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Robust DNNs for power allocation problems in
cognitive relay networks

Yacine Benatia, Anne Savard, Senior Member, IEEE, Romain Negrel, and E. Veronica Belmega, Senior
Member, IEEE

Abstract—In this paper, we investigate deep neural network
(DNN)-based power allocation policies maximizing the opportun-
istic rate of a relay-aided cognitive radio network under a quality
of service (QoS) constraint protecting the primary transmission.
The full-duplex relay performs either Decode-and-Forward (DF)
or Compress-and-Forward (CF) and assists the opportunistic
communication. The considered primary QoS constraint is ex-
pressed in terms of the tolerated primary rate degradation
compared to the case of no opportunistic interference. In order to
cope with imperfect channel state information (CSI) especially
regarding the links to/from the primary network, we propose
a self-supervised learning approach that skillfully exploits both
perfect and imperfect CSI knowledge within the training phase.
Since none of the two relaying schemes is optimal in all system
setups (e.g., relative position of the different transmitters, receiver
and of the relay), we then propose a novel supervised DNN-based
relaying scheme selection. Finally, we extend all these results by
proposing a self-supervised DNN-based power allocation policy
that is able to generalize over system parameters such as the
individual power budget, and the allowed level of primary
degradation. Our extensive numerical results on synthetic data
demonstrate the effectiveness of our proposed deep learning
approaches.

Index Terms—Unsupervised deep learning, self-supervised
deep learning, full-duplex relaying, cognitive radio, imperfect
CSI.

I. INTRODUCTION

The recent massive increase in the number of connected
users and devices is challenging future communication net-
works in terms of throughput, energy and spectral efficiency,
etc. [1]. Several promising technologies, such as: cognitive ra-
dio, full-duplexing, cooperative communications, and artificial
intelligence, etc. each of them focusing on specific goals, need
to be jointly exploited [2]–[4].

On the one hand, cognitive radio and full-duplexing are
key technologies to enable next-generation communication
networks by tackling the spectrum scarcity. First, cognitive
radio allows for a more efficient use of the available spectrum
by providing unlicensed users (also termed as opportunistic
or secondary users) with the access to the licensed frequency
bands (i.e., allocated to licensed users, also termed as primary
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users) as long as the induced interference satisfies some
established quality of service [5], [6]. Second, under full-
duplex communication, users can transmit and receive data
simultaneously on the same frequency band, doubling hence
the spectral efficiency [7].

One the other hand, cooperative communications are able
to increase the network capacity and throughput by exploiting
signals received from other users within range [8], [9]. The
easiest model of such a cooperative network is the well-known
relay channel, where one node, called relay, is willing to help
a source node to communicate with its associated destination
[10], [11]. The relay can perform various operations and three
main relaying schemes, termed Amplify-and-Forward (AF),
Decode-and-Forward (DF) and Compress-and-Forward (CF),
have been proposed in the literature [11]. Under AF, the relay
simply amplifies its received signal up to a power constraint
before sending it to the destination node. DF and CF follow
from information theory: under DF, the relay decodes the
source message before re-encoding it and sending it to the
destination; whereas under CF, the relay sends a compressed
version of its received signal to the destination.

More recently, artificial intelligence and, in particular, deep
learning (DL) has been shown to have an immense potential
as a leading technology to address various challenges in future
wireless networks. Indeed, DL has proven to be effective in
reducing or replacing manual network configuration and man-
agement, optimizing communication resources, and adjusting
system settings [3], [12], [13]. Additionally, DL techniques
have been applied to solve resource optimization problems,
which can greatly benefit future generations of networks, as
evidenced by recent studies [14], [15].

In this paper, we jointly combine the above mentioned
technologies to improve both the spectral efficiency and net-
work throughput by considering a relay-aided cognitive radio
network, where the opportunistic transmission is assisted by
a full-duplex relay performing either DF or CF. In order to
protect the licensed user, the opportunistic user and relay are
allow to transmit as long as the primary Quality of Service
(QoS) constraint, expressed in terms of maximum allowed
penalty on the achievable primary rate, is satisfied. We further
focus on the case of imperfect channel state information (CSI)
similarly to our previous study [16] and investigate how to
best choose between DF and CF while optimizing the power
allocation policy. We further study the robustness of our DNN-
based approaches in terms of generalization over the system
parameters, such as the power budget, the maximum allowed
primary rate degradation.
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A. Existing works

Because of the operations performed at the relay, the
resulting power allocation problems in such a relay-aided
cognitive network are non-convex ones, which are hard to
solve analytically [16]–[18]. Instead, iterative methods have
been proposed to maximize the sum-rate of multi-users net-
works, such as weighted minimum mean square error [19]
in MIMO interfering broadcast channels or iterative water-
filling [20] in cognitive radio network exploiting Orthogonal
Frequency Division Multiplexing (OFDM). However, these
methods may converge very slowly to only a local extremum
in the aformentioned non-convex settings and may not be able
to handle imperfect CSI, especially when the number of users
is large [21], [22].

To overcome these issues, we exploit deep neural networks
(DNN), which were shown to provide good approximations
of the optimal solutions in complex and non-convex optimiz-
ation problems with low computational complexity compared
to exhaustive search [14], [22]–[31]. Recently, DNN-based
resource allocation policies have been widely applied in multi-
user networks when either maximizing the achievable sum rate
[14], the spectral efficiency [21], [22], [24] or the energy effi-
ciency [23], [32]. The considered networks rely either on D2D
communications constrained by both a total power budget and
some QoS constraints [21], [22], on non-orthogonal multiple
access under QoS and total power budget [23], on massive
MIMO under total power budget constraint [24], on wireless-
powered network under a power budget [32] or on multi-user
interference channel [14].

Moreover, DNN-based resource allocation policies have also
been proposed in cognitive radio networks to maximize the
spectral efficiency under power budget and QoS requirements
protecting the primary users [15], [33], [34], or to minimize
the consumed power ensuring that a predefined signal to noise
interference ratio is met for both the primary and secondary
users [35].

Regarding relay selection and relaying scheme selection,
different approaches can be found in the literature. On the
one hand, many works can be found regarding relay selection,
where the best relay node among multiple relay candidates
[36], [37] has to be chosen. Usually, the selection is performed
such that the relay maximizing the achievable rate (or the
signal to noise ratio) [36] or the spectral efficiency [37] is
chosen. This search task can be performed using DNN [37]–
[39]. On the other hand, relaying scheme selection focuses on
choosing among different relaying schemes, the one yielding
the best performance. For example, in [40], [41] both AF and
DF relaying schemes were considered, where the selection
criterion was to maximize the signal to noise ratio in [40],
whereas the authors of [41] considered an outage-based and
symbol error rate-based method.

