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Abstract. We consider a slightly subcritical elliptic system with Dirichlet bound-
ary conditions and a non-power nonlinearity in a bounded smooth domain. For
this problem, standard compact embeddings cannot be used to guarantee the ex-
istence of solutions as in the case of power-type nonlinearities. Instead, we use the
dual method on Orlicz spaces, showing that our problem possesses a mountain
pass type solution.
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1. Introduction

Let us consider the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Δv = up
(

ln(e+u)
)α in Ω

−Δu = vq

(
ln(e+v)

)β in Ω

u > 0, v > 0 in Ω
u = v = 0 on ∂Ω

(1.1)

where Ω ⊂ R
N , N ≥ 3, is a bounded domain of class C2, p, q > 0, α ≤ p, β ≤ q,

and (p, q) may belong to the critical hyperbola; specifically, either

1 >
1

p + 1
+

1
q + 1

>
N − 2

N
, (1.2)
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or

1
p + 1

+
1

q + 1
=

N − 2
N

,
α

p + 1
+

β

q + 1
> 0. (1.3)

We want to find a solution (u, v) of (1.1), positive in both components.
Problems of type (1.1) has been considered by several authors, we refer to [3,9,11,
17]. In [3] the authors study the case (1.2) and α = β = 0. Whereas in [9, Theorem
2.7] the authors study related nonlinearities when the pair of exponents (p, q) lies
below the critical Sobolev hyperbola (1.2), using variational approaches. In [11,
Theorem 1.3], using an Orlicz-space approach, the authors study the existence of
solutions of (1.1) when the pairs of exponents (p, q), (α, β) satisfy (1.3), in particular
(p, q) lies on the critical Sobolev hyperbola, with p, q > 1; they do not cover the
case p, q > 0. While in [17] the authors establish a-priori L∞ bounds when the pair
of exponents (p, q) lies on the critical Sobolev hyperbola (1.3), 1 < p, q < ∞, and
α, β > 2/(N − 2). Concerning one single equation, we can mention [5] establishing
L∞ a priori bounds when α > 2/(N − 2), [8] analyzing the asymptotic behavior of
the solutions as α → 0, and [10] including a changing sign weight.

Our main result is the following:

Theorem 1.1. Assume p, q > 0, α ≤ p, β ≤ q, and either (p, q) satisfy (1.2) or
(p, q), (α, β) satisfy (1.3). Then Problem (1.1) possesses a solution of mountain
pass type.

The proof relies on the dual method which allows to reduce the existence of
solutions to the problem (1.1) to finding critical points of an energy functional
defined on a suitable Orlicz space, whose accurate choice is the main novelty of the
present paper.

Remark 1.2. We would like to comment on condition (1.3). At this aim we point out
that Theorem 1.1 also applies to the case of the single equation, namely p = q = N+2

N−2

and α = β > 0. In particular, the problem
⎧
⎪⎨

⎪⎩

−Δu = up
(

ln(e+u)
)α in Ω

u > 0 in Ω
u = 0 on ∂Ω

(1.4)

has always a positive solution. On the other hand, it is known that Pohozaev’s
identity [21] ensures the non-existence of positive solutions on star-shaped domains
to Eq. (1.4) whenever α ≤ 0, see Remark 4.3.

In a similar way, it could be interesting to prove the criticality of our condition
1.3. Indeed, a question naturally arises: if p and q lie on the critical hyperbola and

α

p + 1
+

β

q + 1
≤ 0

does the system (1.1) have any positive solutions on a star-shaped domain? In
Theorem 4.2 we give a partial answer when both α and β are not positive. The
general case remains open.
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The paper is organized as follows. In Sect. 2 we describe the dual method which
allows us to consider p, q > 0. Roughly speaking, this method consists in taking
the inverse of the Laplace operator, and defining the inverse of the nonlinearities.
In Sect. 3 we prove our main result, that the associated energy functional, defined
in a suitable product of Orlicz spaces, has a mountain pass geometry. Section 4 is
devoted to analyze the criticality of the condition (1.3). Finally, Sect. 5 summarize
the theory of Orlicz spaces needed for our purposes.

2. The Dual Method

2.1. The Variational Formulation

Given any s ∈ (1,∞), we introduce the operator K := (−Δ)−1 : Ls(Ω) → W 2,s(Ω)∩
W 1,s

0 (Ω) which is defined as

K(f) := u if and only if − Δu = f in Ω, u = 0 on ∂Ω.

Next, we set

a(t) :=
tp

(
ln(e + t)

)α , and b(t) :=
tq

(
ln(e + t)

)β with t ≥ 0, (2.1)

and consider their primitive functions:

A(t) :=

t∫

0

a(s) ds and B(t) :=

t∫

0

b(s) ds for all t ≥ 0. (2.2)

If α ≤ p and β ≤ q, the functions a, b are strictly increasing and so invertible
in [0, +∞). Let us denote by

ã := a−1 and b̃ := b−1 the inverse functions. (2.3)

If we set f = a(u) and g = b(v) or equivalently u = ã(f) and v = b̃(g), then problem
(1.1) can be rewritten as

⎧
⎨

⎩

b̃(g) = K(f) in Ω
ã(f) = K(g) in Ω
f > 0, g > 0 in Ω.

(2.4)

Let us introduce their primitive functions:

Ã(t) :=

t∫

0

ã(s) ds and B̃(t) :=

t∫

0

b̃(s) ds, (2.5)

for all t ≥ 0, and denote LÃ(Ω) and LB̃(Ω) the Orlicz spaces associated to the func-
tions Ã and B̃ respectively, cf. Definition 5.3 and Remark 5.7. Observe that, since ã
and b̃ are continuous and increasing the functions Ã are B̃ are N - functions, cf. def-
inition 5.1. We endowed the space LÃ(Ω) (resp. LB̃(Ω)) with either the Luxembourg
norm ‖ ·‖(Ã) or the Orlicz norm ‖ ·‖Ã (resp. ‖ ·‖(B̃) and ‖ ·‖B̃), see definitions (5.3)
and (5.4) for those norms. From Lemma 5.5 and Proposition 5.10(i), the spaces
LÃ(Ω) and LB̃(Ω) are complete with both the Orlicz or the Luxemburg norm.
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Problem (2.4) has a variational structure. Indeed, let us denote by X the Ba-
nach space

X = LÃ(Ω) × LB̃(Ω)

endowed with the norm ‖(f, g)‖X := ‖f‖Ã + ‖g‖B̃.
By the regularity result Theorem 5.29, the operator K sends LÃ(Ω) into

W 1,Ã
0 (Ω) ∩ W 2,Ã(Ω), cf. Definition 5.19 of the Orlicz–Sobolev spaces W 1,H

0 (Ω) and
W 2,H(Ω), when H is equal to either Ã or B̃. Thus for any (f, g) ∈ X, (K(f), K(g)) ∈
W 2,Ã(Ω)×W 2,B̃(Ω). By a solution (u, v) of (1.1) we mean a pair (u, v) ∈ (W 1,Ã

0 (Ω)∩
W 2,Ã(Ω)

)× (W 1,B̃
0 (Ω) ∩ W 2,B̃(Ω)

)
satisfying (1.1) in the weak sense.

Moreover, for (p, q), (α, β) satisfying either (1.2), or (1.3), we have that the em-
beddings W 2,Ã(Ω) ↪→ LB(Ω) and W 2,B̃(Ω) ↪→ LA(Ω), are continuous and compact,
see Lemma 2.8. Consequently, f K(g) ∈ L1(Ω), g K(f) ∈ L1(Ω), see the 2nd Holder’s
inequality (5.5) in Proposition 5.10. Furthermore, it follows from the definition of
K, that

∫

Ω

f K(g) dx =
∫

Ω

∇ K(f) · ∇ K(g) dx =
∫

Ω

g K(f) dx. (2.6)

For convenience, let us extend a, ã, b, b̃ in the whole R as odd functions, and
extend A, Ã, B and B̃ as even functions. We next introduce the C1-functional
J : X → R defined by

J(f, g) :=
∫

Ω

Ã(f) dx +
∫

Ω

B̃(g) dx − 1
2

∫

Ω

(
f K(g) + g K(f)

)
dx (2.7)

whose derivative at (f, g) ∈ X is equal to

J ′(f, g)[ψ1, ψ2] =

⎛

⎝

∫

Ω

ã(f)ψ1 dx +
∫

Ω

b̃(g)ψ2 dx

⎞

⎠−
⎛

⎝

∫

Ω

ψ1K(g) +
∫

Ω

ψ2 K(f) dx

⎞

⎠ ,

for all (ψ1, ψ2) ∈ X.
Trivially, the Eq. (2.4) are the Euler–Lagrange equations associated to the

action functional J .

2.2. On the Nonlinearities

Lemma 2.1. (i) There exists two constants c1, c2 > 0, only dependent of p, and α,
such that

c1t
1
p
(
ln(e + t)

)α
p ≤ ã(t) ≤ c2t

1
p
(
ln(e + t)

)α
p , for all t ≥ 0. (2.8)

(ii) There exists two constants C1, C2 > 0 only dependent of p, and α, such that

C1 t
p+1

p
(
ln(e + t)

)α
p ≤ Ã(t) ≤ C2 t

p+1
p (
(
ln(e + t)

)α
p , for all t ≥ 0.

Proof of Lemma 2.1. (i) By definition,

a
(
t
(
ln(e + t)

)α
p

)
= tp
(
ln(e + t)

)α
[
ln
(
e + t

(
ln(e + t)

)α
p

)]−α

.
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Now, checking that

lim
t→0

ln
(
e + t

(
ln(e + t)

)α
p

)

ln(e + t)
= 1, lim

t→∞

ln
(
e + t

(
ln(e + t)

)α
p

)

ln(e + t)
= 1,

and since that quotient of logarithms is a continuous, non vanishing function for
t ≥ 0, we can conclude that there exists two constants d1, d2 > 0 such that

d1t
p ≤ a

(
t
(
ln(e + t)

)α
p

)
≤ d2t

p, for all t ≥ 0,

and since ã is increasing,

ã(d1t
p) ≤ t

(
ln(e + t)

)α
p ≤ ã(d2t

p), for all t ≥ 0.

Now, firstly denoting by s = d1t
p, secondly using that

lim
t→0

ln
(
e + t1/p

)

ln(e + t)
= 1, lim

t→∞

ln
(
e + t1/p

)

ln(e + t)
= 1,

and thirdly, denoting by s = d2t
p, we obtain (2.8).

(ii) Given γ > 0, and ν ≥ −γ, set

σγ,ν(t) = σ(t) := tγ
(
ln(e + t)

)ν
, for t > 0,

then

σ′
γ,ν(t) = σ′(t) = tγ−1

(
ln(e + t)

)ν
[

γ + ν
1

ln(e + t)
t

(e + t)

]

.

