
HAL Id: hal-04698209
https://hal.science/hal-04698209v1

Submitted on 15 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards an In-Context LLM-Based Approach for
Automating the Definition of Model Views

James Pontes Miranda, Hugo Bruneliere, Massimo Tisi, Gerson Sunyé

To cite this version:
James Pontes Miranda, Hugo Bruneliere, Massimo Tisi, Gerson Sunyé. Towards an In-Context LLM-
Based Approach for Automating the Definition of Model Views. 17th ACM SIGPLAN International
Conference on Software Language Engineering (SLE’24), Oct 2024, Pasadena, CA, United States.
pp.29 - 42, �10.1145/3687997.3695650�. �hal-04698209�

https://hal.science/hal-04698209v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Towards an In-Context LLM-Based Approach for
Automating the Definition of Model Views
James William Pontes Miranda

Hugo Bruneliere
Massimo Tisi

IMT Atlantique, LS2N (UMR CNRS 6004)
Nantes, France

firstname.lastname@imt-atlantique.fr

Gerson Sunyé
Nantes Université, LS2N (UMR CNRS 6004)

Nantes, France
gerson.sunye@univ-nantes.fr

Abstract
In the Model-Driven Engineering (MDE) of complex systems,
multiple models represent various systems’ aspects. In prac-
tice, these models are often unconnected and specified using
different modeling languages. Model view solutions can be
employed to automatically combine such models. However,
writing model view definitions is not trivial. When modeling
languages are semantically distant and/or have a large num-
ber of concepts, it can quickly become difficult to manually
identify the language elements to be selected, associated,
or queried to build a model view. As a solution, this paper
proposes an in-context Large Language Model (LLM)-based
approach to assist engineers in writing model-view defini-
tions. Notably, we rely on LLMs and Prompt Engineering
techniques to automatically generate drafts of model-view
definitions by providing as input only minimal information
on the modeling languages to be combined. We implemented
our approach by integrating the EMF Views solution for
model views with the LangChain framework for LLM-based
applications. To this end, we tailored LangChain to handle
EMF metamodels. We validated our approach and implemen-
tation on a set of model views originally specified either in
VPDL, the ViewPoint Definition Language of EMF Views, or
as ATL model-to-model transformations. We compared these
original model view definitions with the ones we automat-
ically generated. The obtained results show the feasibility
and applicability of our approach.

CCS Concepts: • Software and its engineering → Soft-
ware development techniques; System modeling languages; •
Computing methodologies → Learning from demonstra-
tions;Modeling methodologies.

Keywords: Model-driven engineering, Modeling languages,
Model views, Large language models, Prompt engineering.

SLE ’24, October 20–21, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 17th ACM SIGPLAN International Conference on Software
Language Engineering (SLE ’24), October 20–21, 2024, Pasadena, CA, USA,
https://doi.org/10.1145/3687997.3695650.

ACM Reference Format:
James William Pontes Miranda, Hugo Bruneliere, Massimo Tisi,
and Gerson Sunyé. 2024. Towards an In-Context LLM-Based Ap-
proach for Automating the Definition of Model Views. In Proceed-
ings of the 17th ACM SIGPLAN International Conference on Software
Language Engineering (SLE ’24), October 20–21, 2024, Pasadena, CA,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3687997.3695650

1 Introduction
When engineering complex systems, the separation of con-
cerns and the fragmentation of information among stakehold-
ers are major challenges [3, 13]. In order to mitigate these
challenges, Model-Driven Engineering (MDE) promotes the
use of multiple models as essential artifacts of the system
engineering process. The overall objective is to support ar-
chitects, engineers, and other stakeholders, in performing
their activities in a more efficient way. To this end, these
actors often have to combine and navigate together the vari-
ous interrelated system models. These models can be defined
in different modeling languages dealing with varied sys-
tem aspects, for example, the Unified Modeling Language
(UML) [37], System Modeling Language (SysML) [36], Busi-
ness Process Modeling Notation (BPMN) [35], or various
Domain-Specific Languages (DSLs) [32].

Model view solutions are suitable for combining and navi-
gating such heterogeneous models more transparently [11].
They allow building views over one or several existing mod-
els which potentially conform to different metamodels, i. e.
that are expressed in different modeling languages. There are
several more or less automated ways of creating model views.
They often rely on the definition of model view via a DSL
and/or query language. However, when manually writing
these model view definitions, it can be difficult to identify the
language elements to be selected, associated, or queried. This
is notably the case when the concerned modeling languages
are either large or semantically distant. Thus, automatically
generating model view definitions is challenging since it
requires a certain level of understanding and reasoning on
the input metamodels (i. e. modeling languages).

https://orcid.org/0000-0001-9023-3286
https://orcid.org/0000-0002-5987-2175
https://orcid.org/0000-0001-7891-9138
https://orcid.org/0000-0001-6407-8075
https://doi.org/10.1145/3687997.3695650
https://doi.org/10.1145/3687997.3695650
https://doi.org/10.1145/3687997.3695650


SLE ’24, October 20–21, 2024, Pasadena, CA, USA James William Pontes Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé

As a potential solution, different Machine Learning (ML)
approaches have already been proposed to improve the sup-
port for model management operations [6, 23, 42, 46]. In par-
ticular, Large Language Models (LLMs), such as BERT [24]
and GPT-3 [10], have demonstrated their capability in code
generation [34, 47]. In the MDE community, LLMs have also
been used for automating complex modeling tasks [17, 22]
and providing recommendations [17].
In this paper, we propose an in-context LLM-based ap-

proach to assist engineers in writing model-view definitions.
In particular, we automatically generate drafts of model-view
definitions by providing as input only minimal information
on the modeling languages to be combined. We want to
achieve this by using off-the-shelf LLMs: we do not want to
perform any costly additional training on the LLM, even if
the LLM has not been originally trained on the model-view
definition language. Thus, we query the LLM with punctual
questions about the structure of the view, and we combine
the LLM answers to generate the model view definition pro-
grammatically. The approach is completely in-context, i. e. it
relies exclusively on Prompt Engineering (PE) techniques in
order to improve reasoning capabilities [5], composability,
and to enable tool-augmentation [26].
The objective of our approach is to avoid the engineers

starting from scratch when developing views, by providing
them with a skeleton of the specification “for free” that they
can then update and refine. Moreover, they do not need to
provide any training data set, as very often challenging to
obtain and prepare. We developed a first implementation of
our approach as an LLM-powered application enhancing the
capabilities of the EMF Views model-view solution [14]. To
this end, we leveraged the LangChain open-source frame-
work for developing applications powered by LLMs [29]. We
validated our approach by applying it on a selected set of
model views. These model views, coming from the literature
and open resources, are originally specified either in the
ViewPoint Definition Language (VPDL) of EMF Views or as
ATL model-to-model transformations. We evaluate the rele-
vance of the generated model view definitions, by comparing
them with the original ones. The results we obtained already
show the feasibility and applicability of our approach.
This paper is structured as follows. Section 2 introduces

the background of our work. Based on this, Section 3 mo-
tivates our work via a running example. Then, Section 4
presents the proposed approach, while Section 5 describes its
current implementation. Section 6 explains the experiments
we performed and the results of our evaluation. Finally, Sec-
tion 7 discusses the related work before Section 8 concludes
the paper by opening on the next steps of our work.

2 Background
This section introduces key notions of the two main areas
covered by our work, namely model views and LLMs.

System

Metamodels

Models Model View

Viewpoint

Model

Virtual model

Legend:

conforms to

represents

based on

conforms to

based on

A
B

C
ABC

a
b

c

abc

Figure 1.Main concepts of model views [33].

2.1 Model Views
As introduced in Section 1, our work currently targets the
EMF Views solution [12], that uses the VPDL language to
specify viewpoints and build corresponding views. In this
context, Figure 1 highlights the main concepts of model
views. A given system can be described by various models
that potentially conform to different metamodels, i. e. ex-
pressed in different modeling languages. At the metamodel
level, a viewpoint determines which concepts and properties
from the contributing metamodels should be included or
excluded in the corresponding views. It also expresses how
these concepts should be interconnected, i. e. with which
rules. At the model level, a view combines a given set of
contributing models according to this viewpoint. A speci-
ficity of EMF Views is that it materializes both viewpoints
and views as virtual metamodels and models, respectively.
A virtual model (respectively, metamodel) only points to ele-
ments from the original models (respectively, metamodels),
thus preventing unnecessary information duplication.
VPDL, provided along with EMF Views, is a textual SQL-

like language for writing model view definitions. A VPDL
file expresses a viewpoint, i. e. it defines the concepts and
properties from the contributing metamodels that need to be
selected, associated, or queried (and how). Then, EMF Views
take this VPDL file as input to build corresponding model
views on given sets of contributing models. An example of a
VPDL file is provided later in Listing 1. Despite the relative
simplicity of the textual concrete syntax, challenges arise
when VPDL users do not have sufficient knowledge of the
concerned modeling languages, or when these modeling
languages are large and complex.

