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Abstract

Satellite imagery plays a crucial role in monitoring
changes happening on Earth’s surface and aiding in cli-
mate analysis, ecosystem assessment, and disaster response.
In this paper, we tackle semantic change detection with
satellite image time series (SITS-SCD) which encompasses
both change detection and semantic segmentation tasks. We
propose a new architecture that improves over the state of
the art, scales better with the number of parameters, and
leverages long-term temporal information. However, for
practical use cases, models need to adapt to spatial and
temporal shifts, which remains a challenge. We investi-
gate the impact of temporal and spatial shifts separately
on global, multi-year SITS datasets using DynamicEarth-
Net [43] and MUDS [44]. We show that the spatial do-
main shift represents the most complex setting and that
the impact of temporal shift on performance is more pro-
nounced on change detection than on semantic segmenta-
tion, highlighting that it is a specific issue deserving fur-
ther attention. Our complete code is available at https:
//github.com/ElliotVincent/SitsSCD.

1. Introduction
The surface of the Earth is subject to constant changes,
caused by human activity, natural disasters, and many other
phenomena. As Earth observation from space has become
widely accessible, it is acknowledged as ”the most crucial
input” [48] and ”the best measure available” [16] for climate,
ecosystem, and biodiversity monitoring. For example, it has
proven useful in assessing flood risks in Italy [32], provid-
ing food security-related insights in South Korea [32] and
responding to wildfires in Australia [5] or cyclones in New

Zealand [22]. The goal of this paper is to better improve and
better understand the challenges in satellite image time series
semantic change detection (SITS-SCD), i.e. the detection of
change in land use and land cover over time. We introduce an
architecture that significantly boosts SITS-SCD results in the
absence of any particular domain shift. However, practical
monitoring necessitates online, real-time analysis, requiring
models to accommodate the temporal shift between data
seen during training and at inference. Additionally, due to
the scarcity of annotated data [1, 2, 34], many models in
practical applications are applied to images gathered from
places far away from where the training data was observed.
For these reasons, we conduct a comprehensive analysis of
the impact of spatial and temporal domain shifts, showing
their critical significance in this context.

Many works are dedicated to addressing the spatio-
temporal shift through domain adaptation. While much of
this work concentrates on spatial domain adaptation for sin-
gle satellite images [10, 18, 19, 30, 51], recent efforts have
also delved into spatial [29] or temporal [6, 33] domain adap-
tation for satellite image time series (SITS). However, to the
best of our knowledge, no analysis of the impact of temporal
or spatial domain shift on the performance of SITS-SCD and
of the effects of different design choices has been performed
so far. This paper is the first answer to these questions. We
leverage the DynamicEarthNet [43] and MUDS [44] datasets
that have both global spatial coverage and multi-year tempo-
ral coverage.

More precisely, we analyze independently the impact of
these two domain shifts on both datasets for several meth-
ods, giving particular attention to the impact of model size.
We evaluate state-of-the-art mono- and bi-temporal seman-
tic segmentation approaches, which process each month or
pairs of months independently. We also introduce a multi-
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temporal SITS-SCD approach that jointly processes images
from several months and can leverage long-term temporal
information. We show it improves semantic segmentation
performance in all settings on both datasets by a significant
margin, and that it scales better with model size than the
baselines, but that this does not always translate into better
change detection performances. We also show that spatial
and temporal domain shifts impact SITS-SCD approaches
differently, that spatial domain shift has the most dramatic
impact, and that while temporal domain shift has limited
impact on semantic segmentation performance, it signifi-
cantly decreases change detection accuracy. In summary,
our contributions are as follows:

• We propose a new architecture to perform direct multi-
temporal semantic segmentation that significantly im-
proves SITS-SCD.

• We quantify the impact of temporal and spatial shift on
the performance of SITS-SCD methods on two global
and multi-year SITS datasets for different approaches.