Regarding the robustness to channel state information (CSI)
imperfections, a DNN-based autoencoder enhancing the chan-
nel estimation quality has been proposed in [42]. The latter
was then used as the input of a second DNN to maximize
the achievable sum-rate of cognitive radio networks. In [22],
a power allocation policy maximizing the average spectral

efficiency of the D2D user, while maintaining the QoS of the
cellular user equipment to an allowable level under imperfect
CSI was proposed for underlay D2D communications. The
effect of imperfect CSI was tackled via DNN, such that
the proposed power allocation policy was robust to channel
estimation errors.

The closest works are our two previous studies [16], [18]. To
the best of our knowledge, our previous study [18] was the first
one to exploit unsupervised DNN to solve resource allocation
in cooperative cognitive networks. In the latter, we assumed
that perfect CSI was available throughout the network. Since
perfect CSI especially for the links related to the primary
network is difficult to obtain, we then relaxed this assumption
and extended our proposed approach to the case of imperfect
CSI in [16], in which we proposed a robust training procedure.

In this paper, we extend our previous studies by first
comparing the two relaying schemes in terms of opportunistic
achievable rates and primary protection as a function of
the node positions, leading to the problem of relay scheme
selection; and then propose a new self-supervised DNN able
to generalize over several system parameters (power budget of
the secondary network, requirement protection of the primary
transmission).

B. Main contributions
Specifically, our main contributions can be summarized as

follows.
• We first propose a self-supervised DNN-based power al-
location policy maximizing the secondary instantaneous rate
assuming either DF or CF relaying, imperfect CSI, and under a
QoS constraint protecting the primary transmission as well as
individual transmit power constraints. Unlike classical optim-
ization approaches that are quite sensitive to imperfect CSI, we
show that our DNN-based approach can be efficiently rendered
robust via self-supervised learning based on training data that
contains coupled samples of perfect and imperfect channels.
The obtained secondary rates as well as primary degradation
under each of the relaying schemes are then investigated
as functions of the relay position, leading to representative
regions where one of the two relaying schemes is more suited.
• Motivated by the above, we then investigate the relaying
scheme selection issue and propose two strategies. Our first
strategy exploits our aforementioned self-supervised based
scheme under DF and CF. The second one involves an extra
DNN alongside a supervised learning approach. The two
schemes are compared both in terms of secondary rates, as
well as in terms of primary degradation. By tuning a threshold
parameter within the extra DNN approach, we show that the
primary transmission can be better protected at the cost of
secondary rate.
• Finally, we generalize all the above to the case where the
system parameters, i.e., power budgets and primary degrada-
tion parameter are not fixed but can vary within a given range.
his demonstrates the flexibility and generalization capability of
our proposed approaches.

The rest of the paper is organized as follows: Section II
presents system model under study. In Section III, we intro-
duce our self-supervised DNN-based power allocation under
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both CF and DF assuming imperfect CSI, alongside with
numerical performance of each of the relaying schemes. We
then propose several relaying scheme selection strategies and
compare one to each other in Section IV. In Section V, we
present our proposed generalized self-supervised DNN-based
power allocation policy that is able to adapt to various power
budgets and levels of allowed primary degradation. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

UP DP

R

US DS

hPP

hPS

hPR

hSS

hSR hRShSP

hRP
Primary network

Secondary network

1

Figure 1: Cognitive relay-aided network under study

The cognitive relay-aided network under study is illustrated
in Figure 1 and consists of a primary transmitter UP and its
associated destination DP , as well as a secondary transmitter
US and its associated destination DS , the latter being assisted
by a full-duplex relay node, as in our previous studies [16]–
[18]. Let XP , XS and XR, of average power PP , PS and PR,
denote the messages sent by UP , US and the relay respectively.
Further, let ZR and Zi, i ∈ {S, P} denote the additive white
Gaussian noise (AWGN), of variance NR and Ni, at the relay
and at destination Di respectively. As in [16]–[18], [43], we
consider a full-duplex operating relay that is perfectly cancels
out any self interference. The received signals at the relay,
primary and secondary destination are thus expressed as

YR = hP RXP + hSRXS + ZR (1)
Yi = hRiXR + hiiXi + hjiXj + Zj , (2)

where i, j ∈ {P, S}, i ̸= j.
Throughout this paper, and without lost of generality, we

assume that the additive noise terms are of unit variance,
NR = NS = NP = 1; or equivalently we consider channel
gains normalized by the received noise variance and given as
gij = h2

ij

Nj
, ∀i, j ∈ {S, P, R}. To simplify the presentation, we

let h = {√
gij , ∀i, j} denote the collection of all normalized

channels in the network. Furthermore, the relay only helps the
opportunistic transmission, as such the message from the relay
and from the secondary user are treated as additional noise at
the primary destination when retrieving its own information
XP . In the same manner, the message from the primary user
is considered as additional noise at both the relay and the
secondary destination when recovering XS . Hence, we can
consider equivalent correlated additive Gaussian noises at the
relay and secondary destination defined as Z̃R = hP RXP +ZR

and Z̃S = hP SXP + ZS , of variance ÑR = gP RPP + 1
and ÑS = gP SPP + 1 respectively; where the correlation
coefficient is given as ρZ =

√
gP RgP SPP√

ÑRÑS

.

Let Ri, i ∈ {P, S} denote the achievable rate of the primary
and secondary user respectively. Let RP denote the achievable
primary rate in the absence of the opportunistic network,
which is expressed as RP = 1/2 log2(1 + gP P PP ). As in
our previous studies [16]–[18], the opportunistic network is
allowed to communicate over the licensed bands provided that
the primary achievable rate is not degraded below a fraction
(1 − τ) of its achievable rate in the absence of the secondary
network: the considered QoS protecting the primary user is
hence expressed as RP ≥ (1 − τ)RP , τ ∈ [0, 1].

a) Problem under study: In this paper, our objective is
three-fold. First, we maximize the opportunistic achievable
rate under both CF and DF subject to maximum power
constraints at the relay and secondary user respectively, and
to a QoS constraint protecting the primary transmission. We
consider that all channel links related to the primary network
are impaired by estimation errors. Our optimal resource al-
location policy is obtained by a self-supervised DNN coupled
with a robust training technique. Second, we wish to select the
best relaying scheme among CF and DF, when the goal is to
degrade the least the primary transmission. We proposed two
selection approaches, one exploiting only the aforementioned
robust self-supervised DNN for both CF and DF; and one
exploiting an additional DNN. Third, we derive new robust
self-supervised DNNs able to generalize over several system
parameters such as the total power budgets PS , PR or the
maximum allowed primary degradation.

b) Imperfect CSI: As in our previous study [16], we
assume here that the channel gains are impaired by estimation
errors. The channel errors are modeled as additive Gaussian
noise as in [42], [44] and only affect the links from the
secondary network to the primary one, as we assume that
perfect CSI can be obtained by the help of pilot symbols within
the secondary network. Since the secondary user transmits
in an opportunistic manner, it is unlikely for the primary
network to feedback any channel estimation to the secondary
user and relay. Hence, ĥij = hij + εij , εij ∼ N (0, σ2

ij),
∀(i, j) ∈ {(P, P ), (S, P ), (R, P ), (P, R), and (P, S)} and
the normalized estimated channel gains are given as ĝij =
(ĥij)2/Nj . In the above, the estimation error variance is
assumed to be of the form σ2

ij = Var[hij ]/SNR, where
Var[hij ] denotes the variance of the true channels hij and
SNR ∈ [−10, 20] dB represents the signal-to-noise ratio
(SNR) of the estimator. The normalized channel gains within
the secondary network are on the other hand perfectly known
and given as ĝij = (ĥij)2/Nj = ĥij/Nj = hij/Nj , ∀(i, j) ∈
{(S, S), (S, R), and (R, S)}. We henceforth let ĥ denote the
vector collecting all the estimated channel links.