2.2 Large Language Models (LLMs)
LLMs are neural networks with the transformer architec-
ture [44], pre-trained on massive textual content corpora
and specifically tailored for text completion. Given textual
inputs, i. e. prompts, they generate corresponding text out-
puts in a probabilistic manner.

2.2.1 Prompt Engineering. Prompts are the main inputs
of LLMs, besides the trained weights and hyper-parameters.



Towards an In-context LLM-based Approach for Model Views SLE ’24, October 20–21, 2024, Pasadena, CA, USA

PE is an essential technique to interface with LLMs by sys-
tematically designing and optimizing the inputs to guide the
responses [19]. Notably, it allows orienting the LLM’s behav-
ior to achieve better results without modifying its internal
weights. PE is empirical, and its efficiency can vary across
different LLMs and targeted tasks. Thus, it demands various
experiments and the use of well-studied heuristics [19].

With chat interfaces like ChatGPT1, the widely used LLM
of OpenAI, specific approaches are used. For example, a role
is established and indicates how to act by following instruc-
tions with step-by-step explanations2. In this paper, we apply
two PE techniques: Few-shot Learning [50] and Chain-of-
Thought prompting [45]. Few-shot learning involves provid-
ing a series of high-quality demonstrations, each containing
both the input and the desired output for the target task.
From these examples, the obtained results are typically more
accurate w.r.t. to prompts with no examples (i. e. Zero-shot
Learning) [50]. Instead, Chain-of-thought (CoT) prompting
involves creating the prompt with a series of short sentences
that outline the reasoning process step-by-step [45].

2.2.2 Fine-tuning and RAG. The performance of off-the-
shelf LLMs on a given task is strongly dependent on how
much the task is covered by their training dataset [18]. To ex-
tend the application of LLMs to tasks that require additional
task-specific knowledge, the two most common techniques
are fine tuning and retrieval-augmented generation (RAG).
Fine-tuning enhances an LLM, already pre-trained on a

vast and diverse corpus of text, by additional training on
new task-specific content. It refines the LLM model with spe-
cialized datasets relevant to the targeted task [40]. Retrieval
Augmented Generation (RAG) enhances the standard LLM
response for specific contextual data. It allows the injection
of such data for the targeted task by indexing it in a vector
database, and making it directly accessible by the LLM [31].

Both techniques show promising results. Still, fine-tuning
demands a large dataset of examples and high computational
resources [31]. While more accessible, RAG applications still
need a fairly large dataset and an infrastructure for the re-
trieval process [27]. The availability of public dataset is a
well-known problem in MDE and, especially for view defini-
tion, not many examples are publicly available. Thus, in this
paper we do not use any of these techniques, and we study
a solution that works directly on off-the-shelf LLMS.

2.2.3 LangChain and LLM Tool-augmentation. LLMs
already come with a rich ecosystem of frameworks such as
Llamaindex3, DSpy4 or LangChain5. LangChain is an open-
source framework designed to develop composable appli-
cations powered by LLMs. Its main goal is to simplify the
1https://chatgpt.com/
2https://platform.openai.com/docs/guides/prompt-engineering/
3https://www.llamaindex.ai/
4https://dspy-docs.vercel.app/
5https://www.langchain.com/

life-cycle of LLM-based application. LangChain provides a
structured approach to chaining together multiple LLM calls
and managing the flow of data through various stages of
processing. Technically, the framework consists of several
open-source libraries that can be combined to create all the
components of the LLM-powered app. This notably includes
well-crafted prompts, support for different LLM models, as
well as some auxiliary components like parsers and third-
party integrators with external tools. Composability and tool-
augmentation are important features [28, 38]. As LangChain
already demonstrated its capabilities regarding them [43],
we decided to use this framework in our work.

3 Running Example
This section presents our running example for the rest of
the paper, a simple model view called Book-Publication. It
comes from the EMF Views user guide6 where it is used
to explain EMF Views and VPDL. We selected this running
example because its contributing metamodels (i. e. modeling
languages) are very simple, but the view definition itself
contains not-so-trivial associations.
Figure 2 shows the two book and publication meta-

models, in graphical and textual format (in PlantUML7).
Books have titles and authornames and contain Chapters
that have their own title and nbPages. Publications are
more general than books, and contain a title, an author, a
publisher and a publication year.

1 create view publicationsAndBooks as
2 select publication.Publication.*,
3 book.Book.*,
4 book.Chapter.title,
5 publication.Publication join book.Chapter as

↩→ firstChapter,
6 publication.Publication join book.Chapter as

↩→ bookChapters
7 from 'http://publication' as publication,
8 'http://book' as book
9 where s.title = t.eContainer().title and
10 t = t.eContainer().chapters.first() for firstChapter,
11 s.title = t.eContainer().title for bookChapters

Listing 1. Example of a standard VPDL file.

Listing 1 shows our example view expressed in the VPDL
language. The select part is used to define which con-
cepts and properties from the book and publication meta-
models have to appear in the view, i. e. Publications and
Books with all their properties (*), Chapters with only their
title. It also introduces new inter-model associations, i. e.
the firstChapter and bookChapters relations between the
Publication concept from the publication metamodel
and the Chapter concept from the book metamodels. The

6https://www.atlanmod.org/emfviews/manual/user.html
7https://plantuml.com/

https://chatgpt.com/
https://platform.openai.com/docs/guides/prompt-engineering/
https://www.llamaindex.ai/
https://dspy-docs.vercel.app/
https://www.langchain.com/
https://www.atlanmod.org/emfviews/manual/user.html
https://plantuml.com/


SLE ’24, October 20–21, 2024, Pasadena, CA, USA James William Pontes Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé

Figure 2. Running example’s metamodels in graphical and PlantUML format: a) book and b) publication.

from part allows users to declare the contributing meta-
models, i. e. book and publication. Finally, the where part
contains OCL-like expressions specifying matching rules for
the new inter-model associations, i. e. for firstChapter and
bookChapters. E.g. for firstChapter, an OCL rule checks
the inclusion of the first chapter of a book in the correspond-
ing publication. Note that the variables s and t denote the
source and target element of the association (respectively).
To summarize, a VDPL file includes the three main parts

of a model-view definition:
• A list of concepts and properties to be selected from
the contributing metamodels (in the select part).

• A list of new relations to be created between the con-
tributing metamodels (also in the select part).

• Queries describing how to compute these new rela-
tions on contributing models (in the where part).

Our objective is to be able to automatically generate such
a model view definition by providing only limited input
information. To this end, Listing 2 shows a possible user
prompt we could consider for our running example.

1 """
2 These two metamodels represent collections of

books , but they have a different level of detail
.

3 While the book metamodel details each chapter ,
the publication has more information about the
publisher and publishing date.

4 I want to select all the information regarding
publications , but I also wish to access the book
chapters through the publication.

5 """

Listing 2. Possible simple user prompt for generating a
corresponding model view specification.

As a result, Listing 3 shows a model view definition draft,
which can be generated automatically from the previous
prompt by using our framework.

1 create view PublicationAndBook as
2 select Book.Book.*,
3 Book.Chapter.*,
4 Publication.Publication.*,
5 Book.Book join Publication.Publication as

↩→ BookToPublication,
6 Book.Chapter join Publication.Publication as

↩→ ChapterToPublication,
7

8 from 'http://book' as Book,
9 http://publication' as Publication
10

11 where `Combine Book and Publication based on the title and
↩→ authorName/author attributes. This allows
↩→ linking books to their corresponding publications
↩→ .`

12 for BookToPublication
13 `Combine Chapter and Publication by associating chapters

↩→ with their parent book's publication. This allows
↩→ accessing chapters through the publication of
↩→ the book they belong to.`

14 for ChapterToPublication

Listing 3. Possible VPDL file resulting from the generation
made with the prompt in Listing 2.