Observe that

a(t) = σp,−α(t),

and that

lim
t→∞

ta′(t)
a(t)

= p. (2.9)

Moreover, if ν ≥ −γ, then σ is increasing.
Set

h(t) :=
1

ln(e + t)
t

(e + t)
> 0, for t > 0.

Trivially, limt→0 h(t) = 0, limt→∞ h(t) = 0, and there exists a unique t∗ > 0 such
that

h(t) ≤ h(t∗) =
e

e + t∗
< 1, ∀t ≥ 0.

Hence
(

γ +
|ν| e

e + t∗

)−1

σ′
γ,ν(t) ≤ tγ−1

(
ln(e + t)

)ν ≤
(

γ − |ν| e
e + t∗

)−1

σ′
γ,ν(t),

(2.10)

and observe that whenever γ > 1, tγ−1
(
ln(e + t)

)ν = σγ−1,ν(t), so
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(

γ +
|ν| e

e + t∗

)−1

σ′
γ,ν(t) ≤ σγ−1,ν(t) ≤

(

γ − |ν| e
e + t∗

)−1

σ′
γ,ν(t).

By definition of Ã (see (2.2)), using (2.8), and (2.10), we can write

Ã(t) =

t∫

0

ã(s) ds ≤ c2

t∫

0

s
1
p
(
ln(e + s)

)α
p ds ≤ C2σp+1

p , α
p
(t) = C2t

p+1
p
(
ln(e + t)

)α
p .

Likewise is obtained the reverse inequality. �
Remark 2.2. Likewise, there exists two constants C ′

1, C ′
2 > 0 only dependent of p,

and α, such that

C ′
1 tp+1

(
ln(e + t)

)−α ≤ A(t) ≤ C ′
2 tp+1(

(
ln(e + t)

)−α
, for all t ≥ 0.

In fact, from (2.10), for all t ≥ 0,
(

p + 1 +
|α| e

e + t∗

)−1

t a(t) ≤ A(t) ≤
(

p + 1 − |α| e
e + t∗

)−1

t a(t).

Lemma 2.3. (i) Assume that α ≥ 0. Then, for all f ∈ LÃ(Ω), and for the constants
C1, C2 > 0 provided by Lemma 2.1, the following hold

∫

Ω

Ã(f) dx ≥ C1

C2
‖f‖

p+1
p

(Ã)
, whenever ‖f‖(Ã) ≥ 1, (2.11)

∫

Ω

Ã(f) dx ≤ C2

C1
‖f‖

p+1
p

(Ã)
, whenever ‖f‖(Ã) ≤ 1, (2.12)

and
∫

Ω

Ã(f) dx ≥ C1 ‖f‖
p+1

p
p+1

p

. (2.13)

(ii) Assume now that α < 0. Then,
∫

Ω

Ã(f) dx ≤ C2

C1
‖f‖

p+1
p

(Ã)
, whenever ‖f‖(Ã) ≥ 1, (2.14)

∫

Ω

Ã(f) dx ≥ C1

C2
‖f‖

p+1
p

(Ã)
, whenever ‖f‖(Ã) ≤ 1, (2.15)

and if f ∈ L
p+1

p (Ω), then
∫

Ω

Ã(f) dx ≤ C2 ‖f‖
p+1

p
p+1

p

.

Remark 2.4. Likewise, for all f ∈ LA(Ω), and for the constants C ′
1, C ′

2 > 0 provided
by Remark 2.2, the following hold

(i) Assume that α ≥ 0. Then,
∫

Ω

A(f) dx ≤ C ′
2

C ′
1

‖f‖p+1
(A) , whenever ‖f‖(A) ≥ 1,

and
∫

Ω

A(f) dx ≥ C ′
1

C ′
2

‖f‖p+1
(A) , whenever ‖f‖(A) ≤ 1.
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and if f ∈ Lp+1(Ω), then
∫

Ω

A(f) dx ≤ C ′
2 ‖f‖ p+1

p+1 . (2.16)

(ii) Assume now that α < 0. Then
∫

Ω

A(f) dx ≥ C ′
1

C ′
2

‖f‖p+1
(A) , whenever ‖f‖(A) ≥ 1,

∫

Ω

A(f) dx ≤ C ′
2

C ′
1

‖f‖p+1
(A) , whenever ‖f‖(A) ≤ 1. (2.17)

and
∫

Ω

A(f) dx ≥ C ′
1 ‖f‖ p+1

p+1 .

Proof of Lemma 2.3. Let

Ã1(s) := s
p+1

p
(
ln(e + s)

)α
p .

Since Lemma 2.1

C1

∫

Ω

Ã1(f) dx ≤
∫

Ω

Ã(f) dx ≤ C2

∫

Ω

Ã1(f) dx.

(i) Assume that α > 0. If ‖f‖(Ã) ≥ 1, then by Lemma 5.5(iv)

1 =

∫

Ω

Ã

(
|f |

‖f‖(Ã)

)

dx ≤ C2

∫

Ω

(
|f |

‖f‖(Ã)

) p+1
p (

ln(e + |f |))α
p

⎛

⎝
ln
(
e + |f |

‖f‖(Ã)

)

ln(e + |f |)

⎞

⎠

α
p

≤ C2

‖f‖
p+1

p

(Ã)

∫

Ω

|f | p+1
p
(
ln(e + |f |))α

p =
C2

‖f‖
p+1

p

(Ã)

∫

Ω

Ã1(f) dx ≤ C2

C1

1

‖f‖
p+1

p

(Ã)

∫

Ω

Ã(f) dx.

Consequently, (2.11) holds.
Moreover, for all f ∈ LÃ(Ω), with ‖f‖(Ã) ≤ 1,

1 =

∫

Ω

Ã

(
|f |

‖f‖(Ã)

)

dx ≥ C1

∫

Ω

(
|f |

‖f‖(Ã)

) p+1
p (

ln(e + |f |))α
p

⎛

⎝
ln
(
e + |f |

‖f‖(Ã)

)

ln(e + |f |)

⎞

⎠

α
p

≥ C1

‖f‖
p+1

p

(Ã)

∫

Ω

|f | p+1
p
(
ln(e + |f |))α

p =
C1

‖f‖
p+1

p

(Ã)

∫

Ω

Ã1(f) dx ≥ C1

C2

1

‖f‖
p+1

p

(Ã)

∫

Ω

Ã(f) dx.

So (2.12) holds.
Besides, for all f ∈ LÃ(Ω),
∫

Ω

Ã(f) dx ≥ C1

∫

Ω

Ã1(f)) dx = C1

∫

Ω

|f |p+1
p
(
ln(e + |f |))

α
p dx ≥ C1‖f‖

p+1
p

p+1
p

.
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(ii) Assume now that α < 0, and let us write now Ã2(s) := s
p+1

p
(
ln(e+s)

)− |α|
p .

Assume now ‖f‖(Ã) ≤ 1, then

1 =

∫

Ω

Ã

(
|f |

‖f‖(Ã)

)

dx ≤ C2

∫

Ω

(
|f |

‖f‖(Ã)

) p+1
p (

ln(e + |f |))−
|α|
p

⎛

⎝ ln(e + |f |)
ln
(
e + |f |

‖f‖(Ã)

)

⎞

⎠

|α|
p

≤ C2

‖f‖
p+1

p

(Ã)

∫

Ω

|f | p+1
p
(
ln(e + |f |))−

|α|
p =

C2

‖f‖
p+1

p

(Ã)

∫

Ω

Ã1(f) dx ≤ C2

C1

1

‖f‖
p+1

p

(Ã)

∫

Ω

Ã(f) dx.

So (2.15) holds.
Moreover, for all f ∈ LÃ(Ω), with ‖f‖(Ã) ≥ 1,

1 =

∫

Ω

Ã

(
|f |

‖f‖(Ã)

)

dx ≥ C1

∫

Ω

(
|f |

‖f‖(Ã)

) p+1
p (

ln(e + |f |))−
|α|
p

⎛

⎝ ln(e + |f |)
ln
(
e + |f |

‖f‖(Ã)

)

⎞

⎠

|α|
p

≥ C1

‖f‖
p+1

p

(Ã)

∫

Ω

|f | p+1
p
(
ln(e + |f |))−

|α|
p =

C1

‖f‖
p+1

p

(Ã)

∫

Ω

Ã1(f) dx ≥ C1

C2

1

‖f‖
p+1

p

(Ã)

∫

Ω

Ã(f) dx.

Consequently, (2.14) holds.
Finally, Lemma 2.1(ii) ends the proof. �

2.3. On the Space X = LÃ(Ω) × LB̃ (Ω)

We prove in this section that X is reflexive.
To do so, in Proposition 5.10(v) is stated that we only need to check that the

N -functions satisfy the Δ2-condition at infinity (see (5.1) for a definition of the
Δ2-condition at infinity).

Proposition 2.5. A, B, Ã, B̃ satisfy the Δ2-condition, and X is a reflexive Banach
space. Moreover, the dual space

X ′ :=
(
LÃ(Ω) × LB̃(Ω)

)′
=
(
LÃ(Ω)

)′
×
(
LB̃(Ω)

)′
= LA(Ω) × LB(Ω) (2.18)

Proof. From Lemma 5.5 and Proposition 5.10(i), the spaces LÃ(Ω) and LB̃(Ω) are
complete with both the Orlicz or the Luxemburg norm. From Proposition 5.10(v) it
is enough to check that A, B, Ã, B̃ satisfy the Δ2-condition. To do that, we apply
Lemma 5.4 (iii), see condition (5.2).

Indeed, notice that by l’Hôpital rule

lim
t→+∞

ta(t)
A(t)

= lim
t→+∞

ta′(t)
a(t)

+ 1 = p + 1, and lim
t→+∞

tb(t)
B(t)

= q + 1,

see (2.9) in the proof of Lemma 2.1. Now, changing the the variable s = ã(t), using
Young equality (3.1), and l’Hôpital rule

lim
t→+∞

tã(t)
Ã(t)

= lim
s→+∞

sa(s)
Ã(a(s))

= lim
s→+∞

sa(s)
sa(s) − A(s)

= lim
s→+∞

a(s) + sa′(s)
sa′(s)

=
1
p

+ 1,

see also (2.9) in the proof of Lemma 2.1. Likewise,

lim
t→+∞

tb̃(t)
B̃(t)

= lim
s→+∞

sb(s)
B̃(b(s))

= lim
s→+∞

sb(s)
sb(s) − B(s)

= lim
s→+∞

b(s) + sb′(s)
sb′(s)

=
1
q

+ 1.
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Finally, Proposition 5.10 (iv) and the fact that ˜(Ã) = A, and ˜(Ã) = A ends the
proof.