Notations: To simplify the presentation, the following
notation will be used. A = gP P PP

(1+gP P PP )1−τ−1 − 1, [x]+ =
max{0, x} and C(x) = 1

2 log2(1+x) denotes the capacity of
the point-to-point AWGN channel. Let K1, K2 denote

K1 =gSRÑS +gSSÑR−2ρZ

√
gSRgSSÑSÑR,

K2 =(1−ρ2
Z)ÑRÑS .
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III. SELF-SUPERVISED DNN BASED POWER ALLOCATION
POLICY UNDER IMPERFECT CSI

We first start by presenting the optimization problem under
both CF and DF, as studied in [16], and then present our
proposed DNN solution as well as some numerical results and
comparison between the two relaying schemes.

Under both CF and DF, the considered optimization problem
writes as

(OP) max
PR,PS

RS(h, PS , PR)

s.t. RP (h, PS , PR) ≥ (1 − τ)RP ,

0 ≤ PS ≤ PS , 0 ≤ PR ≤ PR,

where the secondary and primary achievable rates
RS(h, PS , PR) and RP (h, PS , PR) depend on the relaying
scheme.

We focus next on the specific optimization problems when
replacing the achievable rate regions obtained under CF and
DF of [17] into the above optimization problem (OP).

A. Compress-and-Forward (CF)

Under CF, exploiting the achievable rate region of [17] leads
to the following optimization problem

(OCF) max
PR,PS

RS(h, PS , PR)

s.t. Q(h, PS , PR) ≤ A, (QoS)
0 ≤ PS ≤ PS , 0 ≤ PR ≤ PR, with (TP)

RS(h,PS ,PR)=C

(
K1gRSPSPR + gSSPS(K1PS + K2)

K2gRSPR + ÑS(K1PS + K2)

)
Q(h,PS ,PR)=gSP PS + gRP PR.

Although non-convex, this optimization problem can be solved
in closed-form under perfect CSI, as shown in our previous
work [16]. Nonetheless, our closed-form solution highly relies
on the perfect CSI knowledge, which can be difficult to obtain,
especially for the channel links related to the primary network.
As such, we proposed in [16] to exploit a self-supervised
DNN-based resource allocation coupled with a robust training
to cope with imperfect CSI, as detailed in Section III-C,
instead of taking into the imperfect CSI within the problem
formulation, which generally does not lead to closed-form
solutions [21], [45].

B. Decode-and-Forward (DF)

Under DF, exploiting the achievable rate region of [17] leads
to the following optimization problem

(ODF) max
PR,PS ,α

RS(h, α, PS , PR)

s.t. Q(h, α, PS , PR) ≤ A, (QoS′)
0 ≤ PS ≤ PS , 0 ≤ PR ≤ PR, (TP)
0 ≤ α ≤ 1, with (ADF)

RS(h,α,PS ,PR)=C(min{fR(h,α,PS ,PR),fS(h,α,PS ,PR)})
Q(h,α,PS ,PR)=gSP PS + gRP PR + 2α

√
gSP gRP PSPR,

fR(h,α,PS ,PR)= gSR(1 − α2)PS

ÑR

,

fS(h,α,PS ,PR)= gSSPS + gRSPR + 2α
√

gRSgSSPSPR

ÑS

,

where the additional variable α ∈ [0, 1] trades-off between
sending a new codeword and repeating the previous one under
the information-theoretic superposition coding.

Compared to CF relaying, because of the more complex
expressions (including square root terms) of the non-convex
objective function coupled with a non-convex QoS constraint
(as opposed to an affine one for CF) involving an additional
variable α under DF, obtaining the solution of the optimization
problem (ODF) in closed form is very challenging, if at
all possible, even under perfect CSI. Hence, in the imperfect
CSI case under study, we propose to turn to self-supervised
learning-based approaches [16] as detailed later on in Sec-
tion III-C.

Below, we present our self-supervised DNN approach
able to cope with imperfect CSI under both CF and DF.
Henceforth, we denote the primary and secondary rate by
RP (h, α, PS , PR) and RS(h, α, PS , PR) respectively, to in-
clude both DF and CF relaying, where under CF the extra
DF-parameter α following from superposition coding is set to
α = 0.

C. Our DNN-based solution
Our self-supervised approach exploits a customized loss

function coupled with a robust training procedure based on
a dataset composed of coupled perfect and imperfect channel
estimations pairs (ĥℓ, hℓ)ℓ. Nevertheless, only the imperfect
channel estimations are given as inputs to the DNN during
both the training and the test phases; the perfect channel
estimations are only fed to the loss function during training.

The key ingredient of our proposed self-supervised DNN-
based solution is the customized loss function that the DNN is
trained to minimize, coupled with the training data (composed
of labeled pairs of perfect-imperfect channel gains) described
above. Since the QoS constraint is more a requirement than a
physical hard constraint, we propose to relax it and incorporate
it in the loss function via an additional hyperparameter λ as
follows

L(hℓ, ĥℓ) =
N∑

ℓ=1

(
−RS

(
hℓ, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)

)
+ λ

[
(1−τ)RP (hℓ)−RP

(
hℓ, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)

)]+
)

,

where N denotes the number of available channel samples that
are perfectly estimated in the training dataset. The additional
hyperparameter λ trade-offs between a secondary rate-driven
objective and a primary QoS-driven objective. Hence, this
parameter should be carefully tuned, as detailed in [18]. In
the rest of this paper, we choose λ = 100.5 due to its good
compromise between the achievable secondary rate and the
primary QoS degradation.
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Under imperfect CSI, another performance metric to be
considered is the outage probability defined as:

Pout = Pr
[
RS

(
h, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)

)
< r
]

,

where r denotes the fixed transmit rate and the probability is
taken with respect to the randomness in the system channels
h. In our study, we propose a simplified approach compared to
minimizing the outage probability, where the training dataset
contains perfect CSI h, alongside with estimated channels ĥ
impaired by estimation errors, and our DNN aims at maximiz-
ing the instantaneous rates RS

(
hℓ, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)

)
,

a term similar to that used in the context of minimizing outage
probability. Therefore, we can conjecture that our approach
should also perform well in terms of outage probability.

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer 4

ReLu ReLu ReLu ReLu

M 2M 2M 2M

sgm(0− PS)

sgm(0− PR)

sgm(0− 1)

Imperfect CSI

ĥ

Input

Hidden layers Activation
function

Outputs

α̂

P̂R

P̂S

Figure 2: Proposed DNN architecture, where x̂ denotes the estimated
or the predicted quantity x.