As visible in Listing 3, the approach aims at generating a
draft of the create, select and from parts of themodel view
definition. Moreover, it gives a natural language description
of the content of the expressions to develop in the where part.
Wewant to generate a syntactically correct draft of themodel
view definition.We also want to guarantee correct references
to classes and properties of the original metamodels.
While the generated draft may contain semantic incon-

sistencies, it provides a useful practical starting point for
the engineer in charge of writing the model-view definition.
It partially relieves the developer from identifying which
classes and properties of the original metamodels should be
included in the view, and which classes should be connected
by inter-model associations. The queries (where part) are left
to the developers. Still, the provided textual guidance can
support them to be more efficient when writing the queries.



Towards an In-context LLM-based Approach for Model Views SLE ’24, October 20–21, 2024, Pasadena, CA, USA

4 Approach
As explained in Section 2, the approach we propose relies on
the composition of several LLM-based components without
requiring any particular fine-tuning. Users only provide min-
imal information as input, e. g. the metamodels contributing
to the view, to be able to automatically obtain a draft of
a corresponding model view definition (cf. Section 3) that
they can then update as they wish. More generally, the de-
composition of the problem to be solved (i. e. model views
description) into a set of sub-problems, and their resolution
via an integrated chain of corresponding LLM-based compo-
nents, is a key contribution of our approach that could also
be extended to other modeling problems.

4.1 Overview
Figure 3 provides an overview of our proposed approach.

In EMF Views, the contributing metamodels are serialized
in Ecore/XMI. However, because of their training, off-the-
shelf LLMs are more efficient for human-readable textual
formats. Thus, we decided to use PlantUML class diagrams
as the representation format for metamodels. It is a popular
format supposedly included in LLM training sets and whose
usage for LLMs was already experimented in [22]. To this
end, the first step converts Ecore Metamodels into equivalent
PlantUML class diagrams. As an illustration, Figure 2 shows
the two contributing metamodels of our running example
(i. e. book and publication) converted to PlantUML.

Then, the PlantUML metamodels are injected, together
with the user-provided prompt-like User’s View Description,
into a specific Prompt Template created to solve a specific part
of the decomposed problem. For our model view definition
problem, we considered three complementary sub-problems.
These sub-problems directly correspond to the main parts
of the definition as introduced in Section 3: SELECT, JOIN
(associate), and WHERE (query). As a consequence, in our case,
we need to have three different well-crafted Prompt Templates
resulting in the LLM calling chain being executed at least
three times.

For each Prompt Template, the performed actions are simi-
lar. First, a Prompt is generated from the concerned Prompt
Template. The LLM is then directly called with this Prompt
provided as input. As a result, it produces a corresponding
textual Raw Ouptut. This Raw Ouptut is parsed to validate it
and produce the textual Parsed Output in the expected for-
mat. This Parsed Output can be stored and, when required,
reused as a complementary input to another iteration of
the whole chain of actions. In our context, the validation
process carried out by the parse operation is performed by
specialized tools that deal with EMF models (e. g., PyEcore
or the Java EMF API). If the output is not validated, then the
LLM is asked for a new solution. This is an example of tool
augmentation to enhance the output quality.

Finally, the Parsed Outputs resulting from the different
iterations (three in our case) are combined to generate the
content of the target Model Views Specification (definition)
textual file, in the VPDL language in our case. For this final
step, we do not use the LLM (since we do not assume it
to be familiar with the VDPL syntax) but a standard code
generator. The final resulting file is meant to be manually
checked and eventually revised by the engineer before being
provided as input to the Model View solution.

4.2 Focus on Prompt Templates
As presented earlier, Prompt Templates are key artifacts of
the proposed approach and related process. Listing 4 shows
one of these templates, corresponding to the JOIN (associate)
iteration in our approach. This example notably illustrates in
practice how such templates are structured and what kind of
information they contain. Note that the two other prompts
for the SELECT and WHERE (query) iterations in our approach
are also provided online (cf. Section 5). Overall, they follow
the same structure and organization of information.

1 """
2 You are now a PlantUML analyst that find

relations between classes from two metamodels.
3 # TASK
4 Your task is to analyze the input metamodel and

the view description and define a list of
relations between the metamodels ' classes.

5 The classes are always combined in pairs , being
one coming from the first metamodel and the
other coming from the second metamodel.

6 Classes can be combined when they represent the
same domain object or when they are
complementary classes , which means that one can
be extended with the attributes of the other.

7

8 Other possible reason for combination is when
the view description includes explicit
attributes from one metamodel that should appear
in the other.

9

10 Your answer should be a valid JSON list of
dictionaries where each dictionary entry
represents a relation.

11 It should be a list even when it contains just
one relation.

12 Each relation always contains precisely one
class coming from each metamodel.

13 In your response , the classes are always in
order: the first class comes from the first
metamodel , and the second class comes from the
second metamodel.

14

15 # OUTPUT DATA FORMAT
16 {format_instructions}
17

18 # RULES
19 When generating the JSON response , you should

follow these rules:



SLE ’24, October 20–21, 2024, Pasadena, CA, USA James William Pontes Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé

Figure 3. Overview of the proposed approach.

20 - Only use class names that exist in the
metamodels. Never include classes that are not
in the metamodels

21 - The relation 's name can be any string , but it
should be unique and meaningful for each
relation.

22

23 # STEP BY STEP PROCESS
24 1. Identify all the classes from the first

metamodel.
25 2. Identify all the classes from the second

metamodel.
26 3. Given the metamodels and their classes ,

combine the elements in pairs when the selected
classes represent the same domain object in each
metamodel.

27 4. Given the metamodels and their classes ,
combine the elements in pairs when some selected
class in the second metamodel can be

complemented by some chosen class on the first
metamodel and vice -versa.

28 5. Analyse the view description to find out
other potential relations.

29 6. Ensure that the classes are combined in pairs
, one from each metamodel.

30 7. Ensure that the relation 's name is unique and
meaningful.

31 8. Ensure that all the classes exist in the
PlantUML metamodels.

32 9. Create the JSON array with the combination
pairs.

33 10. Provide the answer.
34

35 # EXAMPLE
36 Given the following metamodels and view

description:
37 View description: "The view should conatins the

name , and email from the Customer and also the
name of the item bought by they."

38 Metamodel 1:
39 @startuml
40

41 class Customer {{
42 +int id
43 +String name
44 +String email
45 +String deliveryAddress
46 }}

47

48 @enduml
49 Metamodel 2:
50 @startuml
51

52 class Item {{
53 +int id
54 +String name
55 +String category
56 }}
57

58 class Order {{
59 +int orderId
60 +String orderNumber
61 +Date orderDate
62 +Date creationDate
63 +String currentOrderStatus
64 +String customerName
65 }}
66

67 @enduml
68

69 The result Relations should be:
70 {{
71 "relations ": [
72 {{
73 "name": "itemBoughtByCustomer",
74 "classes ": [
75 "Customer",
76 "Item"
77 ]
78 }}
79 ]
80 }}
81

82 You can think step -by-step , but your final
answer should contain only the valid JSON and
nothing else. Exclude any explanation or
delimiter from the final response.

83

84 # INPUT
85 View description: {view_description}
86 Metamodel 1: {meta_1}
87 Metamodel 2: {meta_2}
88 """

Listing 4. Python f-string used as prompt template in the
JOIN step.



Towards an In-context LLM-based Approach for Model Views SLE ’24, October 20–21, 2024, Pasadena, CA, USA

To design the templates and corresponding prompts, we
implement the CoT approach, using few-shot examples for
the format instructions (cf. Section 2). As presented in List-
ing 4, our templates follow a structure that contains a role
definition (line 2), the task definition (line 4), the task down-
stream explanation (lines 5 to 9), the desired output format
(line 16, to be replaced at runtime by the explanations on the
expected JSON-like format), and finally, the step-by-step exe-
cution of the task (directly implementing the CoT approach).
Building a relevant prompt template is an empirical pro-

cess that involves several attempts, based on try-and-error
calls to the LLM until reaching the target results. However, it
is possible to benefit from the Prompt Engineering best prac-
tices coming both from academia [19, 48] and LLM provider
guidelines. Finally, we want to highlight the central role of
the prompt templates in our approach. They are actually
provided for free and immediately usable, for model views
over any modeling language. As a result, engineers do not
need to edit them nor have any direct interaction with the
LLM if they do not want to.

5 Implementation
To validate our proposed approach, we created a prototype
implementation intended to produce model-view definitions
as VPDL files for EMF Views. Globally, the current implemen-
tation relies on the combination of the LangChain framework
for chaining our actions, with the PyEcore library8 to handle
EMF models, and the GPT LLM models as made available
through the OpenAI API.9 The prototype source code, as
well as all the related resources, are available on Zenodo10.