�

n order to prove some geometric properties of the functional J , we will made
use of the following continuous embeddings:

Lemma 2.6. If α, β ≥ 0,

LÃ(Ω) ↪→ L
p+1

p (Ω) and LB̃(Ω) ↪→ L
q+1

q (Ω), (2.19)

and if α < 0, (respectively, β < 0), for all ε > 0 small enough,

LÃ(Ω) ↪→ L
p+1

p −ε(Ω),
(
respectively, LB̃(Ω) ↪→ L

q+1
q −ε(Ω)

)
. (2.20)

Likewise, if α, β ≥ 0, for all ε > 0 small enough,

LA(Ω) ↪→ Lp+1−ε(Ω) and LB(Ω) ↪→ Lq+1−ε(Ω), (2.21)

and if α < 0, (respectively, β < 0),

LA(Ω) ↪→ Lp+1(Ω),
(
respectively, LB(Ω) ↪→ Lq+1(Ω)

)
. (2.22)

Proof. We remark that whenever α, β ≥ 0, (2.19) holds using that

a(t) ≤ tp =⇒ ã(t) ≥ t1/p =⇒ Ã(t) ≥ p

p + 1
t

p+1
p . (2.23)

Moreover, as for all u ∈ LÃ(Ω), u ≡ 0, we have from (5.6) in Proposition 5.10(iii),

1 ≥
∫

Ω

Ã

(
u

‖u‖Ã

)

dx ≥ p

p + 1

∫

Ω

∣
∣
∣
∣

u

‖u‖Ã

∣
∣
∣
∣

p+1
p

dx =
p

p + 1

‖u‖
p+1

p
p+1

p

‖u‖
p+1

p

Ã

,

so, the embedding (2.20) is proved.

Besides, if α < 0, (respectively, β < 0), for all ε > 0 small enough, (2.20) holds.
Indeed, fix ε > 0 small, there exists c = cε > 0 such that

a(t) ≤
{

ctp if t ≤ 1
ctp+ε if t ≥ 1,

then

ã(s) ≥
{

c−1/ps1/p if s ≤ c

c−1/(p+ε)s1/(p+ε) if s ≥ c,

and

Ã(s) ≥
{

p
p+1c−1/ps(p+1)/p if s ≤ c

p+ε
p+ε+1c−1/(p+ε)s(p+ε+1)/(p+ε) + ( p

p+1 − p+ε
p+ε+1)c if s ≥ c.

In particular

Ã(s) ≥ C1s
p+1

p −ε′ − C2,
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for

C1 :=
p + ε

p + ε + 1
c−1/(p+ε), C2 := max

{
p + ε

p + ε + 1
c,

ε c

(p + ε + 1)(p + 1)

}

,

ε′ =
ε

p(p + ε)
.

with C1, C2 > 0. From the above and by definition, if u ∈ LÃ(Ω), u ≡ 0, then
putting v = u

‖u‖Ã

1 ≥
∫

Ω

Ã
(
v(x)
)
dx ≥

∫

Ω

C1 |v|p+1
p −ε′

dx − C2|Ω|,
so,

(
1 + C2|Ω|) ‖u‖

p+1
p −ε′

Ã
≥ C1‖u‖

p+1
p −ε′

p+1
p −ε′

and the embedding (2.20) is proved.
The proofs of (2.21) and (2.22) are similar. �

The following Lemma is a technical one, that will be useful to prove Proposition
2.10.

Lemma 2.7. Let a, A, ã, Ã be defined by (2.1), (2.2), (2.3), and (2.5) respectively.
Here ∼ means equivalent at infinity, see Remark 5.15. Then
(i) A is equivalent to Ã a a t infinity, (A ∼ Ã a), and LA(Ω) is isomorphic to

LÃ a(Ω).
(ii) Ã is equivalent to A ã at infinity, (Ã ∼ A ã), and LÃ(Ω) is isomorphic to

LA ã(Ω).

Proof. (i) Clearly, since Lemma 2.1, and Proposition 5.17, for any ψ ∈ LA(Ω),

A(ψ) = A
(|ψ|) ∼ |ψ|p+1

(
ln |ψ|)−α

, and
∫

Ω

|ψ|p+1
(
ln |ψ|)−α

dx ≤ C.

Moreover,

a(ψ) ∼ |ψ|p(ln |ψ|)−α,

Ã
(
a(ψ)
) ∼ (|ψ|p(ln |ψ|)−α

)p+1
p
(
ln |ψ|)

α
p = |ψ|p+1

(
ln |ψ|)−α

,

so A ∼ Ã a at infinity, and
∫

Ω

Ã
(
a(ψ)
)
dx ≤ C, consequently a(ψ) ∈ LÃ(Ω).

(ii) Likewise, for any ψ ∈ LÃ(Ω),

Ã(ψ) = Ã
(|ψ|) ∼ |ψ|p+1

p
(
ln |ψ|)

α
p , and

∫

Ω

|ψ|p+1
p
(
ln |ψ|)

α
p dx ≤ C.

Moreover,

ã(ψ) ∼ |ψ| 1
p (ln |ψ|)α

p ,
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and

A
(
ã(ψ)
) ∼
(
|ψ| 1

p (ln |ψ|)α
p

)p+1 (
ln |ψ|)−α = |ψ|p+1

p
(
ln |ψ|)

α
p ,

so Ã ∼ A ã at infinity, and
∫

Ω

A
(
ã(ψ)
)
dx ≤ C, consequently ã(ψ) ∈ LA(Ω).

�

2.4. On the Functional J

Let us write J ′ = Φ − Υ, where Φ and Υ are defined, for all (f, g) ∈ X and for all
(ψ1, ψ2) ∈ X, as

Φ(f, g)[ψ1, ψ2] :=
∫

Ω

ã(f)ψ1 dx +
∫

Ω

b̃(g)ψ2 dx, (2.24)

Υ(f, g)[ψ1, ψ2] :=
∫

Ω

ψ1 K(g) +
∫

Ω

ψ2 K(f) dx. (2.25)

We will see that Υ is a continuous compact operator, see Proposition 2.9, and that
Φ is an homeomorphism, see Proposition 2.10.

We start by proving that Υ is a compact operator. Let us recall that, by using
the regularity result Theorem 5.29,

(
K(f), K(g)

) ∈ W 2,Ã(Ω)×W 2,B̃(Ω) for all (f, g) ∈
X. Furthermore, we have

Lemma 2.8. Let p, q > 0, α, β ∈ R satisfying either (1.2) or (1.3). Then, the em-
beddings W 2,Ã(Ω) ↪→ LB(Ω) and W 2,B̃(Ω) ↪→ LA(Ω) are compact.

Proof. We use Theorem 5.27. Assume first that p+1
p ≥ N

2 . In particular, we observe

that if p+1
p > N

2 , or p+1
p = N

2 and α >
(
1 − 1

N

)
p
(
N − p+1

p

)
, then W 2,Ã(Ω) ↪→

Cb(Ω) is compact, where Cb(Ω) = C(Ω) ∩ L∞(Ω). Hence the embedding

W 2,Ã(Ω) ↪→ LB(Ω)

is also compact.
Moreover, if p+1

p = N
2 and α ≤ (1 − 1

N

)
p
(
N − p+1

p

)
, then

W 2,Ã(Ω) ↪→ LA1(Ω)

is compact for all N -function A1 such that

A1 ≺≺ (Ã∗)∗,

where ≺≺ is defined in Definition 5.14(iii), and
(
Ã∗)∗, at least of exponential type,

is defined by (5.13). Let us verify that B ≺≺ (Ã∗)∗ using that B(s) ∼ sq+1(ln s)−β,
see Lemma 2.1 and Example 5.18. Indeed, for all c > 0 fixed, we have that
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lim
s→+∞

B(s)
(
Ã∗)∗(cs)

= 0,

holds trivially.
Likewise, if q+1

q ≥ N
2 , then the embedding W 2,B̃(Ω) ↪→ LA(Ω), where A(s) ∼

sp+1(ln s)−α, is compact.

Let us now study the situation appearing when p+1
p < N

2 . We now remark (see
Lemma 2.1 and Example 5.25) that for p+1

p < N
2 ,

Ã(s) ∼ s
p+1

p (ln s)
α
p , so then W 2,Ã(Ω) ↪→ LA1(Ω) ∀A1 ≺≺ ((Ã)∗)∗,

with
(
(Ã)∗)∗ ∼ s

N(p+1)
Np−2(p+1)

[
log(s)

] αN
Np−2(p+1) .

Let us verify that B ≺≺ ((Ã)∗)∗, in other words, that for all δ > 0,

lim
s→+∞

(
(Ã)∗)∗(δs)

B(s)
= +∞.

Indeed,
(
(Ã)∗)∗(δs)

B(s)
∼ s

N(p+1)
Np−2(p+1)−(q+1)[ log(s)

] αN
Np−2(p+1)+β → ∞,

if

N(p + 1)

Np − 2(p + 1)
> q + 1, or

N(p + 1)

Np − 2(p + 1)
= q + 1, and

αN

Np − 2(p + 1)
+ β > 0,

i.e. if

p

p + 1
− 2

N
<

1
q + 1

, or
N

Np − 2(p + 1)
=

q + 1
p + 1

, and
α

p + 1
+

β

q + 1
> 0.

This last inequalities are equivalent to

N − 2
N

− 1
p + 1

<
1

q + 1
, or

1
p + 1

+
1

q + 1
=

N − 2
N

, and
α

p + 1
+

β

q + 1
> 0.

The first inequality holds under hypothesis (1.2), the second one holds by hypothesis
(1.3).

Likewise if q+1
q < N

2 , then the embedding W 2,B̃(Ω) ↪→ LA(Ω) is compact, and
the proof is achieved. �

Proposition 2.9. The linear operator Υ : X → X ′ defined by

Υ(f, g)[ψ1, ψ2] :=
∫

Ω

ψ1 K(g) dx +
∫

Ω

ψ2 K(f) dx, ∀(ψ1, ψ2) ∈ X

is a continuous compact map.
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Proof. Let us prove the continuity. Let {fn}n∈N be a sequence in LÃ(Ω) converging
to some f ∈ LÃ(Ω) and {gn}n∈N a sequence in LB̃(Ω) converging to some g ∈ LB̃(Ω).
Let ψ1 ∈ LÃ(Ω). We have

∣
∣Υ(fn, gn)[ψ1, ψ2] − Υ(f, g)[ψ1, ψ2]

∣
∣

≤
∫

Ω

(∣
∣K(fn)ψ2 − K(f)ψ2

∣
∣+
∣
∣K(gn)ψ1 − K(g)ψ1

∣
∣
)

dx

≤ C
(∥
∥K(fn) − K(f)

∥
∥

B
‖ψ2‖B̃ +

∥
∥K(gn) − K(g)

∥
∥

A
‖ψ1‖Ã

)

We only have to prove that
∥
∥K(fn)−K(f)

∥
∥

B
→ 0, the proof of

∥
∥K(gn)−K(g)

∥
∥

A
→

0 is analogous. This result follows from the regularity results of Theorem 5.29 and
the above Lemma 2.8.