Based on extensive numerical simulations, we have chosen
the following architecture for our proposed self-supervised
DNN: four fully connected hidden layers of M −2M −2M −
2M neurons, with M = 128, followed by a rectified linear unit
(ReLU) activation function, as illustrated in Figure 2. The final
layer is followed by sigmoid activation functions to ensure that
the outputs, i.e., the predicted values of the powers PR, PS

and the predicted value of α under DF satisfy the box-type
constraints of (OP). Note that our proposed self-supervised
DNN is specifically training for either CF or DF and for fixed
values of the network parameters PR, PS and τ . The later will
be relaxed in Section V.

D. Numerical results

In this section, we investigate the robustness of our pro-
posed self-supervised DNN-based power optimization under
imperfect CSI.

a) Dataset: As in our previous studies [16], [18], our
training dataset contains 106 samples of both perfect and
imperfect channel estimations {ĥℓ, hℓ}ℓ. The validation data-
set contains 2 × 105 samples of both perfect and imperfect
channel estimations {ĥℓ, hℓ}ℓ, while the test dataset contains
2×105 samples of imperfect channel estimations {ĥℓ}ℓ. These
datasets are disjoint.

Here, we assume that the channel gains follow a common
fading and pathloss model as hij ∼ N (0,σ2

g)√
1+dγ

ij

, where dij is

distance between nodes i and j as in our previous studies [16],
[18]. The pathloss is set to γ = 3, the channel gain standard
deviation to σ = 7 and other network parameters are set to
τ = 25% and PP = P S = P R = 10 W. We further assume

that all node’s positions are generated uniformly within a 10
m square cell unless otherwise specified.

b) DNN training: As in [16], we assume that in the
training phase, we have access to pairs of both perfect and
imperfect channel estimations {ĥℓ, hℓ}ℓ, where the imperfect
ones are obtained by adding Gaussian noise to the initial ones.
The perfect channel estimations are fed to our loss function
L, whereas the imperfect channel estimations are given as the
input of our self-supervised DNN and the training process is
restarted for each value of the considered channel estimated
SNR. To avoid overfitting effects, an early-stopping method is
adopted for both DF and CF with a patience parameter of 20
epochs.

c) Benchmarks and performance metrics: In the follow-
ing, we propose to compare our self-supervised DNN-based
predictions under imperfect CSI to the optimal power alloca-
tion policies under perfect CSI. The latter are obtained either in
closed form under CF [16] or by brute force (exhaustive/grid
search) under DF. Thanks to its implementation simplicity,
we chose to use brute force to compensate for the lack of
closed-form expression under DF. We consider three metrics
to validate the performance of our self-supervised DNN-based
method under imperfect CSI: the relative gap G, the empirical
outage Outage and the average primary rate degradation ∆out,
defined below.

The relative gap G assesses the gap between the predicted
rate R̂S,ℓ = RS

(
hℓ, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)

)
, achieved

by either the self-supervised DNN or the benchmark un-
der imperfect CSI, and the ideal optimal rate R∗

S,ℓ =
RS

(
hℓ, α̂(hℓ), P̂S(hℓ), P̂R(hℓ)

)
obtained with the bench-

mark under perfect CSI, for each sample in the dataset:

G =
1
N

∑N
ℓ=1 R̂S,ℓ − R∗

S,ℓ

1
N

∑N
ℓ=1 R∗

S,ℓ

. (3)

The two other metrics rely on the degradation of the primary
rate defined as

∆ℓ = 1 −
RP

(
hℓ, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)

)
RP (hℓ)

, (4)

where RP

(
hℓ, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)

)
corresponds to the

primary rate achieved either by our proposed self-supervised
DNN or the benchmark under imperfect CSI and RP (hℓ) is
the primary achievable rate obtained under perfect CSI. The
empirical outage is defined as the proportion of samples in the
dataset for which the primary QoS is not satisfied, whereas the
average primary rate degradation computes the primary rate
degradation when in outage:

Outage = 1
N

N∑
ℓ=1

1 [∆ℓ > τ ] , ∆out =
∑N

ℓ=1(1 [∆ℓ > τ ]×∆ℓ)∑N
ℓ=11 [∆ℓ > τ ]

,

where 1 is the indicator function.
d) Numerical simulations: Figure 3 and Figure 4 present

the robustness to imperfect CSI in terms of relative gap, outage
and average primary rate degradation as a function of the SNR
of the channel estimation under CF and DF respectively. Under
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Figure 3: Impact of imperfect CSI on our proposed solutions for
CF relaying over the test set.

Figure 4: Impact of imperfect CSI on our proposed solutions for
DF relaying over the test set.

both CF and DF, we compare the performance achieved by the
benchmark under imperfect CSI (either closed-form expression
under CF or bruteforce under DF), the one achieved by our
unsupervised DNN trained only with perfect CSI labeled as
“DNN”, and the one achieved with our new proposed robust
training labeled as “N-DNN”, i.e., when both perfect and
imperfect CSI are used in the training phase. First, note that
although designed initially for DF, our proposed unsupervised
DNN is able to generalize to CF relaying as well with
almost no architecture change beside removing one of the
predicted output, as can be seen from the almost zero gap
between the performance achieved by the benchmark and by
the unsupervised DNN.

Second, for all relaying schemes, both the benchmark and
the unsupervised DNN trained with only perfect CSI harm
the primary communication in almost 20 − 50% of cases with
an average primary rate degradation when in outage between
35 and 65%, highly above the defined threshold τ = 25%.
On the contrary, our self-supervised DNN with robust training
achieves lower secondary rate compared to the benchmark or
to the unsupervised DNN trained only with perfect CSI (loss
in terms of relative gap of the order of 20−40%) but satisfies
almost always the QoS constraint with an outage of only 5%,
which is crucial in cognitive radio setups. Furthermore, when
in outage, the primary rate degradation is kept below 45%. One
can also note that the outage under CF is less than that under
DF, which is to be expected since the optimization problem
under DF is more difficult to solve due to the non-convex
objective function and QoS constraint.

Once our proposed robust training has been validated, we
can focus on the comparison of the two relaying schemes

as a function of the nodes spatial positions within the con-
sidered square cell. More specifically, we now assume that
the positions of the primary and secondary user/destination
pairs are fixed and given as US(3.2, 3), DS(6.5, 1), UP (2, 7),
DP (6.5, 8.5), such that the direct links are stronger than the
interfering ones; whereas the relay can be placed anywhere
within the cell.
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Figure 5: Impact of the relay position for DF relaying. Top plots:
average total power (W); middle: average secondary rate (bpcu);
bottom: average primary rate degradation (%).