Figure 4 shows an overview of the current technical im-
plementation of our approach. To start this, the LangChain
package displays the main composable components of the
framework that are relevant in our case. A PromptTemplate
is a runnable component that manages prompt structures,
by incorporating multiple documents and variables to gen-
erate prompt content dynamically. A LLMModel is another
runnable component that configures the properties of an
LLM, including its temperature that influences the creativ-
ity and variance of the outputs. A OutputParser is also a
runnable component that handles the parsing and validation
of model outputs, thus ensuring adherence to the required
formats and supporting retry strategies for self-reflection.
In addition, a Tool is any kind of external piece of software.
Finally, a Chain is the interface for invoking a sequence of
task-specific runnable components and tools.

As described in Section 4, we created a specific prompt tem-
plate for each iteration of the process we follow. These are
the primary inputs for creating LangChain PromptTemplate
instances. These instances are in charge of injecting of the

8https://github.com/pyecore
9https://platform.openai.com/docs/models
10https://doi.org/10.5281/zenodo.13712247

Figure 4. Overview of the technical implementation of our
proposed approach.

format instructions in JSON Schema (the default format in
LangChain), the conversion of the Ecore metamodels into
their PlantUML equivalents, and the calls to the LLM. The
full trace can be checked online11.

The LLMPoweredViews package displays the model view-
specific components we developed to refine and comple-
ment the LangChain ones. The VPDLGenerator is the in-
tegration Chain component in charge of collecting the re-
quired inputs (i. e. the metamodel paths and View description)
and chaining all the necessary Runnable and Tool compo-
nents. The EcoreLoader component is responsible for load-
ing the Ecore metamodels to be used in Prompt Templates.
The EcoreOutputParser is an OutputParser checking that
classes and attributes returned by the LLM Raw Outputs are
present in these input Ecore metamodels. In practice, it parses
these outputs and repeatedly calls the LLM again until the
Parsed Outputs are valid. Finally, VPDLText is a Tool compo-
nent for generating the final target Model View Specification,
as a VPDL textual file, from the Parsed Outputs produced by
SELECT, JOIN, and WHERE iterations in our approach.

EcoreLoader and EcoreOutputParser use handlers from
the PyEcore package. In terms of LLMs, we currently use
GPT-4o as we generally observed better performance with it
compared to GPT-3.5 and Mistral12. However, our approach
and its implementation (thanks to LangChain) are flexible

11https://smith.langchain.com/public/716a3e84-d344-42e8-bf82-
5b337a8b7d9b/r
12“mistral-large-latest” provided by Mistral: https://docs.mistral.ai/

https://github.com/pyecore
https://platform.openai.com/docs/models
https://doi.org/10.5281/zenodo.13712247
https://smith.langchain.com/public/716a3e84-d344-42e8-bf82-5b337a8b7d9b/r
https://smith.langchain.com/public/716a3e84-d344-42e8-bf82-5b337a8b7d9b/r
https://docs.mistral.ai/


SLE ’24, October 20–21, 2024, Pasadena, CA, USA James William Pontes Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé

in this respect, as they allow choosing between different
OpenAI models and other LLMs.

6 Evaluation
To evaluate our implementation, we defined a dedicated
benchmark using actual model-view definitions from the lit-
erature (Section 6.1) and open-source model-to-model trans-
formations (Section 6.2). In terms of LLM parameters, we
opted for a default temperature of 0 to be as close as possi-
ble to a deterministic behavior (and thus results). Still, the
use of an LLM introduces inherent unpredictability due to
their non-deterministic nature. This can notably impact the
consistency of the generated results across different runs. In
practice, the evaluation was performed using LangSmith13,
a DevOps platform dedicated to the tracing and evaluation
of LLM-based applications built with LangChain.
To better assess our results, we compare them with the

ones obtained via a baseline solution for LLM-based genera-
tion of model views. We simply asked ChatGPT (the ready-
to-use version of the OpenAI LLM encapsulated in a chat
interface) to produce the views in well-known languages
(Query/View/Transformation - QVT for views, ATL for trans-
formations). To this end, we considered 2 simple prompts
tailored for ChatGPT and including the same inputs than in
our experiments (cf. Listing 5 and Listing 6 respectively).

1 """
2 Given the view description and the following

PlantUML metamodels , please give to me the view
definition written in QVT.

3

4 View description: {view_description}
5 Metamodel 1: {meta_1}
6 Metamodel 2: {meta_2}
7 """

Listing 5. Simple prompt for generating views in QVT.

1 """
2 Given the transformation description and the

following PlantUML metamodels , please give me
the ATL code for the transformations.

3

4 Transformation description: {
transformation_description}

5 Metamodel 1: {meta_1}
6 Metamodel 2: {meta_2}
7 """

Listing 6. Simple prompt for generating views as ATL
transformations.

Since ChatGPT is a general-purpose application trained
and fine-tuned for human-machine interaction, our prompts
13https://www.langchain.com/langsmith

included some conversational constructs (e. g. “please” and
“give me”) together with our minimal inputs. The detailed
prompts and results of a simple query in the ChatGPT plat-
form were collected in the same repository. This collection
acts as an experiment journal containing the pair prompt/-
completion and also a link to access the recorded chat14. To
summarize, we compared three solutions: (i) one manually
developed by authors from the related works used as a refer-
ence for the comparison, (ii) one generated by our approach,
and (iii) one produced by ChatGPT as our baseline solution.

6.1 Reproducing existing model views
Table 1 shows the four model views we considered in the
first part of our evaluation. They have been selected for their
heterogeneity in terms of contributing modeling languages
(i. e. metamodels), and for their varying levels of complexity
in terms of mappings.
For each model view, Table 1 displays an identifier (ID),

a high-level description, the name of the two contributing
metamodels, and its source (from literature or other sources).
Note that we did not write the model-view textual descrip-
tions. Instead, we directly extracted small explanations of
the desired output from the source document (e. g. research
article or documentation).

Concerning model-views 3 and 4 in particular, we slightly
adapted the descriptions from the sources, since these model-
views initially concerned more than two contributing meta-
models. These adaptations were due to the publicly available
context window size of the GPT-4o LLM, which prevented
us from considering numerous large metamodels within a
single model view.
Overall, for model views in VPDL, the performed experi-

ments aimed at evaluating:
• How effectively our approach automatically identifies
possible relations between classes from two contribut-
ing metamodels – JOIN (associate).

• How accurately our approach automatically identifies
relevant attributes for each class of a given relation –
SELECT.

• Which level of quality and understandability are ex-
hibited by the automatically generated model view
definition – SELECT, JOIN (associate), WHERE (query).

6.2 Inferring semantic equivalence
In the second experimentation, we focus on a specific but
particularly important kind of view: the views concerning
two existing models (conforming to different metamodels)
and connections between semantically equivalent elements
from these models. The SELECT part of such a view is trivial,
since we always select all classes and attributes of the corre-
sponding metamodels. Our objective is to leverage the LLM

14The links are maintained by OpenAI. We cannot ensure for how much
time they will keep it.

https://www.langchain.com/langsmith


Towards an In-context LLM-based Approach for Model Views SLE ’24, October 20–21, 2024, Pasadena, CA, USA

Table 1. Evaluated Model Views in VPDL.

ID Model View Description Metamodel 1 Metamodel 2 Source
V1 “The Book metamodel has details about each chapter, while the Publication

has more information about the publisher and publishing date... [3 lines]”
Book Publication EMF Views

manual
V2 “The considered view combines... an Architecture model... a Requirement

model... [4 lines]”
contentfwk ReqIF Example

view in [14]
V3 “The views allows to follow the evolution of a engineering system. It shows

different versions of the same system... [3 lines]”
caex ecoreXES Example

view in [16]
V4 “The view aggregates all the models seen so far. This allows the system

engineer to transparently point to the relevant information... [11 lines]”
Traceability B EMF Views15

Example

to infer the JOIN, i. e. the identification of the semantically
equivalent classes in the two contributing metamodels.

To this end, we consider model-to-model transformations
in ATL coming from existing work. Each transformation
specifies how to translate models conforming to a source
metamodel into models conforming to a target metamodel,
by means of transformation rules. Each rule defines corre-
spondences between elements of the source model (i. e. an
instance of rule source pattern) and elements of the target
model (i. e. an instance of the rule target pattern) considered
as semantically equivalent to the source ones. We want to
build a view that contains the full sourcemodel, the full target
model, and inter-model association between corresponding
elements in the two models (i. e., instances of source patterns
and target patterns of the same rule application).