2. Related work
In this paper, we study satellite image time series seman-
tic change detection (SITS-SCD), considering temporal and
spatial domain shifts in our evaluation settings. SITS-SCD
consists in segmenting simultaneously each time stamps of
a, typically monthly, SITS. We distinguish three strategies
to achieve this task. First, mono-temporal SITS-SCD meth-
ods segment independently each image of the time series.
Second, bi-temporal SITS-SCD methods segment the input
SITS considering image pairs independently. Third, multi-
temporal SITS-SCD approaches can segment jointly all time
stamps of a given SITS. In this section, we review the lit-
erature for each of these categories, then list the existing
datasets for SITS-SCD, and finally examine how related
work tackles potential spatial and temporal shift between
training and inference data.

Mono-temporal SITS-SCD. A first set of methods eval-
uated on SITS-SCD benchmarks predict the semantic seg-
mentation for each time stamps independently. Changes
are characterized by the difference of successive seman-
tic maps. These semantic maps can be obtained from a
single image using semantic segmentation models like U-
Net [35], DeepLabV3 [7], Segmenter [38] or Swin-T [27].
If a monthly SITS is to be segmented and multiple images
are available for each month, then methods designed for
SITS segmentation into a single semantic map, such as 3D-
Unet [31], UTAE [14] or TSViT [41], can be used as well,
using the images from each month independently. Toker
et al. [43] define ‘monthly’, ‘weekly’, and ‘daily’ temporal
densities for these approaches, where the first image of the
month, six images across the month, or all the images of the
month are used respectively to form a monthly SITS.

Bi-temporal SITS-SCD. These methods perform SITS-
SCD for each image pair independently, and are initially
designed for the classic semantic change detection (SCD)
task that requires to predict the semantic maps of a pair
of satellite images at the same location but at distinct time
stamps. Very early on, a series of work performed this
task following a post-classification procedure [39, 40, 47],
where the bi-temporal acquisitions are segmented indepen-
dently. In this case, the binary change map is obtained as
the difference between the predicted segmentation maps.
Obviously, such method does not leverage temporal con-
sistencies. To overcome this limitation, another approach
is to classify pairs of pixels with transition labels, con-
sidering all possible pairs of semantic classes [4]. How-
ever, the number of transition labels increases as the square
of the number of semantic classes, and some transitions
have very few training examples because there are typi-
cally few changes and the land cover classes are very im-
balanced (71%, 11% and 10% of Earth’s surface is water,
forest and agricultural parcels respectively). Such an ap-
proach thus faces a very challenging classification setting.
Leveraging deep learning advances, most recent approaches
[3, 8, 9, 11, 12, 20, 24, 26, 42, 50, 52, 53, 55, 56] tackle
the SCD task with 3-branch models producing two semantic
maps and a binary change detection map as output. Multi-
task objectives, inner fusion modules in the architecture
and/or post-processing operations help guaranty the consis-
tency between the three outputs. In very high resolution,
object-based SCD consists in detecting change on identi-
fied, often urban, semantic objects (like cars, containers or
houses). Objects can be learned as bags of visual words
where the dictionary is shared between time stamps [49], or
as temporal correspondences between time stamps [54]. Our
work focuses instead on mid-resolution satellite imagery and
generic land cover classes, so object-based SCD is out of the
scope of our study.

Multi-temporal SITS-SCD. Very few methods actually
perform SITS-SCD in a multi-temporal manner. Saha et al.
[36] propose an unsupervised framework for multi-temporal
feature learning. Their model processes time stamps in-
dependently, the training loss aiming for temporal consis-
tency. While they evaluate their model on classic bi-temporal
SCD, one could imagine adapting their method to SITS-
SCD but the code is not available. Very close to our ap-
proach, TSSCD [17] is a pixel-wise method extending a one-
dimensional fully convolutional network for multi-temporal
SITS-SCD. To the best of our knowledge, our proposed
method is the first to perform multi-temporal SITS-SCD at
the image level.