Figure 5 depicts the average power transmitted by the
secondary network, the average secondary rate as well as the
average primary rate degradation for four different channel
estimation SNRs under DF relaying. Each simulation result
has been averaged over 104 random channel realizations, not
included in the test set. The channel gains for these simulations
are generated in the same manner as described in Section
III-D. Under poor channel estimation, SNR ∈ {−10, 0} dB,
the secondary network barely transmits at all, leading to almost
no primary rate degradation and almost zero secondary rate.
As the quality of the CSI increases, i.e. SNR ∈ {10, 20} dB,
one can note that DF performs well in terms of secondary
rate when the relay is close to the secondary user, as for the
standard relay channel. Furthermore, in all cases, one can see
that the average primary rate degradation stays below the fixed
threshold value of τ = 25%. At last, when SNR = 0 dB,
we can observe that although the power of the secondary
communication is very small when the relay is in close
proximity of the primary receiver, such a configuration has
a marginally degrading impact to the primary communication.
This is equivalent to the case of SNR = 10 dB, where the
primary degradation is about 2% when the relay is close
to the primary receiver. To understand this counter-intuitive
behavior, we study in the top plots of Figure 6 the maximum
primary rate degradation as a function of the relay position
for SNR = 0 dB and SNR = 10 dB, and we can note
the presence of a noise, corresponding to outliers where the
primary rate degradation reaches 100%, when computing this
maximum. In order to mitigate the influence of this added
noise, we apply a median filter [46]. Interestingly, we observe
that as we increase the radius of the disk-shaped mask used
for filtering, the noise progressively decreases, as shown in the
bottom plots of Figure 6 (maximum of primary degradation
with median filter when disk radius is equal to 3), and that
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the maximum of degradation is around the primary receiver.
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Figure 6: Impact of the relay position for DF relaying (maximum of
primary degradation (%)). Top plots: maximum of primary degrada-
tion without median filter; middle: maximum of primary degradation
with median filter (disk radius = 2); bottom: maximum of primary
degradation with median filter (disk radius = 3).

Regarding CF relaying, we conduct similar numerical ex-
periments.
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Figure 7: Impact of the relay position for CF relaying. Top plots:
average total power (W); middle: average secondary rate (bpcu);
bottom: average primary rate degradation (%).

The results showing the average power transmitted by
the secondary network, the average secondary rate, and the
average primary rate degradation for four different channel
estimation SNRs are presented in Figure 7. Similar to DF, in
the case of poor channel estimation SNR ∈ {−10, 0} dB, the
secondary network exhibits minimal transmission, resulting in
no primary rate degradation and nearly zero secondary rate.
As the quality of the CSI improves (SNR = 20 dB), we can
observe that CF performs best when the relay is close to the
secondary destination. Furthermore, in all cases, the average
degradation of the primary rate remains below the predeter-
mined threshold value of τ = 25%. These observations hold
true across all the simulations, each of which averages results
over 104 channel realizations, as for DF relaying.

In Figure 7, it can be inferred that when SNR ∈
{−10, 0, 10} dB, indicating a significant amount of estimation
error, the utilization of the relay decreases. To investigate

these cases, further exploration of the self-supervised DNN
performance and the hyperparameter λ are necessary in order
to improve the relay’s effectiveness under such conditions. We
opt to explore the impact of the hyperparameter λ variation to
see whether a lower λ value results in increased utilization of
the relay.
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Figure 8: Impact of the relay position for CF relaying (λ = 10−0.5).
Top plots: average total power (W); middle: average secondary rate
(bpcu); bottom: average primary rate degradation (%).

When we modify λ from 100.5 to 10−0.5, as shown in
Figure 8, its impact becomes evident. We observe that as the
value of λ decreases, the relay utilization increases, leading
consequently to an improved secondary rate, as expected.
However, it is noteworthy that this enhancement in through-
put comes at the expense of significant degradation in the
primary communication, reaching up to 32%. This degradation
exceeded our predefined threshold of 25%, indicating a notable
decrease in the primary communication’s overall quality.

IV. RELAYING SCHEME SELECTION

As discussed in the previous section, none of the two
relaying schemes performs best for all network parameters
and configurations. In this section, we investigate the problem
of selecting the relaying scheme and we propose two different
approaches to choose among CF and DF. In our cognitive radio
setting, we focus the relay scheme selection on protecting the
primary network, which of course may lead to a cost in terms
of secondary achievable rate.

A. First relaying scheme selection

Usually, relaying scheme selection consists in choosing the
relaying scheme achieving the largest SNR [36], [40]. Such a
criterion is well-suited for many communication models but
not for cognitive radio networks where one should also protect
the primary transmission.

To simplify the presentation, let us denote by RCF
S , RDF

S

the secondary rate achieved by CF and DF respectively. We
further let ∆CF

ℓ and ∆DF
ℓ denote the degradation of the

primary achievable rate caused by the opportunistic transmis-
sion under CF and DF.

In order to choose between CF and DF, we propose the
following scheme. First we compare the two degradations of
the primary rate ∆CF

ℓ and ∆DF
ℓ . If both relaying scheme meet
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the QoS constraint and are somewhat equivalent in terms of
primary degradation, i.e. ∆CF

ℓ , ∆DF
ℓ ≤ τ , then we choose the

relaying scheme yielding the largest secondary rate. If only
one of the relaying scheme meets the QoS constraint, then
we choose this scheme. At last, if neither relaying scheme
meets the QoS constraint, we then choose the one inflicting the
least primary rate degradation. Hence, we put more emphasis
on meeting the primary QoS constraint, at the cost of the
secondary rate.

We will exploit this first relaying scheme selection both
as a benchmark and also to build ground-truth data for our
second relaying scheme selection method, described in the
next subsection, which exploits the two DNNs designed for
CF and DF as well as an additional one to decide between CF
and DF.

a) Benchmark: When used as benchmark to compare
the performance of our two proposed methods, the achievable
rates and the primary QoS degradation are computed using
the predicted powers of DF and CF with imperfect CSI as
the DNN inputs as well as imperfect CSI within the rate
computations. Indeed, when predicting the optimal power
allocations and also when deciding between DF and CF, the
secondary user has access only to an imperfect CSI.

b) New dataset generation: To build the new data used
for our second relaying scheme selection method, we make
use of the perfect CSI to compute the achievable rates and the
primary degradation but given the predicted powers obtained
with imperfect CSI as the DNN inputs. Indeed, we assume
that for training purposes, we have access to high-quality or
perfect CSI estimations similarly to the training of the DNNs
predicting the power allocations in Section III.

More precisely, for the ℓ-th entry of our new dataset, we
first compute the estimated powers P̂R(ĥℓ), P̂S(ĥℓ) under DF
and CF obtained as outputs of the aforementioned DNNs
with the imperfect channel estimations as inputs. Once the
estimated powers are obtained, we compute the achievable
rates and the primary rate degradations, under both CF and
DF, by using the true channel gains (perfect estimation), i.e.
RS

(
hℓ, α̂(ĥℓ), P̂S(ĥℓ), P̂R(ĥℓ)

)
and ∆ℓ. Finally, we use the

first relaying scheme selection method above to select between
CF and DF for all CSI samples in our dataset. As such, the
ℓ-th entry of our dataset contains: the perfect and imperfect
channel estimations, the associated optimal powers obtained
via the self-supervised DNN described in Section III-C as well
as the corresponding selected relaying scheme.