Let us now prove the compactness. Let {fn}n∈N be a bounded sequence in
LÃ(Ω) and {gn}n∈N a bounded sequence in LB̃(Ω). From (5.17) we have

‖K(fn)‖
W 2,Ã ≤ C, ‖K(gn)‖

W 2,B̃ ≤ C

for some constant C independent of n. Then, using Lemma 2.8 and the fact that
X is reflexive (cf. Proposition 2.5, and Proposition 5.10) we infer the existence
of g ∈ LB(Ω) and f ∈ LA(Ω) such that, up to a subsequence, ‖K(fn) − g‖B →
0, ‖K(gn) − f‖A → 0 as n → ∞. Hence, using the 2nd Hölder’s inequality, for any
(ψ1, ψ2) ∈ X, defining If,g[ψ1, ψ2] :=

∫

Ω
(fψ1 + gψ2)dx,

∣
∣Υ(fn, gn)[ψ1, ψ2] − If,g[ψ1, ψ2]

∣
∣ ≤
∫

Ω

(∣
∣K(fn)ψ2 − gψ2

∣
∣+
∣
∣K(gn)ψ1 − fψ1

∣
∣
)

dx

≤ C
(∥
∥K(fn) − g

∥
∥

B
‖ψ2‖B̃ +

∥
∥K(gn) − f

∥
∥

A
‖ψ1‖Ã

)

so then ‖Υ(fn, gn) − If,g‖X′ → 0 as n → ∞. �

We end this section, proving that Φ is an homeomorphism.

Proposition 2.10. The non-linear operator Φ : X → X ′ defined by

Φ(f, g)[ψ1, ψ2] :=
∫

Ω

ã(f)ψ1 dx +
∫

Ω

b̃(g)ψ2 dx, for all (ψ1, ψ2) ∈ X.

is an homeomorphism.

Proof. To prove that Φ : X → X ′ is an homeomorphism, we use Proposition
5.10(iii)-(iv), Remark 5.7, and Lemma 2.1 and Example 5.18.

Step 1. Φ is injective.
Assume that Φ(f1, g1) = Φ(f2, g2), so for any (ψ1, ψ2) ∈ X

0 =
(
Φ(f1, g1) − Φ(f2, g2)

)
[ψ1, ψ2]

=
∫

Ω

[
ã(f1) − ã(f2)

]
ψ1 dx +

∫

Ω

[
b̃(g1) − b̃(g2)

]
ψ2 dx,

then

ã(f1) = ã(f2), b̃(g1) = b̃(g2) a.e. x ∈ Ω.
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or equivalently, since ã := a−1 and b̃ := b−1,

f1 = f2, g1 = g2 a.e. x ∈ Ω.

Step 2. Φ is surjective.
Let us check that for any (ψ1, ψ2) ∈ X ′ = LA(Ω) × LB(Ω) (see (2.18)),(

a(ψ1), b(ψ2)
) ∈ X, and

Φ
(
a(ψ1), b(ψ2)

)
= (ψ1, ψ2). (2.26)

Since Lemma 2.7, a(ψ1) ∈ LÃ(Ω). Likewise b(ψ2) ∈ LB̃(Ω), and
(
a(ψ1), b(ψ2)

) ∈ X.

Since ã := a−1 and b̃ := b−1, it is straightforward to check that (2.26) holds.

Consequently,

Φ−1(ψ1, ψ2) =
(
a(ψ1), b(ψ2)

)
.

Step 3. Φ is continuous.

Let (fn, gn) → (f, g) be a convergent sequence in LÃ(Ω) × LB̃(Ω), in other
words

‖fn − f‖Ã + ‖gn − g‖B̃ → 0.

Claim.

‖fn − f‖Ã → 0 =⇒ ∥
∥ã(fn) − ã(f)

∥
∥

A
→ 0.

Once proved the claim
∥
∥ã(fn) − ã(f)

∥
∥

A
+
∥
∥b̃(gn) − b̃(g)

∥
∥

B
→ 0.

Then, since Proposition 5.10(i)-(ii), and Remark 5.11, for all (ψ1, ψ2) ∈ X,
∣
∣
∣
(
Φ(fn, gn) − Φ(f, g)

)
[ψ1, ψ2]

∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∫

Ω

[
ã(fn) − ã(f)

]
ψ1 dx +

∫

Ω

[
b̃(gn) − b̃(g)

]
ψ2 dx

∣
∣
∣
∣
∣
∣

≤ ∥∥ã(fn) − ã(f)
∥
∥

A
‖ψ1‖Ã +

∥
∥b̃(gn) − b̃(g)

∥
∥

B
‖ψ2‖B̃ → 0,

and the continuity is achieved.
Proof of the Claim.

Since Theorem 5.13, to conclude the claim, we need to check that ã(fn) → ã(f)
in A-mean, in other words

∫

Ω

A
(∣
∣ã(fn) − ã(f)

∣
∣
)
dx → 0.

On the one hand since Lemma 2.7, Ã ∼ A ã at infinity, and LÃ(Ω) is isomor-
phic to LA ã(Ω), so, for any f ∈ LÃ(Ω)

∫

Ω

A
(
ã(f)
)
dx ≤ C, and consequently ã(f) ∈ LA(Ω).

Likewise, {ã(fn)} ⊂ LA(Ω).
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On the other hand since Theorem 5.13, fn → f in Ã-mean, so
∫

Ω

Ã
(
fn − f

)
dx =

∫

Ω

Ã
(|fn − f |) dx → 0. (2.27)

Assume by contradiction that the claim do not hold. Then, there exist ε0 > 0
and a subsequence {fnk

}k satisfying
∫

Ω

A (ã(fnk
) − ã(f)) dx > ε0 for all k ∈ N. (2.28)

Put zk := Ã(|fnk
− f |). Since (2.27), zk → 0 in L1(Ω), so by the Lebesgue

reverse dominated converge theorem, there exists a subsequence {zkj
}j and there

exists h ∈ L1(Ω) such that

zkj
≤ h, zkj

→ 0 a.e., and also Ã−1zkj
= fnkj

− f → 0 a.e.

We have

|fnkj
| ≤ Ã−1(h) + |f | ∈ LÃ(Ω).

By monotonicity of ã, and since Lemma 2.7, Ã ∼ A ã at infinity, so

ã(fnkj
) ≤ ã

(
Ã−1(h) + |f |

)
:= � ∈ LA(Ω),

moreover

A
(
|ã(fnkj

) − ã(f)|
)

≤ A(� + ã(f)) ∈ L1(Ω).

Since pointwise convergence A
(
|ã(fnkj

) − ã(f)|
)

→ 0 a.e., and from Lebesgue dom-
inate convergence theorem we conclude that

∫

Ω

A
(
|ã(fnkj

) − ã(f)|
)

dx → 0,

which contradicts (2.28). This concludes the proof of the claim. �

3. Proof of Theorem 1.1

First we star by proving that J satisfies the (PS) condition. To this aim we will use
of the following (trivial) lemma:

Lemma 3.1. [13, Lemma 3.1] Let X be a reflexive Banach space and F ∈ C1(X) be
such that
(1) any Palais–Smale sequence of F is bounded;
(2) for all u ∈ X,

F ′(u) = L(u) − T (u),

where L : X → X ′ is a homeomorphism and T : X → X ′ is a continuous
compact map.

Then, F satisfies the Palais–Smale condition.

Proposition 3.2. J satisfies the (PS) condition.
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Proof. Let us first check (2) for the space X = LÃ(Ω) × LB̃(Ω) and the functional
F = J defined (2.7). Observe that X is a reflexive Banach space by Proposition 2.5
and J ∈ C1(X;R) is such that J ′ = Φ − Υ where Φ is defined in (2.24) and Υ is
defined in (2.25). Thus, (2) follows from Propositions 2.5 and 2.9.

Now we check (1). Let {(fn, gn)}n∈N be a Palais–Smale sequence for the func-
tional J , that is, we have for some C > 0 and some sequence of positive real numbers
{εn}n∈N → 0,

(PS1): J(fn, gn) ≤ C for all n ∈ N,

(PS2): |J ′(fn, gn)[ψ1, ψ2]| ≤ εn‖(ψ1, ψ2)‖X ∀(ψ1, ψ2) ∈ X.

Since (2.6), for every (f, g) ∈ X, θ ∈ R we have

1
2
Υ(f, g)[f, g] =

1
2

⎡

⎣

∫

Ω

f K(g) +
∫

Ω

g K(f) dx

⎤

⎦ = Υ(f, g) [θf, (1 − θ)g] ,

and since the identity

J(fn, gn) − J ′(fn, gn) [θf, (1 − θ)g]

=
∫

Ω

(
Ã(fn) + B̃(gn) − θfnã(fn) − (1 − θ)gnb̃(gn)

)
dx

it follows from (PS1)-(PS2),
∫

Ω

(
Ã(fn) − θfnã(fn)

)
dx +

∫

Ω

(
B̃(gn) − (1 − θ)gnb̃(gn)

)
dx ≤ εn‖(fn, gn)‖X + 2C.

Assume by contradiction that ‖(fn, gn)‖X → +∞. Using the Young equality, see
Proposition 5.8 (iii),

Ã(t) = tã(t) − A
(
ã(t)
)

(3.1)

Integrating by parts A(t) =
∫ t

0
sp

(ln(e+s))α ds, we have that

A(t) =
t a(t)
p + 1

+
α

p + 1

∫ t

0

sp+1

(
ln(e + s)

)α+1

ds

e + s
,

and consequently,

A
(
ã(t)
)

=
1

p + 1
t ã(t) +

α

p + 1

∫ ã(t)

0

sp+1

(
ln(e + s)

)α+1

ds

e + s
.

Likewise

B(t) =
1

q + 1
t b(t) +

β

q + 1

∫ t

0

sq+1

(
ln(e + s)

)β+1

ds

e + s
,

and

B
(
b̃(t)
)

=
1

q + 1
t b̃(t) +

β

q + 1

∫ b̃(t)

0

sq+1

(
ln(e + s)

)β+1

ds

e + s
.
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Hence

Ã(t) − θtã(t) =
(

p

p + 1
− θ

)

t ã(t) − α

p + 1

∫ ã(t)

0

sp+1

(
ln(e + s)

)α+1

ds

e + s
,

and

B̃(t) − (1 − θ)t b̃(t) =
(

q

q + 1
− (1 − θ)

)

t b̃(t) − β

q + 1

∫ b̃(t)

0

sq+1

(
ln(e + s)

)β+1

ds

e + s
.