Table 2 shows the five model-to-model transformation we
considered in our evaluation. They have been selected from
the ATL Transformations Zoo16 considering their diversity in
terms of contributing modeling languages (i. e. metamodels)
and the domains they cover. The descriptions are directly
extracted from the documentation of the transformation.

6.3 Obtained Results
Table 3 and Table 4 show the quantitative results of our
evaluation using a 1-shot prompt template for the model
views in VPDL from Table 1. They display the detailed results
for the predicted relations (JOIN) and the predicted attributes
(SELECT), respectively. The Our approach columns indicate
the means of three consecutive executions of the evaluation
by using precisely the same inputs and configuration. The
ChatGPT columns indicate the results of a single execution
of our baseline solution, for comparison purposes.
Similarly, Table 6 show the corresponding results for the

model views as ATL transformations from Table 2. How-
ever, as explained before, this only concerns the predicted
relations (JOIN) in that case.
Overall, Quantitative Evaluation concerns the fully auto-

mated evaluation performed thanks to standard algorithms
provided by the LangChain ecosystem and corresponding
customized functions. Reference corresponds to the number

16https://eclipse.dev/atl/atlTransformations/

of considered relations between classes and selected proper-
ties in the VPDL case, and of considered relations between
classes in the ATL case. This represents our expected results.
Precision is a standard metric providing the ratio of the num-
ber of relevant items retrieved/predicted/matched based on
the total number of retrieved items. It measures the accuracy
of the retrieved items. Recall is the ratio of the number of rel-
evant items retrieved based on the total number of relevant
items in the reference. It measures the completeness of the
retrieval. Finally, Syntactic Correctness is the percentage of
generated code that is correct from a syntactic point of view.

For the baseline solution, we considered a rough approxi-
mation since it was necessary to make assumptions. By de-
fault, the code generated by ChatGPT was not VPDL or QVT
code. Instead, it used a language hallucinated by ChatGPT.
Note that some results are indicated as non-available (N/A)
when the generated code was almost completely irrelevant.

Qualitative Evaluation concerns the one-to-one compari-
son between the final outputs of our approach and the ex-
pected outputs (i. e. the reference model views). This is a
manual evaluation of the overall quality of the obtained re-
sults by experts in the VPDL and ATL languages. Table 5
shows our qualitative analysis for the model views in VPDL
from Table 1. Matched Rules indicates The overall quality
(manually assessed) of the generated textual explanation for
each identified relation. It can be Good (the engineer directly
understands the semantics of the relation), Satisfactory (it
requires her some effort), or Inadequate (it is very or too
difficult for her) – WHERE (query). Human Judge indicates the
overall quality (manually assessed) of the whole generated
output, i. e. a VPDL file or a set of ATL relations. We use the
same classification as from the previous metric – SELECT,
JOIN (associate), WHERE (query). LLM Judge indicates the
overall quality (LLM assessed) of the whole generated out-
put, i. e. a VPDL file or a set of ATL relations. Using the
same setup, the LLM receives an extra prompt to give a score
from 1 to 10 concerning the generated output. 1 means that
it demands a huge effort to transform the output into the
reference, and 10 means that this transformation can be very
easily done. Although not a standard practice yet, the use of
LLM-as-judge becomes more common [51] – SELECT, JOIN
(associate), WHERE (query).

https://eclipse.dev/atl/atlTransformations/


SLE ’24, October 20–21, 2024, Pasadena, CA, USA James William Pontes Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé

Table 2. Evaluated Model Views as Model-to-Model Transformations in ATL.

ID Transformation Description Metamodel 1 Metamodel 2
T1 “The BibTeXML to DocBook example describes a transformation of a BibTeXML model

to a DocBook-composed document. BibTeXML is an XML-based format... [5 lines]”
BibTeX DocBook

T2 “The Class to Relational example describes the simplified transformation of a class
model to a relational database schema. [1 line]”

Class Relational

T3 “The “Families to Persons” transformation describes a simple model transformation
example... [2 lines]”

Families Persons

T4 “RSS is a format for syndicating news and the content of news-like sites. Atom is an
XML-based file format intend... [4 lines]”

ATOM RSS

T5 “This transformation presents a basic example where a tree is transformed into a list...
[2 lines]”

List Tree

Table 3. Quantitative evaluation - VPDL matching relations between classes using 1-shot prompt template.

ID Reference Our approach Baseline solution (ChatGPT)
Precision Recall Syntactic Correctness Precision Recall Syntactic Correctness

V1 2 0.50 0.50 100 % 0.00 0.00 0 %
V2 1 0.02 0.50 100 % N/A N/A 0 %
V3 1 0.00 0.00 100 % 0.16 1.00 0 %
V4 1 0.00 0.00 100 % N/A N/A 0 %

Table 4. Quantitative evaluation - VPDL matching properties using 1-shot prompt template.

ID Reference Our approach Baseline solution (ChatGPT)
Precision Recall Syntactic Correctness Precision Recall Syntactic Correctness

V1 8 0.58 0.58 100 % 0.66 1.00 0 %
V2 8 0.38 0.38 100 % N/A N/A 0 %
V3 52 0.15 0.15 100 % 0.00 0.00 0 %
V4 12 0.54 0.54 100 % N/A N/A 0 %

Table 5.Qualitative evaluation - Assessment for the matched
rules (i. e. WHERE).

ID Match Rules Human judge LLM judge
V1 Yes Good 3
V2 Yes Satisfactory 2.5
V3 No Good 2
V4 No Inadequate 2

Table 7 shows similar metrics assessing the quality of the
results for themodel views expressed as ATL transformations
(cf. Table 2). In this ATL case, only Human Judge and LLM
Judge were considered as it is not trivial to go from the list of
predicted relations to the final ATL code used as reference.

6.4 Analysis of the Results
Concerning the Quantitative Evaluation, the Precision and
Recall vary from 0.00 (no relevant prediction) to 0.58 (a de-
cent number of relevant predictions) depending on the cases.
Overall, our approach performs better when trying to predict

selected properties (SELECT) than when trying to predict po-
tential relations (JOIN). This seems logical since identifying
semantic relations between concepts is a more challenging
task. Still, for the relations (JOIN), our approach is currently
more efficient in the ATL case than in the VPDL one. This
could be explained by the fact that the LLM is by default
more knowledgeable about the notion of model-to-model
transformation (and ATL) than about the notion of model
views (and VPDL). This is coherent with our choice of using
an in-context approach in order to avoid having to perform
a pre-training phase (for both VPDL and ATL).
When compared to the baseline solution, our approach

does not currently perform systematically better in terms of
precision and recall. However, it always succeeded in pro-
viding an output at least suitable in terms of syntax. This
is already valuable from an user perspective, compared to
the baseline solution that was sometimes unable to provide
actually exploitable code. Indeed, using standard ChatGPT
requires the engineer to have a solid PE expertise in order to



Towards an In-context LLM-based Approach for Model Views SLE ’24, October 20–21, 2024, Pasadena, CA, USA

Table 6. Quantitative evaluation - ATL matching relations between classes using 1-shot prompt template.

ID Reference Our approach Baseline solution (ChatGPT)
Precision Recall Syntactic Correctness Precision Recall Syntactic Correctness

T1 16 0.05 0.08 100 % 0.11 0.12 0 %
T2 6 0.30 0.38 100 % 0.33 0.33 0 %
T3 2 0.50 1.00 100 % 0.00 0.00 0 %
T4 3 0.00 0.00 100 % 0.5 0.33 0 %
T5 2 0.00 0.00 100 % 0.5 1.00 0 %

Table 7. Qualitative evaluation - Assessment for model-to-
model transformations.

ID Human judge LLM Judge

T1 Satisfactory 3.00
T2 Satisfactory 3.00
T3 Satisfactory 2.33
T4 Satisfactory 2.67
T5 Satisfactory 2.00

improve the results and avoid hallucinations. A main objec-
tive of our approach is to completely hide this complexity to
the regular engineer.

Concerning the Qualitative Evaluation, the Matched Rules
and Human Judge metrics reveal that a majority of the ob-
tained outputs are actually satisfactory from an engineer
perspective. While still requiring human intervention, the
generated drafts of model view definitions appear to be rel-
evant starting points. The LLM Judge scores, that globally
range from 2 to 3, provide a complementary perspective on
the possibility of transforming relatively easily the obtained
outputs into the reference code. This indicates that, while not
always very close to the expected output, the desired model
view definitions can actually be derived by considering a
reasonable number of modifications.
To summarize, results we obtained so far demonstrate

that our approach already manages to fully automatically
generate exploitable model view definitions. In this sense, it
appears to be relevant in comparison to a baseline solution
relying on standard ChatGPT. While still improveable, the
obtained results show the feasibility and applicability of the
proposed approach and its current implementation. Themain
intent of the presented work is notably to show that it is
possible to automatically provide relatively relevant inputs
to the engineer without any pre-training.

