1(x+ε=a) dνn(ε) dµ(x)

=

∫
x∈R+

∫
(ε=a−x)

dνn(ε) dµ(x)

=

∫
R+

0 dµ(x)

=0.

Hence, µn is atomless. Hence, G(µn) =
Γ(νn).

4. (X+Yn)n∈N converges P-almost surely to
X; so does it in distribution, i.e. (µn)n∈N
weakly converges to µ. Furthermore,
mµn = mµ + 2−n−1 −−−→

n→∞
mµ. Hence,

µn
W1−−−→
n→∞

µ.

The proof of corollary 5.5 shows that
Γ(µn) −−−→

n→∞
Γ(µ).

5. Consider the random variables:

Zn := |X + Yn −X ′ − Y ′
n|.

One has: Zn −−−→
n→∞

|X −X ′|, P-a.s. Fur-
thermore, for every n ∈ N, 0 ⩽ Zn ⩽
X + 2. As µ ∈M, X has finite expecta-
tion; so does X+2. Hence, the dominated
convergence theorem states that (Zn)n∈N
E[Zn] −−−→

n→∞
E[|X −X ′|]. We have then

proven that G(µn) −−−→
n→∞

G(µ).

6. Hence, G(µ) = Γ(µ). ■

The same reasoning exactly can be per-
formed for the equivalence of both definitions
of Hoover index (proposition 3.9). Indeed, as
the tricky part of the proof of this theorem is
to deal with a possible atom of µ in {mµ}, one
can first prove the proposition assuming µ is
diffuse, and then approximating it by the same
µn we used for Gini.

D.2 Convergence of the Hoover in-
dex of a sample

We provide a different, less straightforward but
more elementary proof of point 3 of applica-
tion 6.3, that does not need the framework of
Lorenz functions nor theorem 5.5 . This proof
is courtesy of Guillaume Conchon–Kerjean.

Proof. Let n ∈ N∗. We have:

Hµ̂n =

∑n
i=1 |Xi −mµ̂n |

2nmµ̂n

The inverse triangular inequality states that
for every i ∈ {1, . . . , n},∣∣|Xi −mµ̂n | − |Xi −mµ|

∣∣ ⩽ |mµ̂n −mµ|.

Thus, summing these inequalities and ap-
plying the triangular inequality,

∣∣∣∣∣ 1n
n∑
i=1

|Xi −mµ̂n | −
1

n

n∑
i=1

|Xi −mµ|

∣∣∣∣∣
⩽

1

n

n∑
i=1

∣∣|Xi −mµ̂n | − |Xi −mµ|
∣∣

⩽ |mµ̂n −mµ|.

On the one hand, the law of large numbers
applied to random variables (Xn)n∈N∗ states
that almost surely,

|mµ̂n −mµ| −−−→
n→∞

0.

On the other hand, the law of large numbers
applied to random variables (|Xn −mµ|)n∈N∗

states that a.s.,

1

n

n∑
i=1

|Xi −mµ| −−−→
n→∞

E[|X1 −mµ|].

Hence, a.s.,

1

n

n∑
i=1

|Xi −mµ̂n | −−−→n→∞
E[|X1 −mµ|].

Thus, a.s. H(µ̂n) −−−→
n→∞

H(µ). ■
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D.3 Miscellanous tool theorems

D.3.1 Uniform integrability of samples

We give a different proof of the corollary 6.5,
not using either Glivenko–Cantelli’s theorem
nor Scheffé’s lemma.

Proof. Let (Ω,F ,P) the departure space of
the random variables Xi’s. For every ω ∈ Ω
and n ∈ N∗, we call µ̂n,ω the empirical mea-
sure over (R+,B) associated with the sample
X1(ω), . . . , Xn(ω), i.e.:

µ̂n,ω =
1

n

n∑
i=1

δXi(ω).

Let A the set of ω ∈ Ω such that the col-
lection (µ̂n,ω)n∈N∗ is u.i. It suffices to find a
measurable subset of A of probability 1.

For ω ∈ Ω fixed, let:

fn,ω : R+ −→ R+

x 7−→ 1

n

n∑
k=1

Xi(ω)1(Xi(ω)>x)

In other words, fn,ω(x) = m is the expecta-
tion of Y 1{Y >x}, where Y is any random vari-
able of distribution µ̂n,ω. (Where Y is defined
on a probability space which has nothing to do
with (Ω,F ,P).) Thus, by definition,

A =

{
ω ∈ Ω : sup

n∈N
fn,ω(x) −−−−→

x→+∞
0

}
.

By lemma B.22,

A =

{
ω ∈ Ω :

∀ε > 0,∃N ∈ N,
∀n ⩾ n, fn,ω(x) < ε

}
.

Let:
g : R+ −→ R+

x 7−→ E
[
X11(X1>x)

]
,

and for all x ∈ R+,

Bx := {ω ∈ Ω : fn,ω(x) −−−→
n→∞

g(x)}.

For all x ∈ R+, the law of large num-
bers applied to the i.i.d. random variables(
Xn1(X1>n)

)
n∈N∗ ensures that P(Bx) = 1.

Thus, the set

C :=
⋂
n∈N

Bn

has probability 1.

Now, we fix ω ∈ C, and it suffices to prove
that ω ∈ A. Let ε > 0.

As Xi’s have finite expectation, by dom-
inated convergence theorem, g(a) −−−→

a→∞
0.

There exists K ∈ N such that g(K) < ε.
ω ∈ BK , so there exists N ∈ N∗ such that
for every n ⩾ N , |fn,ω(K)− g(K)| < ε.

Then for every n ⩾ N , fn,ω(K) < 2ε.
Hence, ω ∈ A. ■

D.3.2 W1 convergence implies weak con-
vergence

We now give another proof of the following re-
sult, used in appendix B.3.

Proposition D.4. Let (µn)n∈N ∈ MN and
µ∞ ∈M. If µn

W1−−−→
n→∞

µ∞, then µn
W−−−→

n→∞
µ∞.

Proof. Apply the following lemma to the Qµn ’s
and the characterization of weak convergence
by quantiles (proposition B.13). ■

Lemma D.5. Let I ⊆ R an interval and con-
sider the measured space (I,B,L ). Let E
the set of nondecreasing, integrable functions
E −→ R.

If ∥f∞ − fn∥1 −−−→
n→∞

0, then fn −−−→
n→∞

f

L -almost everywhere.

Proof. We shall first prove the following claim:
for all f ∈ E, x ∈ I such that f is continuous
at x and ε > 0, there exists δ > 0 such that for
all g ∈ E,

|g(x)− f(x)| > ε =⇒ ∥g − f∥1 > δ.

Indeed, assume that g(x) > f(x) + ε. Then:

• Either g(x) > f(x) + ε. If so, let η > 0
such that f(x + η) < f(x) + ε

2 . If
t ∈ [x, x+ η), then

g(t)− f(t) > g(x)− f(x)− ε

2
>
ε

2
.

Hence, ∥g − f∥L1 > η ε2 . By chosing
δ := η ε2 , the assertion holds.

• Or g(x) < f(x)− ε. Then, the same rea-
soning leads to the same conclusions.

Now, assume ∥f∞ − fn∥1 −−−→
n→∞

0. By the
claim, fn(x) −−−→

n→∞
f∞(x) for all x ∈ I where

f∞ is continuous. Since f∞ is nondecreasing,
this is the case L -almost everywhere. ■
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