Since l’Hospital rule,

lim
t→∞

∫ t

0

sp+1

(
ln(e + s)

)α+1

ds

e + s

tp+1

(
ln(e + t)

)α+1

=
1

p + 1
, moreover lim

t→∞

tp+1

(ln(e + t))α+1

ta(t)
= 0,

then, for each ε > 0 there exists a Cε such that

α

p + 1

∫ t

0

sp+1

(
ln(e + s)

)α+1

ds

e + s
≤ ε ta(t) + Cε, for all t ≥ 0,

and
∫ ã(t)

0

sp+1

(
ln(e + s)

)α+1

ds

e + s
≤ ε tã(t) + Cε, for all t ≥ 0.

Choosing

θ =
1
2

(

1 − 1
p + 1

+
1

q + 1

)

=
1
2

(
p

p + 1
+

1
q + 1

)

∈ [0, 1],

we get that

p

p + 1
− θ =

q

q + 1
− (1 − θ) =

1
2

(

1 − 1
p + 1

− 1
q + 1

)

> 0.

Consequently

Ã(t) − θtã(t) ≥
[
1
2

(

1 − 1
p + 1

− 1
q + 1

)

− ε

]

t ã(t) − Ce,

and

B̃(t) − (1 − θ)t b̃(t) ≥
[
1
2

(

1 − 1
p + 1

− 1
q + 1

)

− ε

]

t b̃(t) − Ce.

Hence
∫

Ω

fn ã(fn) dx +
∫

Ω

gn b̃(gn) dx ≤ εn‖(fn, gn)‖X + C,

and as tã(t) > 0 for all t, we then get

1
‖(fn, gn)‖X

∫

Ω

fn ã(fn) dx → 0,
1

‖(fn, gn)‖X

∫

Ω

gn b̃(gn) dx → 0.
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Thus, using that for all u ∈ LH(Ω)

‖u‖H ≤ 2‖u‖(H) ≤ 2 max
{∫

Ω

H(u) dx, 1
}

(cf. Lemma 5.5(iii) and Proposition 5.10(i)) for H = Ã and H = B̃, we reach a
contradiction. �

Proof of Theorem 1.1. We wish to apply a mountain pass type theorem. We divide
the proof in 2 steps. Recall that the functional J is defined in (2.7).

Step 1. We prove that (0, 0) is a local minimum of J . By Young’s inequality for both
A and B implies

J(f, g) =
∫

Ω

Ã(f) dx +
∫

Ω

B̃(g) dx − 1
2

∫

Ω

(f K(g) + g K(f)) dx

≥
∫

Ω

Ã(f) dx +
∫

Ω

B̃(g) dx − 1
2

∫

Ω

(
Ã(f) + A(K(g))

)
dx

− 1
2

∫

Ω

(
B̃(g) + B(K(f))

)
dx

=
1
2

∫

Ω

Ã(f) dx +
1
2

∫

Ω

B̃(g) dx − 1
2

∫

Ω

A(K(g)) dx − 1
2

∫

Ω

B(K(f)) dx.

Let us distinguish 3 cases according to the signs of α and β.

Case 1: Assume that α ≥ 0 and β ≥ 0. First observe that, since

Ã(t) ≥ p

p + 1
t

p+1
p , B̃(t) ≥ q

q + 1
t

q+1
q

for all t ≥ 0 (see (2.23)), then X ⊂ L
p+1

p (Ω) × L
q+1

q (Ω). Moreover, using that

A(t) ≤ 1
p + 1

tp+1, B(t) ≤ 1
q + 1

tq+1

for all t ≥ 0, we get
∫

Ω

A(K(g))dx ≤ 1
p + 1

‖K(g)‖p+1
p+1,

∫

Ω

B(K(f))dx ≤ 1
q + 1

‖K(f)‖q+1
q+1.

Besides, using Sobolev embeddings, either the second inequality of (1.2) or the
equality in (1.3) and the regularity of K, there exists a constant C > 0 independent
of f and g such that

‖K(g)‖p+1 ≤ C‖K(g)‖
W

2,
q+1

q
≤ C‖g‖ q+1

q
, ‖K(f)‖q+1 ≤ C‖K(f)‖

W
2,

p+1
p

≤ C‖f‖ p+1
p

.

Thus

2J(f, g) ≥
(

p

p + 1
‖f‖

p+1
p

p+1
p

− Cq+1‖f‖q+1
p+1

p

)

+
(

q

q + 1
‖g‖

q+1
q

q+1
q

− Cp+1‖g‖p+1
q+1

q

)

.

Finally, using the first inequality of (1.2) and (1.3) (i.e. p+1
p < q +1, or equivalently,

q+1
q < p + 1) and that ‖f‖p+1

p
≤
(

p+1
p

) p
p+1 ‖f‖Ã, ‖g‖ q+1

q
≤
(

q+1
q

) q
q+1 ‖g‖B̃, we

conclude that J(f, g) > 0 for all (f, g) ∈ X with 0 = ‖(f, g)‖X sufficiently small.
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Case 2: Assume that α ≥ 0 and β < 0 (the case α < 0 and β ≥ 0 is analogous).

Using Sobolev embeddings, the regularity of K, and since q+1≤
(

N−2
N − 1

p+1

)−1

=
(

p
p+1 − 2

N

)−1

, we have that

‖K(f)‖q+1 ≤ C‖K(f)‖( p
p+1− 2

N )−1 ≤ C‖K(f)‖
W

2,
p+1

p
≤ C‖f‖p+1

p
.

On the one hand, since (2.16), and the above
∫

Ω

B(K(f)) dx ≤ 1
q + 1

‖K(f)‖q+1
q+1 ≤ C‖f‖q+1

p+1
p

.

On the other hand, since (2.13)
∫

Ω

Ã(f) dx ≥ C ‖f‖
p+1

p
p+1

p

.

Hence, using the Young inequality
1
2

∫

Ω

(f K(g) + g K(f)) dx =
∫

Ω

f K(g) dx ≤
∫

Ω

B̃(g)dx +
∫

Ω

B(K(f))dx

so

J(f, g) ≥
∫

Ω

Ã(f)dx −
∫

Ω

B(K(f))dx

and using (2.41)

J(f, g) ≥ C‖f‖
p+1

p
p+1

p

− D‖f‖q+1
p+1

p

> 0,

for 0 = ‖f‖Ã small enough. Observe that if f = 0, then J(f, g) =
∫

Ω
B̃(g)dx > 0

for ‖g‖B̃ = 0.
Case 3: Assume that α < 0 and β < 0.

Notice that if α < 0, β < 0 then necessarily (1.2) holds. Using Orlicz–Sobolev
embeddings (see Lemma 2.8), and the regularity of K (see Theorem 5.29), we have
that

‖K(g)‖A ≤ C‖K(g)‖W 2,B̃ ≤ C‖g‖B̃, ‖K(f)‖B ≤ C‖K(f)‖W 2,Ã ≤ C‖f‖Ã.

On the one hand since (2.17), and the above
∫

Ω

A(K(g)) dx ≤ C ‖K(g)‖p+1
A ≤ C‖g‖p+1

B̃
,

∫

Ω

B(K(f))dx ≤ C‖K(f)‖q+1
B ≤ C‖f‖q+1

Ã
.

whenever ‖K(g)‖A ≤ 1, ‖K(f)‖B ≤ 1.
On the other hand since (2.15) in Lemma 2.3, and Lemma 2.6,

∫

Ω

Ã(f) dx ≥ C ‖f‖
p+1

p

(Ã)
,

∫

Ω

B̃(g) dx ≥ C ‖g‖
q+1

q

B̃
,

whenever ‖f‖(Ã) ≤ 1, ‖g‖B̃ ≤ 1.

Then, for all (f, g) ∈ X with 0 = ‖(f, g)‖X sufficiently small

2J(f, g) ≥ d1‖f‖
p+1

p

(Ã)
− d2‖f‖q+1

Ã
+
(

d3‖g‖
q+1

q

B̃
− d4‖g‖p+1

B̃

)

> 0.
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Step 2. There exists (f1, g1) ∈ X such that J(f1, g1) < 0. Indeed, choose s ∈ (1/p, q)
(this is possible as qp > 1, which follows from (1.2) or (1.3)). We shall show that there
exists t ∈ R big enough such that J(tφ1, t

sφ1) < 0. Indeed, since K(φ1) = φ1/λ1, we
can write

J(tφ1, t
sφ1) =

∫

Ω

Ã(tφ1) dx +
∫

Ω

B̃(tsφ1) dx − t1+s

λ1

∫

Ω

(φ1)2 dx.

Since Lemma 2.1 and Example 5.18, Ã(tφ1) ∼ (tφ1)
p+1

p (ln(tφ1))
α
p , and B̃(tsφ1) ∼

(tsφ1)
q+1

q (ln(tsφ1))
β
q . Since p+1

p < 1+s, and also sq+1
q < 1+s, hence J(tφ1, t

sφ1) →
−∞ as t → ∞.

4. A Non-existence Result

The following lemma provides a Rellich–Pohozaev–Mitidieri type identity, see [18,
21,22].

Lemma 4.1. (Rellich–Pohozaev–Mitidieri type identity) Let u and v be in C2(Ω̄),
where Ω is a C1 domain in R

N , and u = v = 0 on ∂Ω. Then
∫

Ω

Δu (x · ∇v) + Δv (x · ∇u) = (N − 2)
∫

Ω

(∇u · ∇v) +
∫

∂Ω

∂u

∂ν
(x · ∇v)

+
∫

∂Ω

∂v

∂ν
(x · ∇u) −

∫

∂Ω

(∇u, ∇v) (x · ν),

where ν denotes the exterior normal, and (x · ν) denotes the inner product.

For the proof we refer to [18].
By definition, a solution (u, v) of (1.1) belongs to

(
W 1,Ã

0 (Ω) ∩ W 2,Ã(Ω)
) ×

(
W 1,B̃

0 (Ω) ∩ W 2,B̃(Ω)
)
. Since an estimate of Brezis–Kato [4], based on Moser iter-

ation techniques [19], u, v ∈ C1,ν(Ω) ∩ W 2,s(Ω) for any ν < 1, s < +∞, see for
instance [20, Lemma 2.1 (iv)]. If, in particular Ω is C2,μ, then u, v ∈ C2,μ(Ω).