Note that while we can exploit perfect CSI to build a dataset
for training purposes, perfect CSI cannot be used to select the
relaying scheme in the running phase. Indeed, making use of
this knowledge would imply first to transmit with DF and then
CF, then to compute the true achievable rates at the receiver
and feedback them to the transmitter, and finally to select the
best relaying scheme for the next transmission, which is not
realistic.

B. Second relaying scheme selection

In this section, we introduce a novel supervised DNN-based
relaying scheme selection, where a DNN takes as inputs the

imperfect channel estimations as well as the corresponding
optimal power allocations under both DF and CF, computed
by our previously presented self-supervised DNN methods of
Section IV-B, and outputs the best relaying scheme.

Our intuition is that, whereas the previously presented ap-
proach only exploits two DNNs specifically trained for either
DF or CF, an additional DNN could improve the relay scheme
selection by learning some correlation between the imperfect
channel gains and the best relaying scheme exploiting both
imperfect CSI to predict the transmissions parameters and
perfect CSI to select among CF and DF (the latter being
available during its training).

We hence consider a binary classification problem, for
which the binary cross-entropy, given below, is usually used
as loss function [47], [48]:

L = − 1
L

L∑
i=1

yi log ŷi + (1 − yi) log(1 − ŷi), (5)

where L is the number of available training data samples;
yi ∈ {0, 1} corresponds to the ground truth or the best relaying
scheme (such that 0 stands for CF and 1 for DF) obtained
by the first selection method (Section IV-A), where the data
rates and primary degradation are computed given the true
channels and predicted powers based on the imperfect CSI;
and ŷi ∈ [0, 1] is the probability of selecting DF computed by
the DNN.

The architecture of the considered DNN for relaying selec-
tion, depicted in Figure 9, is similar to the previous DNNs for
solving the power allocation problem.

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer 4

ReLu ReLu ReLu ReLu

M 2M 2M 2M

sgm

Imperfect CSI

ĥ

α̂, P̂R, P̂S

Inputs

Hidden layers Activation
function

Outputs

DF, CF

Figure 9: Proposed DNN architecture to choose among CF and DF
with a fixed decision threshold at 0.5 (Extra-DNN).

The decision to use the same DNN architecture for an
entirely different problem can be justified due to the similarit-
ies in data characteristics. Both problems involve imperfect
CSI as inputs, indicating a resemblance in the underlying
data structure. Moreover, the fully connected architecture is
justified because of its generality and given that there is no
a priori structural or temporal information within the inputs
to be exploited via more specialized architectures such as
convolutional or recurrent network. Therefore, it is intuitive
to conclude that changing the DNN architecture would not
yield significant benefits, given the similarities in data and
the DNN’s proven effectiveness in related problems. For the
relaying scheme selection, we increase the number of neurons
to M = 256 (instead of value M = 128 used for the
power allocation prediction) as we empirically found that
this value achieves good performance. Also, the final layer
consists here in a sigmoid activation function outputting the
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probability ŷi of selecting DF; the later is then compared to a
threshold, set either to 0.5 or to a cognitive radio-tailored one
allowing to minimize the average primary degradation when in
outage ∆out, to decide whether CF or DF should be selected
(Figure 10).

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer 4

ReLu ReLu ReLu ReLu

M 2M 2M 2M

thresholdsgm

Imperfect CSI

ĥ

α̂, P̂R, P̂S

Inputs

Hidden layers Activation
function

Outputs

DF, CF

Figure 10: Proposed DNN architecture to choose among CF and
DF with a finely tuned threshold (Extra-DNN-S).

The threshold is essential to take into account because
its choice can significantly impact the performance of the
supervised DNN model. This cognitive radio-tailored threshold
is obtained by exhaustive search for each value of the channel
estimation quality. In Table I, we present the best obtained
thresholds used for Extra DNN-S as a function of SNR. If the
predicted output value of the supervised DNN is below the
threshold, the selected relaying scheme is CF; otherwise, the
selected relaying scheme is DF.

Table I: Best threshold as a function of SNR
SNR (dB) −10 −5 0 5 10 15 20
threshold 0.09 0.01 0.01 0.02 0.04 0.06 0.10

C. Numerical results

Before we present the experimental result of our proposed
relay selection scheme, we describe the dataset construction
and the DNN training (for the second method).

a) Dataset: The channel gains follow the same common
fading and pathloss model as in Section III-D and are impaired
by channel estimation errors, as in Section III-C. The training
set contains 107 samples of perfect and imperfect channel
estimation hℓ and ĥℓ, the associated optimal powers obtained
via the self-supervised DNN described in Section III-C as
well as the corresponding best relaying scheme obtained via
the first selection method (where the data rates and primary
degradation are computed with the true channels and power
predicted with imperfect CSI).

The validation set is obtained as an excluded (20%) subset
of the training set and our test set contains 2×106 samples of
imperfect channel estimation with the corresponding optimal
powers and the best relaying scheme as ground truth, enabling
to assess the performance of our proposed approach.

To simplify the presentation of our numerical simulations,
we will use the following terminology: “Two-DNN” refers
to the benchmark selection method where imperfect CSI is
used both to predict the transmission parameters (i.e., power
allocation policies and relay selection scheme) and to compute
the achievable rates and primary degradation used in our first
selection scheme. “Extra-DNN” refers to the second relaying

scheme selection method, where the threshold is set to 0.5, and
“Extra-DNN-S” refers to the second relaying selection method
with a different and tailored threshold to the cognitive radio
network under study.

b) DNN training: In the training phase, the optimal
relaying scheme computed via the Two-DNN method (where
the rates and primary degradation are computed using the
true channels but with powers predicted using the imperfect
channels) is fed to our loss function in (5), whereas the
imperfect channel estimations and the corresponding optimal
powers under both DF and CF, obtained with the DNN
methods of Section III are given as the input of our additional
DNN. Note that the training process is restarted for each value
of the considered SNR of the CSI estimator. Here, the patience
parameter is set to 10 epochs for both DF and CF to avoid
any overfitting effect.
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Figure 11: The selected relaying scheme between CF and DF. Top
figures: Two DNN, middle: Extra-DNN, bottom: Extra DNN-S.

c) Numerical simulations: Figure 11 shows the selected
relaying scheme as a function of the relay position for the
methods: Two-DNN, Extra-DNN and Extra-DNN-S, and as-
suming different levels of CSI estimation quality. Here, we
assume that the position of the primary and secondary users
and destinations are fixed, whereas the relay can be positioned
anywhere.

First, we can note that, regardless of the quality of the
CSI estimation, CF is selected more often than DF under all
approaches, which is to be expected since DF is limited by
the fact that the relay needs to be able to decode the message
from the secondary transmitter. Furthermore, as also expected
from a cooperative communications point of view, DF is more
efficient when the relay is close to the secondary transmitter,
which can be observed for a CSI estimation quality between
0 − 20 dB under the fixed-threshold Extra-DNN and the Two-
DNN methods.