7 Related work
To contextualize our contributions, we discuss the related
work on LLMs applied to software engineering and more par-
ticularly to MDE. We also discuss other textual model view
definition approaches, with a focus on automated solutions.

7.1 LLMs for Software Engineering and MDE
LLMs have seen rapid development over recent years, evolv-
ing from simple text-to-text language problems [40] models
to complex architectures capable of understanding and gen-
erating human-like text [10]. Due to their capabilities, LLMs
have been mostly applied in SE to code-related tasks [7, 25].
This notably includes code generation, repair, completion,
debugging, and testing. Besides code, LLMs have also been
applied to deal with SE processes [4, 9] for instance.
In the context of MDE, LLMs are primarily applied to

provide more advanced model recommendation and gener-
ation capabilities. For example, existing approaches intend
to use LLMs in order to propose design recommendations
when metamodeling in general [46] or more specifically for
UML [17]. Overall, various analysis of the relevance and
performance of LLMs for supporting MDE activities show
promising results [20, 22].
Closer to our view definition context, there is a long his-

tory of solutions for dealingwith text-to-SQL generation [30].
These notably includes the use of ML techniques such as in
the TaBERT LM pre-trained on (semi-)structured tables [49]
for example. This kind of approach is different from ours
since we do not want to pre-train the LLM.

More similar to our approach, a more recent solution inves-
tigates the use of LLMs and PE (precisely few-shot prompt-
ing) to explore the text-to-SQL capabilities of the GPT-family
models [39]. We have been inspired by such an approach
that we adapted in our particular context. Also, quite re-
cently, researchers used both a specialized LLM for code
(cf. Codex) and a general purpose LLM (GPT-4) to generate
Object Constraint Language (OCL) code [1, 2]. In both cases,
the LLMs were capable of directly generating relevant code.
Although the precise information of the datasets used for
trained closed-source models like the GPT ones does not
exist, a cursory search on GitHub can reveal the amount
of public code available17 Compared to our VPDL case, the
existing public code base (for both OCL and SQL) is very

17∼6 k OCL files and ∼163 k SQL files. Searched on June 2024 with the
query: https://github.com/search?q=path%3A.LANGUAGE_EXTENSION+
context&type=code.

https://github.com/search?q=path%3A.LANGUAGE_EXTENSION+context&type=code
https://github.com/search?q=path%3A.LANGUAGE_EXTENSION+context&type=code


SLE ’24, October 20–21, 2024, Pasadena, CA, USA James William Pontes Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé

significantly larger. As a result, we cannot expect an off-the-
shelf LLM to generate VPDL code as it can already generate
SQL or OCL (for example).

7.2 Textual Definition of Model Views
Some approaches propose to write model view definitions
using textual notations. This is the case of the EMF Views so-
lution via the VPDL language we consider in this paper [14].
However, it is important to note that EMF Views also provide
two alternative ways of defining a model view: 1) program-
matically via a dedicated API, 2) automatically by computing
(for instance by model transformation) a weaving model
containing the view specific information. Similarly to EMF
Views and VPDL, the ModelJoin solution proposes a different
DSL to specify model views relying on a metamodel genera-
tor and corresponding higher-order transformations [15].
Following a different approach, other researchers pro-

posed a solution for partially automated view creation based
on existing source code [8]. Contrary to our approach, this
is performed without an actual model view definition and is
not intended to deal with modeling languages. In the same
vein, the VIATRA framework also allows to create view-like
artifacts without providing an explicit textual definition [21].
However, this work is quite specific to UML models while
we target different modeling languages.

To the best of our current knowledge, there is no real LLM-
based solutions for model view definition in the literature.
As we have seen, existing automation approaches mostly
focus on particular kinds of models/artifacts rather than on
the possible support for multiple modeling languages. The
approach and implementation proposed in this paper intend
to be a first step in this direction.

8 Conclusions and Future Work
In this paper, we presented an in-context LLM-based ap-
proach to support engineers in writing their model view
definitions by providing only limited information as input.
The main objective is to prevent them from starting from
scratch when dealing with such a task, independently from
the modeling languages contributing to the view. To achieve
this, we proposed to adapt and combine state-of-the-art PE
techniques in our MDE context. The current implementation
of our approach notably relies on the LangChain integration
framework, GPT LLM, PyEcore library, and newly defined
EMF Views-specific components. We validated the proposed
approach and implementation by considering differentmodel
views, specified as VPDL files or ATL model-to-model trans-
formations. The results we obtained already demonstrate the
feasibility and applicability of our approach.
However, there is still room for improvement regarding

various aspects of our approach and its current implemen-
tation. Thus, we plan to explore different complementary
research directions in the future.

First of all, we could start by extending the already per-
formed evaluation. In practice, we could experiment with our
approach and implementation on more examples of model
views specified in VPDL, such as ATL transformations, or
ideally in other ways. However, while evaluating our ap-
proach, we encountered some difficulties finding relevant
model view data sets outside of the EMF Views and ATL
worlds. To overcome this in the future, building a larger and
more generic data set could be a useful contribution to the
community (notably for benchmark purposes).

Moreover, the work on the prompt templates themselves
could be continued without having to actually alter the rest
of the approach and implementation. As we have been able
to observe, PE is an empirical discipline that often requires
many trial-and-error iterations. Thus, we may be able to
further improve the current results just by modifying our
prompt templates in different ways. Complementary to this,
the application of other PE techniques (e. g. in addition to
Chain-of-Thoughts) could be studied and then evaluated.
Another direction for potential improvement would con-

sist in evolving the architecture of the approach itself. The
current version of our approach is basically relying on a
single LLM-agent. However, multi-agent collaboration is
gaining significant momentum in the AI/LLM community,
and is already demonstrating interesting capabilities com-
pared to single-agent solutions [41]. As a consequence, we
could envision the integration of our single approach/agent
together with other more specialized agents and tools (e.g.
for model querying or semantic mapping).

In addition to improving the quality of the results, a direct
benefit of a multi-agent approach could be a better integra-
tion of the human in the loop if we consider it relevant in
the future. Indeed, our current approach is voluntarily de-
signed to allow engineers to provide only the initial inputs.
It then works as a black box until the model view definition
is generated as output. In a possible alternative version of
our approach, we could 1) collect intermediate inputs from
the engineers (e.g. in chat mode) and 2) consider these in-
puts for the different internal iterations regarding the three
main parts of view. Thanks to such a more interactive ap-
proach, we may be able to obtain comprehensive model view
definitions that better correspond to the engineers’ wills.

Acknowledgments
This work was partially funded by the AIDOaRt European
project, an ECSEL Joint Undertaking (JU) project under grant
agreement No. 101007350, and by a complementary grant
from the French region Pays de la Loire.

References
[1] Seif Abukhalaf, Mohammad Hamdaqa, and Foutse Khomh. 2023. On

Codex Prompt Engineering for OCL Generation: An Empirical Study.
In 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR). 148–157. https://doi.org/10.1109/MSR59073.2023.

https://doi.org/10.1109/MSR59073.2023.00033
https://doi.org/10.1109/MSR59073.2023.00033


Towards an In-context LLM-based Approach for Model Views SLE ’24, October 20–21, 2024, Pasadena, CA, USA

00033 ISSN: 2574-3864.
[2] Seif Abukhalaf, Mohammad Hamdaqa, and Foutse Khomh. 2024.

PathOCL: Path-Based Prompt Augmentation for OCL Generation with
GPT-4. http://arxiv.org/abs/2405.12450 arXiv:2405.12450 [cs].

[3] Wasif Afzal, Hugo Bruneliere, Davide Di Ruscio, Andrey Sadovykh,
Silvia Mazzini, Eric Cariou, Dragos Truscan, Jordi Cabot, Abel Gómez,
Jesús Gorroñogoitia, Luigi Pomante, and Pavel Smrz. 2018. The
MegaM@Rt2 ECSEL project: MegaModelling at Runtime – Scalable
model-based framework for continuous development and runtime
validation of complex systems. Microprocessors and Microsystems 61
(Sept. 2018), 86–95. https://doi.org/10.1016/j.micpro.2018.05.010

[4] Massoud Alibakhsh. 2023. Challenges of Integrating LLMs Like Chat-
GPT with Enterprise Software and Solving it with Object Messag-
ing and Intelligent Objects as a New Software Design Paradigm. In
2023 Congress in Computer Science, Computer Engineering, & Applied
Computing (CSCE). 313–317. https://doi.org/10.1109/CSCE60160.2023.
00054

[5] Guangsheng Bao, Hongbo Zhang, Linyi Yang, CunxiangWang, and Yue
Zhang. 2024. LLMs with Chain-of-Thought Are Non-Causal Reasoners.
https://doi.org/10.48550/arXiv.2402.16048 arXiv:2402.16048 [cs].