Theorem 4.2. Non existence of non-negative non-trivial classical solutions Let (u, v)
∈ (C2(Ω)

)2 be a pair of non-negative solutions to the problem (1.1).
Assume that

1
p + 1

+
1

q + 1
=

N − 2
N

. (4.1)

Assume also that Ω is strongly star-shaped with respect to 0 (the inner product
(x · ν(x)) ≥ 0 for all x ∈ ∂Ω, and (x · ν(x)) ≡ 0) and that ∂Ω is C1. If α, β ≤ 0,
then

u ≡ 0, v ≡ 0, in Ω.

Assume now that
1

p + 1
+

1
q + 1

<
N − 2

N
. (4.2)
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and that Ω is star-shaped with respect to 0 ((x · ν(x)) ≥ 0 for all x ∈ ∂Ω) and that
∂Ω is C1. If α, β ≤ 0, then

u ≡ 0, v ≡ 0, in Ω.

Remark 4.3. In particular, for the single equation, i.e. p = q and α = β ≤ 0, we
have the following:

Assume that p = 2∗ − 1, and also that Ω is strongly star-shaped with respect
to 0. If α ≤ 0, then

u ≡ 0, in Ω.

Assume now that p > 2∗ − 1, and that Ω is star-shaped with respect to 0. If
α ≤ 0, then

u ≡ 0, in Ω.

Proof of Theorem 4.2. If we set W (u, v) := A(u)+B(v) then Wu = a(u) and Wv =
b(v). Therefore, for solutions u > 0 and v > 0 of (1.1),
∫

Ω

− [Δu (x · ∇v) + Δv (x · ∇u)]

=
∫

Ω

∑

j

xj

(
∂W

∂v

∂v

∂xj
+

∂W

∂u

∂u

∂xj

)

=
∫

Ω

∑

j

xj
∂W

∂xj

= −N

∫

Ω

W +
∫

Ω

div(W x) = −N

∫

Ω

[A(u) + B(v)] +
∫

∂Ω

(x · ν) W (u, v),

and
∫

Ω

∇u∇v =
∫

Ω

ua(u) =
∫

Ω

vb(v). (4.3)

Applying Lemma 4.1 (Pohozaev-Rellich-Mitidieri type identity) we get that

N

∫

Ω

[A(u) + B(v)] − (N − 2)

∫

Ω

u a(u)

=

∫

∂Ω

(x · ν) W (u, v) −
∫

∂Ω

(∇u · ∇v) (x · ν) +

∫

∂Ω

∂u

∂ν
(x · ∇v) +

∫

∂Ω

∂v

∂ν
(x · ∇u). (4.4)

On the one hand, u = v = 0 on the boundary, so the first integral in the r.h.s.
vanishes. Moreover, since u = 0 on ∂Ω, the tangential component of ∇u vanishes
and ∇u is parallel to the normal vector ν(x) at each point x ∈ Ω, in other words
∇u(x) = ±|∇u(x)| ν(x).

On the other hand, since Hopf’s Lemma, ∂u
∂ν (x) < 0 for all x ∈ ∂Ω, so ∇u(x)·ν =

∂u
∂ν (x) = −|∇u(x)|, and consequently, ∇u(x) = −|∇u(x)| ν(x). Likewise, ∂v

∂ν (x) =
−|∇v(x)|, and ∇v(x) = −|∇v(x)| ν(x). Consequently, the r.h.s. of (4.4) is reduced
to

(
− |∇u(x)||∇v(x)| + |∇u(x)||∇v(x)| + |∇u(x)||∇v(x)|

)
(x · ν)

= |∇u(x)||∇v(x)| (x · ν) =
∂u

∂ν

∂v

∂ν
(x · ν),
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hence

N

∫

Ω

[A(u) + B(v)] − (N − 2)
∫

Ω

u a(u) =
∫

∂Ω

∂u

∂ν

∂v

∂ν
(x · ν). (4.5)

Integrating by parts A(t) =
∫ t

0
sp

(ln(e+s))α ds, we have that

A(t) − 1
p + 1

ta(t) =
α

p + 1

∫ t

0

sp+1

(
ln(e + s)

)α+1

ds

e + s
=

α

p + 1

∫ t

0

a(s)
ln(e + s)

s

e + s
ds.

(4.6)

Likewise

B(t) − 1
q + 1

t b(t) =
β

q + 1

∫ t

0

b(s)
ln(e + s)

s

e + s
ds. (4.7)

Substituting (4.6)–(4.7) into (4.5), and since (4.3),
[

N

(
1

p + 1
+

1
q + 1

)

− (N − 2)
] ∫

Ω

u a(u) +
αN

p + 1

∫

Ω

∫ u(x)

0

a(s)
ln(e + s)

s

e + s
ds dx

+
βN

q + 1

∫

Ω

∫ v(x)

0

b(s)
ln(e + s)

s

e + s
ds dx =

∫

∂Ω

∂u

∂ν

∂v

∂ν
(x · ν). (4.8)

Introducing (4.1) in (4.8), we deduce

αN

p + 1

∫

Ω

∫ u(x)

0

a(s)
ln(e + s)

s

e + s
ds dx (4.9)

+
βN

q + 1

∫

Ω

∫ v(x)

0

b(s)
ln(e + s)

s

e + s
ds dx =

∫

∂Ω

∂u

∂ν

∂v

∂ν
(x · ν).

Assume α, β ≤ 0, if u ≡ 0, then v ≡ 0, and the l.h.s. of (4.9) is non-positive. On
the other hand, if Ω is strongly star-shaped with respect to 0, the r.h.s. of (4.9) is
strictly positive, giving a contradiction, and necessarily, u ≡ 0, and v ≡ 0.

Assume u ≡ 0, then v ≡ 0, and introducing (4.2) in (4.8), we deduce

αN

p + 1

∫

Ω

∫ u(x)

0

a(s)
ln(e + s)

s

e + s
ds dx

+
βN

q + 1

∫

Ω

∫ v(x)

0

b(s)
ln(e + s)

s

e + s
ds dx >

∫

∂Ω

∂u

∂ν

∂v

∂ν
(x · ν). (4.10)

Assume α, β ≤ 0, then the l.h.s. of (4.10) is non-positive. On the other hand, if
Ω is star-shaped with respect to 0, the r.h.s. of (4.10) is strictly positive, giving a
contradiction, and necessarily, u ≡ 0, and v ≡ 0.

�

We point out that, in general if p and q lie on the critical hyperbola, it would
be interesting to check if the condition

α

p + 1
+

β

q + 1
≤ 0
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ensures that

α

(∫

Ω

[∫ u(x)

0

a(s)
ln(e + s)

s

e + s
ds −

∫ v(x)

0

b(s)
ln(e + s)

s

e + s
ds

]

dx

)

≤ 0

or equivalently

N

∫

Ω

[A(u) + B(v)] − (N − 2)
∫

Ω

[θ u a(u) + (1 − θ) v b(v)] ≤ 0.

5. On Orlicz Spaces

Let us summarise in this section some basics results on Orlicz spaces (cf. [1], [15]
and [23]).

5.1. N -Functions

Definition 5.1. (N -functions) A function H : [0,∞) → [0,∞) is said to be a N -
function if an only if H is continuous, convex, H(t) = 0 if and only if t = 0 and

lim
t→0

H(t)/t = 0, lim
t→+∞ H(t)/t = +∞.

Any N -function is extended to R as an even function. We denote by h the left
derivative of H.

5.2. Orlicz Classes, Orlicz Spaces and the Luxembourg Norm

Associated to the N -function H we have the following class of functions. Let Ω ⊂ R
N

be here an arbitrary open set.
For our application, Ω ⊂ R

N is a bounded set.

Definition 5.2. (Orlicz class). The Orlicz class KH(Ω) is defined by

KH(Ω) :=
{

u : Ω → R : u is measurable and
∫

Ω

H
(
u(x)
)
dx < +∞

}

.

Orlicz classes are convex sets, but in general not linear spaces.

Definition 5.3. (Orlicz space). We say that u ∈ LH(Ω) if and only if there exists a
constant c > 0 such that cu ∈ KH(Ω). LH(Ω) is a vector space, and it is called the
Orlicz space associated to H.

Let us recall the following result:

Lemma 5.4. Let H be an N -function. Then,
(i) LH(Ω) = KH(Ω) if and only if H satisfies the so called Δ2-condition:

∃k ≥ 1, H(2t) ≤ kH(t) ∀t ≥ 0.

(ii) If Ω is bounded then LH(Ω) = KH(Ω) if and only if H satisfies the so called
Δ2-condition at infinity:

∃k ≥ 1, ∃t0 ≥ 0, H(2t) ≤ kH(t) ∀t ≥ t0. (5.1)
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(iii) Assume H is derivable and its derivative h is continuous and strictly increasing.
If

limt→+∞
th(t)
H(t)

= α ∈ (1, +∞) (5.2)

then both H and H̃ satisfy the Δ2-condition at infinity, where H̃ is defined
below in Definition 5.6.1

Proof. (i) It follows from [15, Theorem 8.2], (ii) from [23, Theorem 2] and (iii) from
[15, Theorem 4.1 and Theorem 4.3]. �

We can provide the Orlicz space LH(Ω) with the Luxemburg norm:

‖u‖(H) := inf

⎧
⎨

⎩
λ > 0

∫

Ω

H

(
u(x)

λ

)

dx ≤ 1

⎫
⎬

⎭
. (5.3)

Lemma 5.5. (i)
(
LH(Ω), ‖ · ‖(H)

)
is a Banach space.

(ii) If u ∈ LH(Ω), u ≡ 0, then
∫

Ω
H
(

u
‖u‖(H)

)
dx ≤ 1.

(iii) ‖u‖(H) ≤ max{∫
Ω

H(u) dx, 1}.
(iv) If H satisfies the Δ2-condition then, for all u = 0, u ∈ LH(Ω), it holds

∫

Ω

H

(
u

‖u‖(H)

)

dx = 1.

If Ω is bounded, the conclusion holds if H satisfies the Δ2- condition at infinity.

Proof. The proof of (i) can be found in [23, Theorem 10, p. 67]. The proof of (ii)
and (iii) follow trivially form the definition of the Luxembourg norm. The result of
(iv) is proved in [23, Proposition 6, p. 77]. �

5.3. The Young-Conjugate of a N -Function

Definition 5.6. Let H be an N -function and denote H̃ its Legendre transform, i.e.

H̃(s) := sup
σ∈R

{sσ − H(σ)}.

Then, H̃ is called the Young-conjugate of H.

Some authors call H̃ the complementary function of H, see [15, p. 11–13]. We
denote by h̃ the right derivative of H̃.

Remark 5.7. If h is strictly increasing, then h̃(t) = h−1(t).

The following properties are trivial to prove.

Proposition 5.8. Let H be an N -function.