Semantic change detection datasets. SCD datasets [9,
23, 43–45, 52, 53] are intended for the simultaneous seman-
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tic segmentation of the land cover at each time stamp and
the detection of semantic changes between consecutive time
stamps. Datasets like HRSCD [9] or SECOND [52] are
designed for the bi-temporal task and do not exhibit SITS
beyond simple image pairs. The data from the 2021 IEEE
GRSS Data Fusion Contest [23] contains time series but
only extreme dates have annotations, the challenge focusing
more on knowledge transfer from low to high resolution
rather than SITS-SCD. QFabric [45], MUDS [44] and Dy-
namicEarthNet [43] are the SCD datasets the most relevant
to our work since they include complete time series and
full semantic change annotations. QFabric focuses on ur-
ban changes with partial labeling: only changing areas are
annotated, with labels such as ‘Prior Construction’, ‘Land
Cleared’, or ‘Construction Done’. Since it is not freely avail-
able, we do not consider it. We focus on DynamicEarthNet
and MUDS which both contain annotated multi-year SITS
covering areas all over the world. DynamicEarthNet is de-
signed for land-use and land-cover classification with classes
such as ‘impervious surface’, ‘forest’, or ‘water’, and its ar-
eas of interest include a broad range of region types. MUDS,
also known as SpaceNet 7, is intended for building tracking
over time. We adapt its annotations to the semantic change
detection task and propose a first benchmark of SITS-SCD
methods on MUDS using the semantic change detection
metrics defined by Toker et al. [43].

Temporal and spatial domain shifts. Domain adaptation
is a well-known problem with satellite imagery [10, 18, 19,
30, 51]. In the particular case of SITS, Lucas et al. [29] at-
tempt to adapt state-of-the-art domain adaptation methods to
spatial domain shift between two regions within France for
the task of generic land cover pixel-wise classification. Crop-
type classification with SITS is also relevant for studying
temporal domain shift because of seasonal and environmen-
tal variability. Capliez et al. [6] examine temporal domain
shift in the context of crop type classification in Burkina Faso
over multiple years, while Vincent et al. [46] demonstrate
the challenges posed by temporal domain shift in agricul-
tural time series pixel-wise classification with a German
crop dataset [21]. Additionally, Nyborg et al. [33] propose
thermal positional encoding - an encoding based on ther-
mal time rather than calendar time - to account for varying
rates of crop growth and mitigate temporal shift issues in
Western Europe data. These studies are conducted at the
national or continental scale, focus on classification tasks,
and mainly try to bridge the performance gap due to domain
shift. In contrast, we analyze the impact of temporal and
spatial domain shifts independently and at a global scale for
our multi-temporal SITS-SCD approach - that outperforms
state of the art mono- and bi-temporal approaches - giving
particular attention to the impact of model size, an important
but often overlooked variable.

3. Method
3.1. Proposed architecture

We propose to modify UTAE [14] by changing the core tem-
poral attention mechanism to output one segmentation map
per input image instead of aggregating temporal information,
in order to better leverage temporal knowledge. The overall
pipeline is illustrated by Figure 1 where we show the en-
coder branch, the temporal attention block, and the decoder
branch.

Encoder. Our encoder takes as input a SITS x in
RT×H×W×C of T satellite images of spatial dimensions
H ×W with C spectral bands. The encoder branch of our
model strictly mirrors UTAE and produces a series of feature
maps z1, ..., zL using L successive down-sampled convo-
lutions. Positional encoding is added to the feature map
at the last level zL in RT×H′×W ′×D, with H ′ × W ′ the
spatial resolution and D the feature size at level L. Similar
to Garnot and Landrieu [14], sections of size D/h of zL are
processed independently in a h-head manner. For the sake of
conciseness, we ignore positional encoding and multi-head
processing in our notations in the following sections.