[6] Angela Barriga, Rogardt Heldal, Adrian Rutle, and Ludovico Iovino.
2022. PARMOREL: a framework for customizable model repair. Soft-
ware and Systems Modeling 21, 5 (Oct. 2022), 1739–1762. https:
//doi.org/10.1007/s10270-022-01005-0

[7] Adna Beganovic, Muna Abu Jaber, and Ali Abd Almisreb. 2023. Meth-
ods and Applications of ChatGPT in Software Development: A Litera-
ture Review. Southeast Europe Journal of Soft Computing 12, 1 (May
2023), 08–12. http://scjournal.ius.edu.ba/index.php/scjournal/article/
view/251 Number: 1.

[8] Artur Boronat. 2019. Code-First Model-Driven Engineering: On the
Agile Adoption of MDE Tooling. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 874–886. https:
//doi.org/10.1109/ASE.2019.00086 ISSN: 2643-1572.

[9] Sebastian G. Bouschery, Vera Blazevic, and Frank T. Piller. 2023. Aug-
menting human innovation teams with artificial intelligence: Explor-
ing transformer-based language models. Journal of Product Innovation
Management 40, 2 (2023), 139–153. https://doi.org/10.1111/jpim.12656
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jpim.12656.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, Vol. 33. Curran
Associates, Inc., 1877–1901. https://proceedings.neurips.cc/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[11] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. 2019.
A feature-based survey of model view approaches. Software & Systems
Modeling 18, 3 (June 2019), 1931–1952. https://doi.org/10.1007/s10270-
017-0622-9

[12] Hugo Bruneliere, FlorentMarchand de Kerchove, Gwendal Daniel, Sina
Madani, Dimitris Kolovos, and Jordi Cabot. 2020. Scalable model views
over heterogeneous modeling technologies and resources. Software
and Systems Modeling 19, 4 (2020), 827–851.

[13] Hugo Bruneliere, Vittoriano Muttillo, Romina Eramo, Luca Berar-
dinelli, Abel Gómez, Alessandra Bagnato, Andrey Sadovykh, and
Antonio Cicchetti. 2022. AIDOaRt: AI-augmented Automation for
DevOps, a model-based framework for continuous development in
Cyber–Physical Systems. Microprocessors and Microsystems 94 (Oct.
2022), 104672. https://doi.org/10.1016/j.micpro.2022.104672

[14] Hugo Bruneliere, Jokin Garcia Perez, ManuelWimmer, and Jordi Cabot.
2015. EMF Views: A View Mechanism for Integrating Heterogeneous
Models. https://doi.org/10.1007/978-3-319-25264-3_23

[15] Erik Burger, Jörg Henss, Martin Küster, Steffen Kruse, and Lucia Happe.
2016. View-based model-driven software development with ModelJoin.
Software & Systems Modeling 15, 2 (May 2016), 473–496. https://doi.
org/10.1007/s10270-014-0413-5

[16] Johan Cederbladh, Luca Berardinelli, Hugo Bruneliere, Antonio Cic-
chetti, Mohammadhadi Dehghani, Claudio Di Sipio, James Pontes Mi-
randa, Abbas Rahimi, Riccardo Rubei, and Jagadish Suryadevara. 2024.
Towards Automating Model-Based Systems Engineering in Industry -
An Experience Report. In The 18th Annual IEEE International Systems
Conference (SYSCON 2024). Montreal, Canada. https://hal.science/hal-
04448172

[17] Meriem Ben Chaaben, Lola Burgueño, and Houari Sahraoui. 2023.
Towards using Few-Shot Prompt Learning for Automating Model
Completion. In 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering: New Ideas and Emerging Results (ICSE-NIER). 7–12.
https://doi.org/10.1109/ICSE-NIER58687.2023.00008 ISSN: 2832-7632.

[18] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie
Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye,
Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie. 2024. A
Survey on Evaluation of Large Language Models. ACM Transactions
on Intelligent Systems and Technology 15, 3 (March 2024), 39:1–39:45.
https://doi.org/10.1145/3641289

[19] Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin
Zhu. 2024. Unleashing the potential of prompt engineering: a
comprehensive review. https://doi.org/10.48550/arXiv.2310.14735
arXiv:2310.14735 [cs].

[20] Kua Chen, Yujing Yang, Boqi Chen, José Antonio Hernández López,
Gunter Mussbacher, and Dániel Varró. 2023. Automated Domain
Modeling with Large Language Models: A Comparative Study. (July
2023). https://doi.org/10.5281/ZENODO.8118642 Publisher: Zenodo
Version Number: v5.

[21] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, andD. Varro. 2002.
VIATRA - visual automated transformations for formal verification
and validation of UML models. In Proceedings 17th IEEE International
Conference on Automated Software Engineering,. IEEE, Edinburgh, UK,
267–270. https://doi.org/10.1109/ASE.2002.1115027

[22] Javier Cámara, Javier Troya, Lola Burgueño, and Antonio Vallecillo.
2023. On the assessment of generative AI in modeling tasks: an expe-
rience report with ChatGPT and UML. Software and Systems Modeling
22, 3 (June 2023), 781–793. https://doi.org/10.1007/s10270-023-01105-5

[23] MohammadHadi Dehghani, Shekoufeh Kolahdouz-Rahimi, Massimo
Tisi, and Dalila Tamzalit. 2022. Facilitating the migration to the mi-
croservice architecture via model-driven reverse engineering and rein-
forcement learning. Software and Systems Modeling 21, 3 (June 2022),
1115–1133. https://doi.org/10.1007/s10270-022-00977-3

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Conference of
the North. Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[25] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho
Sengupta, Shin Yoo, and Jie M. Zhang. 2023. Large Language Models
for Software Engineering: Survey and Open Problems. https://doi.
org/10.48550/arXiv.2310.03533 arXiv:2310.03533 [cs].

[26] Luyu Gao, AmanMadaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming
Yang, Jamie Callan, and Graham Neubig. 2023. PAL: Program-aided
Language Models. In Proceedings of the 40th International Conference
on Machine Learning. PMLR, 10764–10799. https://proceedings.mlr.
press/v202/gao23f.html ISSN: 2640-3498.

[27] Samira Ghodratnama and Mehrdad Zakershahrak. 2024. Adapt-
ing LLMs for Efficient, Personalized Information Retrieval: Methods

https://doi.org/10.1109/MSR59073.2023.00033
http://arxiv.org/abs/2405.12450
https://doi.org/10.1016/j.micpro.2018.05.010
https://doi.org/10.1109/CSCE60160.2023.00054
https://doi.org/10.1109/CSCE60160.2023.00054
https://doi.org/10.48550/arXiv.2402.16048
https://doi.org/10.1007/s10270-022-01005-0
https://doi.org/10.1007/s10270-022-01005-0
http://scjournal.ius.edu.ba/index.php/scjournal/article/view/251
http://scjournal.ius.edu.ba/index.php/scjournal/article/view/251
https://doi.org/10.1109/ASE.2019.00086
https://doi.org/10.1109/ASE.2019.00086
https://doi.org/10.1111/jpim.12656
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1016/j.micpro.2022.104672
https://doi.org/10.1007/978-3-319-25264-3_23
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1007/s10270-014-0413-5
https://hal.science/hal-04448172
https://hal.science/hal-04448172
https://doi.org/10.1109/ICSE-NIER58687.2023.00008
https://doi.org/10.1145/3641289
https://doi.org/10.48550/arXiv.2310.14735
https://doi.org/10.5281/ZENODO.8118642
https://doi.org/10.1109/ASE.2002.1115027
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1007/s10270-022-00977-3
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.2310.03533
https://doi.org/10.48550/arXiv.2310.03533
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html


SLE ’24, October 20–21, 2024, Pasadena, CA, USA James William Pontes Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé

and Implications. In Service-Oriented Computing – ICSOC 2023 Work-
shops, Flavia Monti, Pierluigi Plebani, Naouel Moha, Hye-young Paik,
Johanna Barzen, Gowri Ramachandran, Devis Bianchini, Damian A.
Tamburri, and Massimo Mecella (Eds.). Springer Nature, Singapore,
17–26. https://doi.org/10.1007/978-981-97-0989-2_2

[28] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma,
Kaya Stechly, Siddhant Bhambri, Lucas Paul Saldyt, and Anil B. Murthy.
2024. Position: LLMs Can’t Plan, But Can Help Planning in LLM-
Modulo Frameworks. https://openreview.net/forum?id=Th8JPEmH4z

[29] Aarushi Kansal. 2024. LangChain: Your Swiss Army Knife. In Building
Generative AI-Powered Apps: A Hands-on Guide for Developers. Springer,
17–40.