1[15, Theorem 4.2] clarify that H and H̃ satisfies the Δ2-condition if and only if H satisfies the
Δ2-condition and the ∇2-condition, in other words, there exist numbers h > 1 and t1 ≥ 0 such that

H(t) ≤ 1

2h
H(ht) for t ≥ t1.
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(i) ˜(H̃) = H.
(ii) H̃ is an N -function.
(iii) H and H̃ satisfy the Young inequality:

∀s, t ∈ (0, +∞), st ≤ H(s) + H̃(t)

and the equality holds if and only if t = h(s) or s = h̃(t).
(iv) The following 1st Hölder’s inequality holds:

∀f ∈ LH(Ω), ∀g ∈ LH̃(Ω),
∫

Ω

|f(x)g(x)| dx ≤ 2‖f‖(H)‖g‖(H̃).

Proof. The proof of (i)–(ii) can be found for instance in [15, Chapter 1]. For the
proof of (iv), see [23, Proposition 1 and Remark in p. 58]. �

5.4. Dual Norm, the Dual of an Orlicz Space and Reflexivity

Definition 5.9. Let H be an N -function. For all u ∈ LH(Ω) we define the dual norm
of u or Orlicz norm of u as

‖u‖H := sup
{∫

Ω

uv dx : ‖v‖(H̃) ≤ 1
}

. (5.4)

We have

Proposition 5.10. (i) For all u ∈ LH(Ω)

‖u‖(H) ≤ ‖u‖H ≤ 2‖u‖(H).

(ii) 2nd Hölder’s inequality:

∀u ∈ LH(Ω), ∀v ∈ LH̃(Ω),
∫

Ω

|u(x)v(x)| dx ≤ ‖u‖H‖v‖(H̃). (5.5)

(iii) For all u ∈ LH(Ω), u = 0,
∫

Ω

H

(
u

‖u‖H

)

dx ≤ 1. (5.6)

(iv) If H̃ satisfies the Δ2-condition then the dual space
(
LH(Ω), ‖ · ‖H

)′ coincides
with

(
LH̃(Ω), ‖ · ‖(H̃)

)
.

(v) LH(Ω) is a reflexive Banach space if and only if H and H̃ satisfy the Δ2-
condition.
If Ω is bounded, the conclusions (iv) and (v) hold if H and H̃ satisfy the Δ2-

condition at infinity.

Proof. The proof of (i), (ii), (iii) follows from [15, Lemma 9.2 and Theorem 9.3, p.
74]. For the proof of (iv) and (v) see [23, Theorem 10, p. 113]. �

Remark 5.11. Since Proposition 5.10 (ii) and (i), 2nd Hölder’s inequality can be
written:

∀u ∈ LH(Ω), ∀v ∈ LH̃(Ω),
∫

Ω

|u(x)v(x)| dx ≤ ‖u‖H‖v‖H̃ .
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Observe that Proposition 5.10 (iv) is a Riesz representation theorem for Orlicz
spaces, whenever H̃ satisfies the Δ2-condition.

Definition 5.12. We say that the sequence {un}n∈N converges in H-mean to u when-
ever

lim
n→∞

∫

Ω

H
(
|un(x) − u(x)|

)
dx = 0.

The following Theorem states that convergence in H-mean is equivalent to
the convergence with respect to the Orlicz-norm, provided that the Δ2-condition is
satisfied, see [15, Theorem 9.4].

Theorem 5.13. Let H be an N -function satisfying the Δ2-condition. Then, the con-
vergence in H-mean is equivalent to the convergence with respect to the ‖ ·‖H norm.

5.5. Comparison of N -Functions

It is possible to consider different partial ordering relations between N -functions,
and they imply continuous embedding into Orlicz spaces.

First let us introduce the following ordering relations. The following partial
ordering relation between functions is involved in embedding theorems between
Orlicz space associated with different N -functions:

Definition 5.14. Let H and H1 be two N -functions.
(i) The function H1 is said to dominate the function H globally (respectively near

infinity), denoted by H ≺ H1, if there exists a positive constant c such that

H(s) ≤ H1(cs), for s ≥ 0 (s ≥ s0).

(ii) The functions H and H1 are called equivalent globally (near infinity), denoted
by H ∼ H1, if each dominates the other globally (near infinity).

(iii) If for every c > 0, there exists a number sc ≥ 0 such that

H(s) ≤ H1(cs), for s ≥ 0 (s ≥ sc),

then H is said to increase essentially more slowly than H1 (at infinity), and in
this case we write H ≺≺ H1.

Remark 5.15. There are different partial ordering relations between N -functions.
(i) It is said that H growths more slowly than H1 at infinity, and it is written

H � H1, if and only if

∀r > 0, lim
s→+∞

H(rs)
H1(s)

= 0.

In [23, p. 15, Definition 1, (ii)] is said that H1 is essentially stronger than H.
This definition is equivalent to Remark 5.15 (i). See [23, p. 16, Theorem 2.b,
(i) ⇐⇒ (v)].

(ii) In particular, if

∃c > 0, lim
s→+∞

H(s)
H1(s)

= c,

then H is equivalent to H1 at infinity.
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Proposition 5.16. Let H and H1 be two N -functions.
The continuous embedding LH1(Ω) → LH(Ω) holds if either H1 dominates H

globally, or |Ω| < ∞ and H1 dominates H near infinity.
Moreover, LH(Ω) ⊂ LH1(Ω) if and only if there exists a constant C > 0 such

that ‖u‖H1 ≤ C‖u‖H for all u ∈ LH(Ω).

Proof. The proof of the first statement, follows directly from definition 5.3 of Orlicz
space, and from Definition 5.14(i).

For the proof of the second estatement, see [16, Theorem 4, p. 51]. �

Proposition 5.17. Let H and H1 be two N -functions. If H ∼ H1 then LH(Ω) is
isomorphic to LH1(Ω).

Example 5.18. (Some useful facts) Let p > 0, α < p, and

a(t) :=
tp

(ln(e + t))α
, t ≥ 0.

Then, we have

(i) A(s) ∼ sp+1(ln s)−α,
(ii) ã(s) := a−1(s) ∼ s

1
p (ln s)

α
p ,

(iii) Ã(s) ∼ s
p+1

p (ln s)
α
p ,

(iv) Ã−1(s) ∼ s
p

p+1 (ln s)− α
p+1 .

See Lemma 2.1.

5.6. The Orlicz–Sobolev Spaces W 1,H
0 (Ω) and Wm,H (Ω)

Let H be an N -function and let m ∈ N
∗.

Definition 5.19. (i) The space Wm,H(Ω) is defined as

Wm,H(Ω) :=
{
u : Ω → R : Dαu ∈ LH(Ω) ∀ |α| ∈ {0, 1, , . . . , m}}

where Dα stands for the weak partial derivative of u.
(ii) The Luxemburg norm for the elements u of this space is

‖u‖m,(H) := max
0≤|α|≤m

‖Dαu‖(H)

and
(
Wm,H(Ω), ‖ · ‖m,(H)

)
is a Banach space.

(iii) The space W 1,H
0 (Ω) is defined as

W 1,H
0 (Ω) := C∞

0 (Ω)
‖·‖1,(H)

.

(iv) The Orlicz norm for u ∈ W 1,H
0 (Ω) is defined by

‖u‖1,H := sup
{∫

Ω

uv dx : v ∈ W 1,H
0 (Ω), ‖v‖1,(H) ≤ 1

}

.

The Orlicz norm is equivalent to the Luxemburg norm, see Proposition 5.10(i).
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5.7. Optimal Embedding Theorems for Orlicz–Sobolev Spaces

We present in this section some known results concerning the optimal Orlicz–Sobolev
embedding. For that purpose, we define for any any N -function H, the auxiliary
function

ΦH(s) :=
∫ s

0

H̃(τ)
τ1+N ′ dτ (5.7)

where N ′ = N
N−1 . We will denote by → a continuous embedding, and by ↪→ a

compact embedding.

Remark 5.20. We can always assume that ΦH is well defined. Indeed, since Ω is of
finite measure (it is bounded), we can assume without loss of generality that

∫

0

H̃(τ)
τ1+N ′ dτ < ∞

otherwise H can be replaced by any N -function which is equivalent to the original
one near infinity and makes the previous integral converge. Such a replacement does
not affect the result since the corresponding Orlicz–Sobolev norm is equivalent to
the original one.

It turns out that one finds different optimal embeddings depending on whatever

iH :=
∫ ∞ H̃(τ)

τ1+N ′ dτ (5.8)

is finite or not. Notice that if iH = +∞, in particular ΦH is strictly increasing (at
least for s large) and Φ−1

H is well defined. Consequently we distinguish two cases:

Case 1: iH < +∞. The following Theorem is a compact Orlicz–Sobolev embedding
for the spaces W 1,H

0 (Ω) and W 1,H(Ω), in terms of continuous bounded functions,
see [12], and [6, Corollary 1]. Recall that a bounded open set Ω is called strongly
Lipschitz if, for each x ∈ ∂Ω, there exist a neighbourhood Ux of x, a coordinate sys-
tem (y1, ..., yN ) centered at x and a Lipschitz continuous function φ of (y1, ..., yN−1)
such that

Ω ∩ Ux = {(y1, ..., yN ) : yN > φ(y1, ..., yN−1)}.

Theorem 5.21. Let Ω ⊂ R
N , N ≥ 2 be a bounded open set. Let H be an N -function

satisfying iH < +∞, where iH is defined in (5.8). Let Cb(Ω) be the space of contin-
uous bounded functions on Ω.

1. Then, the embedding

W 1,H
0 (Ω) ↪→ Cb(Ω)

is compact.
2. If in addition Ω has the strong Lipschitz property then, the embedding

W 1,H(Ω) ↪→ Cb(Ω)

is compact.
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Case 2: iH = +∞. The following theorem gives the optimal Orlicz–Sobolev contin-
uous embedding for the space W 1,H

0 (Ω), in terms of Orlicz spaces, see [7, Theorem
1].

Theorem 5.22. Let N ≥ 2. Let H be any N -function and let ΦH be the auxiliary
function defined in (5.7) Assume that iH = +∞, where iH is defined in (5.8). Define
for all s ≥ 0

H∗(s) = H∗
N (s) =

∫ s

0

tN
′−1
(
Φ−1

H

(
tN

′))N ′

dt (5.9)

Then H∗ is an N -function, and the following continuous embedding holds:

W 1,H
0 (Ω) → LH∗

(Ω). (5.10)

Furthermore LH∗
(Ω) is the smallest Orlicz space that renders (5.10) true.

The following theorem is a also a continuous Orlicz–Sobolev embedding, this
time for the space W 1,H(Ω), in terms of Orlicz spaces, see [7, Theorem 2]. We will
say that Ω ⊂ R

N satisfies the cone property, if there exists a cone Σ such that for
any x ∈ Ω, the set Ω contains a cone congruent with Σ and whose vertex is x.