Attention mechanism. Our temporal attention mech-
anism outputs multi-temporal attention maps aL in
[0, 1]T×T×H′×W ′

at the lowest resolution. Its role is to
combine the different temporal feature maps while maintain-
ing a temporal dimension. For each time stamp t in the range
{1, . . . , T}, we aim to incorporate information from all dates
into the prediction for t, with the contributions of each date
t′ in the range {1, . . . , T} being specific to t. Our proposed
attention mechanism builds on TAE [15], which predicts the
queries as a function of the feature maps at the lowest level
zL. However, instead of computing the attention weights as a
scalar product of the keys and queries, we define the weights
as their matrix multiplication in order to keep the temporal
dimension. Note that UTAE, on which our overall archi-
tecture is built upon, uses a lightweight temporal attention
encoder (LTAE) [13] at its core to aggregate the temporal
feature maps. LTAE is a lightweight version of TAE where
the queries are free parameters of the model and are the same
for all time stamps. We illustrate in Figure 2 the differences
between TAE, LTAE and our proposed attention mechanism.
For a given spatial location (i, j) in [1, H ′] × [1,W ′], we
compute the attention weights aLi,j from queries

q = FCq(zLi,j) ∈ RT×d, (1)

and keys
k = FCk(zLi,j) ∈ RT×d, (2)

as
aLi,j = kq⊤ ∈ RT×T , (3)
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Figure 1. Overall architecture. Given an input SITS, we compute feature maps at various scales. Our contribution is the temporal attention
mechanism that allows to account for long-term temporal information. The decoder branch up-scales the feature maps for all time stamps in
parallel, while propagating the attention maps at all levels.

where FCq and FCk denote fully-connected layers. The
attention maps are up-sampled at all levels l in {1, . . . , L}
into attention maps al, so that the combined feature map is
obtained for all time stamps t as:

zlt =

T∑
t′=1

alt,t′ ⊙ zlt′ , (4)

where ⊙ denotes the element-wise multiplication.

Decoder. The decoder uses strided transposed convolu-
tions to up-sample the feature maps zl to the upper level.
Following Garnot and Landrieu [14], we propagate the up-
sampled attention maps a1, . . . ,aL−1 at all levels with skip
connections: before each up-sampling convolution, the ob-
tained feature map zlt is concatenated to the up-sampled
feature map of the lower level zl+1

t . All time steps are pro-
cessed in parallel using the same decoder branch. Outputs
are the segmentation maps s in RT×H×W×K where K is
the number of semantic classes.

3.2. Analysis methodology

We perform our analysis on two global and multi-year SITS
datasets: DynamicEarthNet [43] and MUDS [44]. We evalu-
ate all methods in three different settings: a setting without
domain shift between train and test sets, a setting with tem-
poral shift, and a setting with spatial domain shift. These
different settings are visualized in Figure 3.

No domain shift. We split the datasets into 4 subsets as
visualized in Figure 3a: we split each SITS into four SITS of

(a) TAE [15]

(b) LTAE [13]

(c) Ours

Figure 2. Attention mechanism of TAE, LTAE and our method.
We show the temporal attention mechanism of TAE [15], LTAE [13]
and our method for a given patch zLi,j of the feature map zL. Here,
d is the dimension of the key and query vectors.

equal size. We keep two for training, one for validation and
one for test purposes. We follow a 4-fold cross validation
scheme that we detail in Section A of the appendix. Though
folds cover distinct areas, they all share common regions so
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(a) No domain shift setting

(b) Temporal domain shift setting

(c) Spatial domain shift setting

Figure 3. Domain shift settings. We organize the dataset splits
in three different manners such that there is respectively (a) no
domain shift, (b) a temporal domain shift, and (c) a spatial domain
shift between train and val/test sets. DynamicEarthNet [43] images
are shown here for visualization, and we use the same settings for
MUDS [44].

that there is no significant spatial domain shift. Additionally,
since all splits cover the same two years, there is thus no
temporal shift.