[30] George Katsogiannis-Meimarakis and Georgia Koutrika. 2023. A sur-
vey on deep learning approaches for text-to-SQL. The VLDB Journal
32, 4 (July 2023), 905–936. https://doi.org/10.1007/s00778-022-00776-8

[31] Zheng Liu, Yujia Zhou, Yutao Zhu, Jianxun Lian, Chaozhuo Li,
Zhicheng Dou, Defu Lian, and Jian-Yun Nie. 2024. Information Re-
trieval Meets Large Language Models. In Companion Proceedings of the
ACM on Web Conference 2024. ACM, Singapore Singapore, 1586–1589.
https://doi.org/10.1145/3589335.3641299

[32] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and
how to develop domain-specific languages. ACM computing surveys
(CSUR) 37, 4 (2005), 316–344.

[33] James Miranda, Hugo Bruneliere, Massimo Tisi, and Gerson Sunyé.
2024. Integrating the Support for Machine Learning of Inter-Model
Relations in Model Views. The Journal of Object Technology (July 2024),
1–14.

[34] Mohamed Nejjar, Luca Zacharias, Fabian Stiehle, and Ingo Weber.
2024. LLMs for Science: Usage for Code Generation and Data Analysis.
https://doi.org/10.48550/arXiv.2311.16733 arXiv:2311.16733 [cs].

[35] Object Management Group (OMG). 2024. The Business Process Model
and Notation (BPMN). https://www.bpmn.org/ Last accessed 24 June
2024.

[36] Object Management Group (OMG). 2024. The Systems Modeling
Language (SysML). https://sysml.org/ Last accessed 24 June 2024.

[37] Object Management Group (OMG). 2024. The Unified Modeling Lan-
guage (UML). https://www.uml.org/ Last accessed 24 June 2024.

[38] Oleksiy Ostapenko, Zhan Su, Edoardo Maria Ponti, Laurent Charlin,
Nicolas Le Roux, Matheus Pereira, Lucas Caccia, and Alessandro Sor-
doni. 2024. Towards Modular LLMs by Building and Reusing a Library
of LoRAs. http://arxiv.org/abs/2405.11157 arXiv:2405.11157 [cs].

[39] Rajaswa Patil, Manasi Patwardhan, Shirish Karande, Lovekesh Vig, and
Gautam Shroff. 2023. Exploring Dimensions of Generalizability and
Few-shot Transfer for Text-to-SQL Semantic Parsing. In Proceedings
of The 1st Transfer Learning for Natural Language Processing Workshop.
PMLR, 103–114. https://proceedings.mlr.press/v203/patil23a.html
ISSN: 2640-3498.

[40] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020.
Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research 21, 140 (2020),
1–67. http://jmlr.org/papers/v21/20-074.html

[41] Zachary Schillaci. 2024. LLM Adoption Trends and Associated Risks.
In Large Language Models in Cybersecurity: Threats, Exposure and Miti-
gation, Andrei Kucharavy, Octave Plancherel, Valentin Mulder, Alain
Mermoud, and Vincent Lenders (Eds.). Springer Nature Switzerland,
Cham, 121–128. https://doi.org/10.1007/978-3-031-54827-7_13

[42] Xiangru Tang, ZhihaoWang, JiyangQi, and Zengyang Li. 2019. Improv-
ing code generation from descriptive text by combining deep learning
and syntax rules. Proceedings of the International Conference on Soft-
ware Engineering and Knowledge Engineering, SEKE 2019-July (2019),
385–390. https://doi.org/10.18293/SEKE2019-170 ISBN: 1891706489.

[43] Oguzhan Topsakal and Tahir Cetin Akinci. 2023. Creating Large
Language Model Applications Utilizing LangChain: A Primer on De-
veloping LLM Apps Fast. International Conference on Applied En-
gineering and Natural Sciences 1, 1 (July 2023), 1050–1056. https:
//doi.org/10.59287/icaens.1127

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polo-
sukhin. 2017. Attention is All you Need. In Advances in Neu-
ral Information Processing Systems, Vol. 30. Curran Associates,
Inc. https://proceedings.neurips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[45] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian
Ichter, Fei Xia, Ed Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-
of-Thought Prompting Elicits Reasoning in Large Language Models.
Advances in Neural Information Processing Systems 35 (Dec. 2022),
24824–24837. https://proceedings.neurips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

[46] Martin Weyssow, Houari Sahraoui, and Eugene Syriani. 2022. Rec-
ommending Metamodel Concepts during Modeling Activities with
Pre-Trained Language Models. Software and Systems Modeling 21, 3
(June 2022), 1071–1089. https://doi.org/10.1007/s10270-022-00975-5
arXiv:2104.01642 [cs].

[47] Weizhe Xu, Mengyu Liu, Oleg Sokolsky, Insup Lee, and
Fanxin Kong. 2024. LLM-enabled Cyber-Physical Systems:
Survey, Research Opportunities, and Challenges. (May 2024).
https://par.nsf.gov/biblio/10499418-llm-enabled-cyber-physical-
systems-survey-research-opportunities-challenges Publisher:
International Workshop on Foundation Models for Cyber-Physical
Systems & Internet of Things (FMSys).

[48] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik
Narasimhan, and Yuan Cao. 2023. ReAct: Synergizing Reasoning and
Acting in Language Models. International Conference on Learning
Representations (ICLR) (Jan. 2023). https://par.nsf.gov/biblio/10451467-
react-synergizing-reasoning-acting-language-models

[49] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel.
2020. TaBERT: Pretraining for Joint Understanding of Textual and
Tabular Data. In Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, Dan Jurafsky, Joyce Chai, Na-
talie Schluter, and Joel Tetreault (Eds.). Association for Computational
Linguistics, Online, 8413–8426. https://doi.org/10.18653/v1/2020.acl-
main.745

[50] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021.
Calibrate Before Use: Improving Few-shot Performance of Language
Models. In Proceedings of the 38th International Conference on Machine
Learning. PMLR, 12697–12706. https://proceedings.mlr.press/v139/
zhao21c.html ISSN: 2640-3498.

[51] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhang-
hao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P.
Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing LLM-as-a-Judge with MT-Bench and Chatbot Arena. http:
//arxiv.org/abs/2306.05685 arXiv:2306.05685 [cs].

https://doi.org/10.1007/978-981-97-0989-2_2
https://openreview.net/forum?id=Th8JPEmH4z
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.1145/3589335.3641299
https://doi.org/10.48550/arXiv.2311.16733
https://www.bpmn.org/
https://sysml.org/
https://www.uml.org/
http://arxiv.org/abs/2405.11157
https://proceedings.mlr.press/v203/patil23a.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/978-3-031-54827-7_13
https://doi.org/10.18293/SEKE2019-170
https://doi.org/10.59287/icaens.1127
https://doi.org/10.59287/icaens.1127
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1007/s10270-022-00975-5
https://par.nsf.gov/biblio/10499418-llm-enabled-cyber-physical-systems-survey-research-opportunities-challenges
https://par.nsf.gov/biblio/10499418-llm-enabled-cyber-physical-systems-survey-research-opportunities-challenges
https://par.nsf.gov/biblio/10451467-react-synergizing-reasoning-acting-language-models
https://par.nsf.gov/biblio/10451467-react-synergizing-reasoning-acting-language-models
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

	Abstract
	1 Introduction
	2 Background
	2.1 Model Views
	2.2 Large Language Models (LLMs)

	3 Running Example
	4 Approach
	4.1 Overview
	4.2 Focus on Prompt Templates

	5 Implementation
	6 Evaluation
	6.1 Reproducing existing model views
	6.2 Inferring semantic equivalence
	6.3 Obtained Results
	6.4 Analysis of the Results

	7 Related work
	7.1 LLMs for Software Engineering and MDE
	7.2 Textual Definition of Model Views

	8 Conclusions and Future Work
	Acknowledgments
	References