Remarkably, for the Extra-DNN-S method, the set of relay
positions where DF outperforms CF also contains positions
where the relay is close to the secondary destination, for which
the achievable data rate under DF is not expected to be large.
The intuition is that our relay selection methods prioritizes
the primary degradation over the achievable secondary rate.
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For these relay positions, CF achieves higher rates than DF
by also consuming more transmit power, leading hence to
larger primary degradation. We can observe that as the channel
quality increases (10−20) dB, the region in which DF relaying
scheme is selected first expands (10 dB), but then contracts
again when SNR = 20 dB. This phenomenon can be justified
by the fact that, with an SNR of the channels estimation of
10 dB, the DNN chooses the relaying scheme that maximizes
throughput and exhibits less sensitivity to imperfect CSI,
favoring DF as can be confirmed from Figure 5 and Figure 7.
Conversely, at higher SNR levels (20 dB), CF relaying dis-
plays lower sensitivity to imperfect CSI and outperforms DF in
terms of throughput in more regions (Figure 5 and Figure 7),
resulting in a preference for CF relaying in more regions.

Finally, under all approaches and irrespective from the
position of the relay, CF is almost always chosen in very
poor CSI estimation conditions −10 dB. DF seems indeed
to be more sensitive to imperfect CSI, since the relay needs
to correctly decode the secondary message; while it only
quantizes the received signal under CF relaying.
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Figure 12: Average degradation when in outage, outage and second-
ary rate as functions of SNR over the test set.

In Figure 12, we compare the three methods: Two-DNN,
Extra-DNN and Extra-DNN-S, in terms of primary rate de-
gradation when in outage ∆out, percentage of outage and
secondary rate as functions of the CSI estimation SNR. First,
we notice that Two-DNN and and Extra-DNN achieve more
or less the same performance, meaning that there was little
additional information to be learned between the channel gains
and the best relaying scheme. This highlights the strength of
our proposed DNN-based power allocation policy for a fixed
relaying scheme. This can also be explained by fact that each
of the two relaying schemes (CF and DF) perform best for
disjoint relay positions.

Second, by tuning the threshold which minimizes the
primary rate degradation when in outage, as performed for
Extra-DNN-S, significantly increases the performance in terms
of primary degradation: the number of outage events is divided
by a factor of almost 2 for all values of SNR ∈ [−10, 20] dB,
whereas the primary degradation when in outage is decreased
by up to 8% especially under poor channel estimation condi-
tions. Of course, the prioritized primary protection comes at
the cost of secondary rate, which is decreased as shown.

At last, using an additional DNN enables us to generalize
over which criterion the relaying scheme should be selected.
Indeed, here, the relay scheme selection was decided based
on the minimization of the primary rate degradation when in
outage. One could consider any tradeoff weighting between
the secondary rate and primary protection instead, which is
not feasible under the two DNN-based method.

V. GENERALIZED DNN SOLUTION

While in the previous sections the maximum allowed
primary rate degradation τ , as well as the power budget within
the secondary network PR and PS were fixed, we propose here
to generalize our self-supervised DNN approach in terms of
the system parameters: τ , PR, and PS assuming that they lie
within specified ranges.

A. Proposed Generalized DNN Solution

Although the system parameters are no longer fixed, the loss
function to be minimized by the self-supervised DNN remains
essentially the same as in Section III. The main difference with
the case of fixed parameters is that the values of τ , PR, PS

have to be provided as inputs of both the self-supervised DNN
and the loss function.
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Figure 13: DNN†: Proposed DNN-based generalization over both
the maximum allowed primary rate degradation and the power
budgets.

Figure 13 presents the architecture of our proposed self-
supervised DNN, thereafter denoted by DNN†, able to gener-
alize jointly over all τ and the power budgets. This architecture
is very similar to the one in Section III when τ and the power
budgets were fixed. The main differences are the following:
i) τ , PS and PR are provided as inputs of the DNN†;
ii) DNN† has to output the fractions γ̂R ∈ [0, 1] and γ̂S

∈ [0, 1] of the relay and secondary power to be consumed,
instead of directly the estimated powers P̂R and P̂S computed
as P̂i = Pi γ̂i, i ∈ {R, S}. Aside from these modifications,
the remaining inner self-supervised DNN architecture, i.e., the
number of layers and the number of neurons par layer, remains
the same as in Section III.

This new architecture can also be used to study the partial
generalization over either τ for fixed power budgets, thereafter
denoted by DNNτ , or over the power budgets for a fixed τ ,
denoted by DNNP . In these architectures, the fixed parameters
values are no longer provided as inputs of the DNN, i.e.,
DNNτ has only two inputs (ĥ, τ ) and DNNP three inputs
(ĥ, PR, PS).
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B. Computational costs analysis

In this subsection, we compare the three approaches (DNNτ ,
DNNP , and DNN†) in terms of number of trainable parameters
and FLOPs (Floating Point Operations). For the test phase,
the three DNNs differences in computational cost are minimal
because they all share a very similar architecture and only
differ in the first layer of the DNN. Therefore, during the test
phase, we only compare the memory cost.

For the training phase, the trainable parameters refer to
the learnable parameters: weights and biases, within a neural
network model that are updated during the training process.
These parameters are the variables that the model learns from
the training data to make predictions or perform specific tasks.
It is important to note that the number of trainable parameters
is not the same for the DNNτ , DNNP , and DNN†, because for
DNNτ we have two inputs, namely ĥ and τ , and for DNNP

we have three inputs, namely ĥ, PR and PS , and for DNN†

we have four inputs, namely ĥ, τ , PR and PS .
FLOPs specifically refer to the number of floating-point

operations, which include addition, subtraction, multiplication,
and division operations. The number of FLOPs is commonly
used to measure the computational complexity or cost of a
model. The higher the number of FLOPs a model requires,
the more computationally intensive it is.

Table II: FLOPs and Parameters as functions of DNNs for CF

DNNs DNNτ DNNP DNN†

FLOPs 331, 908 332, 162 332, 418
Parameters 166, 402 166, 530 166, 658

Table III: FLOPs and Parameters as functions of DNNs for DF

DNNs DNNτ DNNP DNN†

FLOPs 332, 421 332, 675 332, 931
Parameters 166, 659 166, 787 166, 915

In Table II and Table III, we present the total number of
FLOPs and trainable parameters under CF and DF relaying
using our three different DNNs. In the training phase, it
is recommended to use DNN† due to its efficiency, rather
than DNNτ , and DNNP . This choice is advantageous for
several reasons. In Table II, when comparing the number of
trainable parameters and the number of FLOPs, we note that
regardless of the used DNN architecture, whether it involves
two or multiple inputs, it is primarily the first layer that
costs slightly more per inputs. This is why, in terms of the
number of FLOPs and number of parameters, we do not have
a significant difference that would make one DNN excessively
more complex or simpler than the other.