Temporal shift. DynamicEarthNet and MUDS contain 2-
year image time series from January 2018 to December 2019.
We split all time series in half, keeping 2018 for training
and 2019 for validation and test purposes as visualized in
Figure 3b. Note that more annual data would be necessary
to create multiple folds for cross-validation in the temporal
setting. In this setting, there is no spatial domain shift.

Spatial shift. We split the 55 (resp. 60) areas of interest
of DynamicEarthNet (resp. MUDS) into five subsets of 11
(resp. 12) image time series. As illustrated in Figure 3c,
we keep three sets for training while the remaining two
are kept for validation and test purposes respectively. We
then follow a 5-fold cross validation scheme described in
Section A of the appendix. Here, all subsets cover regions
that are significantly different and far from each other so that
there is a spatial domain shift. Folds are random on MUDS
and selected so that the class distribution is approximately
similar in each fold on DynamicEarthNet. More details
to reproduce this setting can be found in Section A of the
appendix. Note that this spatial shift setting is the one used
in the DynamicEarthNet1 and the SpaceNet 72 challenges.

3.3. Training and implementation details

Following Tarasiou et al. [41], we trained all methods us-
ing focal loss [25] and the AdamW optimizer [28] with a
learning rate starting from 0 and gradually reaching 10−4

as a warmup after 5000 iterations. We train our model for
500 000 iterations and keep the checkpoint that achieves the
best semantic change segmentation score on the validation
set. For data augmentation, we randomly crop image patches
of size 128×128 out of the 1024×1024 images and addi-
tionally do random horizontal and vertical flips as well as
random rotations.

Our model can take image sequences of variable length
as input. During training, we sample 12 random monthly
images out of the 24 available in the setting without domain
shift and the spatial shift setting. In the temporal shift setting,
we sample 6 out of the 12 available images. At inference,
we take the full monthly time series as input, i.e. a sequence
of length 24 or 12 depending on the case. In Section 4.3.1,
we study alternative inference schemes.

We set as default values for the number of levels L = 4,
for the spatial feature size D = 512 and for the dimension of
keys and queries d = 4. We investigate the impact of chang-
ing D in Section 4.3.1 and d in Section C of the appendix.

4. Experiments
4.1. Datasets and metrics

We evaluate our method along with baselines on Dynam-
icEarthNet [43] and MUDS [44] datasets and more precisely
on their training set for which ground truth annotations are
available. Images for both these datasets were acquired by
Planet Labs with a ground sample distance (GSD) of approx-
imately 3 meters.

DynamicEarthNet [43]. This dataset contains 55 daily
SITS from January, 1st 2018 to December, 31st 2019 dis-

1https://codalab.lisn.upsaclay.fr/competitions/2882
2https://spacenet.ai/sn7-challenge/
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Method Input type Strategy No domain shift Temporal domain shift Spatial domain shift
SCS↑ SC↑ BC↑ mIoU↑ SCS↑ SC↑ BC↑ mIoU↑ SCS↑ SC↑ BC↑ mIoU↑

D
yn

am
ic

E
ar

th
N

et

Random — — 5.9 6.9 4.9 7.3 5.9 6.8 5.0 7.3 5.7 6.6 4.9 7.1
TSViT monthly Single image Mono 23.0 34.1 11.8 50.5 19.3 28.6 9.9 47.3 13.3 18.6 7.9 31.2
UTAE monthly Single image Mono 25.9 38.0 13.8 53.7 20.8 30.7 10.9 53.7 15.5 21.9 9.0 36.9
TSViT weekly SITS Mono 25.0 37.6 12.5 50.9 23.4 36.0 10.9 51.4 13.2 19.1 7.4 32.2
UTAE weekly SITS Mono 26.7 39.1 14.3 54.4 22.4 33.6 11.3 54.7 16.1 23.6 8.7 37.8
A2Net Image pair Bi 22.2 32.9 11.5 47.2 21.6 32.2 11.0 46.7 15.4 22.5 8.2 37.9
SCanNet Image pair Bi 24.8 35.8 13.9 53.0 24.8 36.4 13.1 55.6 15.4 21.5 9.3 37.3
TSSCD Pixel-wise SITS Multi 12.0 19.4 4.7 33.9 10.0 14.8 5.2 29.4 9.1 13.0 5.2 22.9
Ours SITS Multi 31.7 41.0 22.4 60.5 25.6 36.0 15.3 61.7 15.8 21.5 10.1 38.5