Theorem 5.23. Let N ≥ 2. Assume that Ω ⊂ R
N is any open bounded connected set,

satisfying the cone property. Let H be any N -function, and let H∗ be the function
defined by (5.9). Assume that iH = +∞, where iH is defined in (5.8). Then, the
following holds:
(i) There exists a constant C, depending only on H, |Ω| and N , such that

‖u − uΩ‖LH∗(Ω) ≤ C‖∇u‖(H) for all u ∈ W 1,H(Ω).

Here,

uΩ :=
1

|Ω|
∫

Ω

u(x) dx

is the mean value of u over Ω.
(ii) The continuous embedding

W 1,H(Ω) → LH∗
(Ω)

holds, where possibly H∗ is replaced at zero, in the sens of Remark 5.20.

Finally we give in Theorem 5.24 below a compact Orlicz–Sobolev embedding
for the space W 1,H(Ω), this time in terms of Orlicz spaces, see [7, Theorem 3].

Theorem 5.24. Let N ≥ 2 and let Ω be any open, bounded, connected set, and sat-
isfying the cone property. Let H be any N - function. Assume that iH = +∞, where
iH is defined in (5.8) and H1 a N - function increasing essentially more slowly near
infinity than H∗ defined by (5.9). Then the embedding

W 1,H(Ω) ↪→ LH1(Ω)

is compact.
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Example 5.25. Some useful continuous and compact embeddings
Consider any N -function H such that

H(s) ∼ sp
[
log(s)

]α

where either p > 1 and α ∈ R or p = 1 and α > 0.
Let Ω ⊂ R

N be an bounded open set.

Case 1. The following compact embedding holds:

W 1,H
0 (Ω) ↪→ Cb(Ω) if either

{
p > N and α ∈ R,

or p = N and α > N − 1.

Case 2. The following continuous embedding holds:

W 1,H
0 (Ω) → LH∗

(Ω) if p ≤ N,

see Theorem 5.22, where

H∗(s) ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
sp
[
log(s)

]α
) N

N−p

if 1 ≤ p < N,

esN/(N−1−α)
if p = N, α < N − 1,

eesN′
if p = N, α = N − 1.

(5.11)

By Theorem 5.23, the same embeddings are true with W 1,H(Ω) replacing
W 1,H

0 (Ω), provided that Ω ⊂ R
N has finite measure and satisfies the cone prop-

erty.
Moreover, if p ≤ N, since Theorem 5.24

W 1,H(Ω) ↪→ LH1(Ω) for any H1 ≺≺ H∗.

Notice that if α = 0, (5.11) agrees with Sobolev’s theorem when p = N , and with
Trudinger’s theorem when p = N .

Example 5.26. Consider a N -functions H(s) which are equivalent near infinity to

sp
(

log
[
log(s)

])α

, where either

{
p > 1 and α ∈ R,

or p = 1 and α > 0.

Then, Theorem 5.22, and Theorem 5.21 imply that

W 1,H(Ω) ↪→ Cb(Ω) if p > N,

and

W 1,H(Ω) → LH∗
(Ω) if p ≤ N,

where

H∗(s) ∼
⎧
⎨

⎩

(
sp
[
log log(s)

]α
) N

N−p

if 1 ≤ p < N,

e(sN [log(s)]α)
1

N−1 if p = N.
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Theorem 5.27. Assume that Ω has the strong Lipschitz property. Let C 1
b (Ω) be the

set of C1 functions such that their derivatives are bounded in L∞(Ω). Let Ã the
N -function defined in (2.5). The following Orlicz–Sobolev continuous embeddings
hold:

W 2,Ã(Ω) ⊂

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L(Ã∗)∗
(Ω) if p+1

p ≤ N
2 , α ≤ (1 − 1

N

) (
Np − (p + 1)

)

Cb(Ω) if p+1
p = N

2 , α >
(
1 − 1

N

) (
Np − (p + 1)

)
,

or p+1
p > N

2 , α ∈ R;
C 1

b (Ω) if p+1
p = N, α > p(N − 1), orp+1

p > N, α ∈ R;

(5.12)

with
(
Ã∗)∗ defined by

(
Ã∗)∗ ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s
N(p+1)

Np−2(p+1)
[
log(s)

] αN
Np−2(p+1) if p+1

p < N
2 ,

es
N/

(
N−1−α N

Np−(p+1)

)

if p+1
p = N

2 , α <
(
1 − 1

N

) (
Np − (p + 1)

)

eesN′
if p+1

p = N
2 , α =

(
1 − 1

N

) (
Np − (p + 1)

)
.

(5.13)

Moreover, the following Orlicz–Sobolev compact embeddings hold

W 2,Ã(Ω) ↪→

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

LA1(Ω) ∀A1 ≺≺ (Ã∗)∗, if p+1
p ≤ N

2 ,

and α ≤ (1 − 1
N

) (
Np − (p + 1)

)
;

Cb(Ω) if p+1
p = N

2 , α >
(
1 − 1

N

) (
Np − (p + 1)

)
,

or p+1
p > N

2 , α ∈ R;
C 1

b (Ω) if p+1
p = N, α > p(N − 1), or p+1

p > N, α ∈ R;

(5.14)

for any A1 increasing essentially more slowly than
(
(Ã)∗)∗, denoted by A1 ≺≺

(
(Ã)∗)∗, see Definition 5.14(iii).

Proof of Theorem 5.27 Since Lemma 2.1 and Example 5.18,

Ã(s) ∼ s
p+1

p (ln s)
α
p .

Moreover, by Orlicz–Sobolev continuous embeddings,

W 2,Ã(Ω) →
{

W 1,(Ã)∗
(Ω) if p+1

p ≤ N, α ≤ p(N − 1)
C 1

b (Ω) if p+1
p = N, α > p(N − 1), or p+1

p > N, α ∈ R;

with (Ã)∗ defined specifically by

(Ã)∗ ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
s

p+1
p
[
log(s)

]α
p

) N

N− p+1
p , if p+1

p < N,

es
N/(N−1− α

p
)

, if p+1
p = N, α < p(N − 1)

eesN′
, if p+1

p = N, α = p(N − 1),
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cf. Theorem 5.23, Theorem 5.21, Example 5.25, and definition (5.11). Observe that
N

N− p+1
p

p+1
p = N(p+1)

Np−(p+1) =
(

p
p+1 − 1

N

)−1

.

Iterating the above procedure we obtain (5.12), with
(
Ã∗)∗ defined, by

(
Ã∗)∗ ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
s

N(p+1)
Np−(p+1)

[
log(s)

] αN
Np−(p+1)

) Np−(p+1)
Np−2(p+1)

if p+1
p < N

2 ,

es
N/

(
N−1−α N

Np−(p+1)

)

if p+1
p = N

2 , α <
(
1 − 1

N

) (
Np − (p + 1)

)

eesN′

if p+1
p = N

2 , α =
(
1 − 1

N

) (
Np − (p + 1)

)
,

which is obtained iterating twice (5.11). It can be equivalently rewritten as (5.13).

Observe that N(p+1)
Np−(p+1)

Np−(p+1)
Np−2(p+1) = N(p+1)

Np−2(p+1) =
(

p
p+1 − 2

N

)−1

.
Moreover, from Theorem 5.24, the Orlicz–Sobolev compact embeddings de-

scribed in (5.14) hold, see Definition 5.14(iii) for A1 increasing essentially more
slowly than

(
(Ã)∗)∗, denoted by A1 ≺≺ ((Ã)∗)∗. �

Corollary 5.28. In particular, under the conditions of Theorem 5.27, assume that
one of the following two conditions holds:
(i) either (1.2) is satisfied, for any α ∈ R

(ii) either (1.3) is satisfied, and α > 0.
Then, the following Orlicz–Sobolev compact embedding holds

W 2,Ã(Ω) ↪→ Lq+1(Ω). (5.15)

If (1.3) is satisfied, and α = 0, then the above embedding is continuous.

Proof. Using Theorem 5.27, we only have to realize that A1(s) = sq+1 increases
essentially more slowly than

(
Ã∗)∗, i.e., A1 ≺≺ (Ã∗)∗, see Definition 5.14(iii).

We first check that L(Ã∗)∗
(Ω) ⊂ Lq+1(Ω). Indeed,

N(p + 1)
Np − 2(p + 1)

≥ q + 1 ⇐⇒ p

p + 1
− 2

N
≤ 1

q + 1
⇐⇒ N − 2

N
≤ 1

p + 1
+

1
q + 1

.

Moreover, since α > 0 in case (ii), then A1 ≺≺ ((Ã)∗)∗, and so (5.15) holds.
If (1.3) is satisfied, and α = 0, then A1 =

(
Ã∗)∗, and the embedding is contin-

uous. �

5.8. The Dirichlet Problem

Let Ω ⊂ R
N be a bounded domain of class C2, H a N -function and f ∈ LH(Ω).

Let us consider the Dirichlet problem

− Δu = f in Ω, u = 0 on ∂Ω. (5.16)

Solutions are understood in the weak sense, i.e.

∀ϕ ∈ C1
0 (Ω),

∫

Ω

∇u · ∇ϕ dx =
∫

Ω

fϕ dx.

We have the following regularity result (cf. [2, Theorem XI.8], and [14, Theo-
rem 4]).
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Theorem 5.29. Let Ω ⊂ R
N be a bounded domain of class C2. Assume that H and

H̃ satisfies the Δ2-condition. Then, the unique solution u = K(f) of problem (5.16)
belongs to W 2,H(Ω) ∩ W 1,H

0 (Ω), −Δu = f a.e. and

‖u‖H +
∑

i

∥
∥∂xi

u
∥
∥

H
+
∑

ij

∥
∥∂2

xixj
u
∥
∥

H
≤ C‖f‖H (5.17)

for some C = C(N,H, Ω).

See Lemma 5.4 (iii) for having a sufficient condition guarantying that H and
H̃ satisfies the Δ2-condition.
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[11] de Figueiredo, D.G., do Ó, J.A.M., Ruf, B.: An Orlicz-space approach to superlinear
elliptic systems. J. Funct. Anal. 224(2):471–496 (2005)



M. Cuesta et al.

[12] Donaldson, T.K., Trudinger, N.S.: Orlicz–Sobolev spaces and imbedding theorems. J.
Funct. Anal. 8, 52–75 (1971)

[13] dos Santos, E.M.: Multiplicity of solutions for a fourth-order quasilinear nonhomoge-
neous equation. J. Math. Anal. Appl. 342(1), 277–297 (2008)

[14] Jia, H., Li, D., Wang, L.: Regularity of Orlicz spaces for the Poisson equation. Manuscr.
Math. 122(3), 265–275 (2007)
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