In the test phase, the memory cost is not the same for
the three DNNs, because if we want to generalize over 10
values of τ and 10 values of power budgets exploiting both
DNNτ and DNNP , we would need to train and store 100
DNNs, which is expensive in terms of both computation and
storage. In contrast, for DNN†, we would need to train and
store it only once, and it can generalize for any given values
of τ and power budgets. Furthermore, we achieve almost the
same communication performance (in terms of achievable rate,

outage, etc.) with DNN†, than with DNNτ and DNNP without
increasing the size of the dataset.

C. Numerical results

a) Datasets: As in the previous sections, we assume
that only imperfect CSI samples are available in the test
set, whereas pairs of both perfect and imperfect CSI are
available in the training and validation sets. In order to ease
the presentation, we will separate the three datasets used for
the self-supervised DNN able to generalize over τ , over the
power budget and over all system parameters respectively.
i) The training set assessing the generalization over the
primary degradation τ is composed of 106 samples of
{hℓ, ĥℓ, τℓ}ℓ, where each of the realization τℓ is within the
range τℓ ∈ [0.1, 0.5]. The corresponding test set contains
2 × 105 samples of {ĥℓ, τℓ}ℓ.
ii) The training set assessing the generalization over
the power budget is composed of 2 × 106 samples of
{hℓ, ĥℓ, PS,ℓ, PR,ℓ}ℓ, where each of the realization PS,ℓ, PR,ℓ

is within the range PS,ℓ, PR,ℓ ∈ [1, 10] × [1, 10], and that the
powers are interdependent, such as PS,ℓ = PR,ℓ. The corres-
ponding test set contains 4×105 samples of {ĥℓ, PS,ℓ, PR,ℓ}ℓ.
iii) The training set assessing the generalization over the
three system parameters is composed of 2 × 106 samples
of {hℓ, ĥℓ, τℓ, PS,ℓ, PR,ℓ}ℓ, where each of the realization τℓ

is within the range τℓ ∈ [0.1, 0.5] and PS,ℓ, PR,ℓ is within
the range PS,ℓ, PR,ℓ ∈ [1, 10] × [1, 10], with PS,ℓ = PR,ℓ.
The corresponding test set contains 4 × 105 samples of
{ĥℓ, τℓ, PS,ℓ, PR,ℓ}ℓ.
In all cases, the validation set is obtained as an excluded (20%)
subset of the training set.

b) DNN training: As in the previous sections, the self-
supervised DNNs are provided {ĥℓ, τℓ} or {ĥℓ, PS,ℓ, PR,ℓ, },
or {ĥℓ, τℓ, PS,ℓ, PR,ℓ} as inputs, whereas the perfect CSI hℓ

and the values of τ or PR, PS are only fed to the loss function
as {hℓ, τℓ} or {hℓ, PS,ℓ, PR,ℓ, }, or {hℓ, τℓ, PS,ℓ, PR,ℓ}. The
training process is restarted for each value of the considered
channel estimation SNR, and the patience parameter is set
to 10 epochs under both DF and CF to avoid any overfitting
effects.

c) Numerical simulations: In the following, we only
present the performance obtained with CF relaying because
of space issues. Similar observations and conclusions carry
over also under DF relaying.

To evaluate the ability of our proposed DNN† to generalize
jointly over τ and the power budgets, we propose to consider
two cases: either fixed power budgets and varying τ , or varying
power budgets while keeping τ fixed. Indeed, interpreting the
results while changing all parameters at once is challenging,
as we cannot discern whether the DNN† is generalizing well
on τ or the power budgets or both.

In Figure 14, we plot the outage, the average primary rate
degradation (∆ℓ), the average and maximum primary rate
degradation when in outage (∆out and ∆max respectively)
as well as the mean of the secondary rate and the mean
plus and minus the standard deviation of the secondary rate,
for different qualities of channel estimator SNR ∈ [−10, 20]
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Figure 14: Joint generalization over the secondary power budgets
and the maximum allowed primary degradation with DNN† and under
CF relaying: impact of the maximum allowed primary degradation
when PR = PS = 10 W.

dB with the DNN† and for CF relaying. These results were
obtained for PR = PS = 10 W and τ ∈ {0.1, 0.2, 0.3, 0.4}.

We can note that our proposed DNN† generalizes over
different values of τ since the average primary degradation
(∆ℓ) stays below the threshold τ , regardless of its value for
fixed secondary power budget PR = PS = 10 W. As expected,
the percentage of average primary rate degradation (∆ℓ) and
the secondary rate increase with the value of τ , since the
secondary network is allowed to transmit with higher levels of
power. Nonetheless, even if the percentage of average primary
degradation increases (while remaining below the threshold
of τ ), the average primary rate degradation when in outage
remains close to the threshold of τ , especially for moderate to
good channel estimations. These results are also very close to
the ones obtained with DNNτ , which only generalizes over the
value of τ for fixed power budgets (omitted here because of
space limitation), validating the ability of DNN † to generalize
over τ when fed with a fixed power budget value.

In Figure 15, we illustrate the same performance metrics as
in Figure 14 for different qualities of channel estimator SNR ∈
[−10, 20] dB for the DNN† by fixing τ = 25%. Note that
similar conclusions carry over for the generalization over the
power budgets varying within PR = PS ∈ {2.5, 5, 7.5, 10} W.
Here, even if the percentage of outage also increases for larger
power budgets, as expected, the average primary degradation
remains below the threshold of τ . Finally, the performance ob-
tained by DNNP that only generalizes over the power budgets
and the one obtained by DNN† are very close, validating hence
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Figure 15: Joint generalization over the secondary power budget
and the maximum allowed primary degradation with DNN† and under
CF relaying: impact of secondary power budget when τ = 0.25.

the ability of DNN† to generalize over the power budgets when
fed with a fixed value of τ .

To sum up, we have shown that our self-supervised DNN-
based power allocation policy under imperfect CSI in Section
III can generalize well over various system parameters, by
simply adding them as input features with little change in the
architecture of the DNN and its training procedure (w.r.t. the
custom loss function and datasets).

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a novel self-supervised DNN-
based power allocation policy maximizing the opportunistic
rate of a relay-aided (performing either DF or CF relaying)
cognitive radio system protected by a primary QoS constraint
and limited by individual power budgets. We first show the
robustness of our approach to imperfect CSI. We then extend
it to also select the best relaying scheme that tradeoffs op-
portunistic rate vs. primary protection. Finally, we show how
our approach can be generalized across different system para-
meters, i.e., the primary protection parameter and the power
budgets. Interesting future work includes the investigation of
the secondary outage probability in the imperfect CSI case
and the evaluation of proposed approach on more realistic data
built with Sionna [49], an open-source GPU-accelerated link-
level simulator exploiting Ray-tracing capabilities in wireless
5G/6G networks. Additionally, we aim to explore more com-
plex multi-user settings and investigate few-shot learning to
address settings with limited available training data.
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