M
U

D
S

Random — — 15.0 29.9 0.1 28.1 14.7 29.2 0.1 28.1 15.0 30.0 0.1 28.1
TSViT monthly Single image Mono 11.8 23.1 0.5 60.2 9.2 17.8 0.5 56.8 7.0 13.7 0.4 49.8
UTAE monthly Single image Mono 15.4 30.2 0.6 67.1 12.4 24.1 0.6 66.0 14.2 27.9 0.6 63.0
A2Net Image pair Bi 11.1 21.7 0.5 61.5 8.7 16.7 0.6 56.1 8.6 16.7 0.5 53.0
SCanNet Image pair Bi 13.2 25.7 0.7 64.9 10.1 19.5 0.8 62.8 11.9 23.4 0.4 58.8
TSSCD Pixel-wise SITS Multi 11.7 23.3 0.1 47.7 12.8 25.4 0.2 49.6 9.1 18.0 0.1 43.6
Ours SITS Multi 13.7 25.7 1.7 72.0 11.0 20.1 1.9 71.1 10.8 20.8 0.7 66.2

Table 1. Results for all three settings. We report for our method and competing methods the semantic change segmentation score
(SCS), the binary change score (BC), the semantic change score (SC) and the mean intersection-over-union (mIoU) in all settings on
DynamicEarthNet [43] and MUDS [44]. ‘Random’ refers to a baseline predicting a random label for each pixel.

Seq. Inference time series splitting SCS↑ SC↑ BC↑ mIoU↑len.

6 27.9 38.0 17.8 56.9
29.0 41.5 16.6 59.5

8 29.7 39.6 19.8 58.3
29.3 41.2 17.3 59.9

12

30.6 40.1 21.1 59.6
29.8 39.7 19.9 59.0
30.9 41.2 20.6 59.9
30.4 40.8 20.0 59.8
30.4 41.3 19.5 60.1
29.8 41.3 18.3 60.2

24 31.7 41.0 22.4 60.5

1st inference 2nd inference 3rd inference 4th inference

Table 2. Inference time series size. We report the SCS, SC, BC
and mIoU of our model for various input sequence length and
different splitting configurations. The splitting is best viewed in
color, where cells of the same color were gathered together as a
SITS to produce their corresponding predictions simultaneously.

tributed over the globe. The first day of each month is
annotated, leading to 24 ground truth segmentation maps
per area of interest (AoI). Images are of size 1024×1024
and multi-spectral with 4 channels (RGB + near-infrared).
Annotations are general land-use and land-cover classes:
‘impervious surface’, ‘agriculture’, ‘forest’, ‘wetlands’, ‘soil’
and ‘water’. The ‘snow’ class is only present on very few
AoIs of the dataset and is discarded for this study.

MUDS [44]. The Multi-temporal Urban Development
SpaceNet (MUDS) dataset consists of 60 monthly SITS
collected between 2017 and 2020 all over the globe. MUDS
contains few images acquired in 2017 and 2020: they are
discarded for this study. Due to an excessive amount of
clouds or haze some images were excluded from the dataset,

causing a few gaps in some of the time series, with length
ranging from 18 to 24 images per SITS. Images are of size
1024×1024 with 3 channels (RGB). Default annotations for
this dataset are polygons indicating buildings from which we
generate binary segmentation maps with classes ‘building’
and ‘not building’.

Metrics. We use the four metrics defined by Toker et al.
[43] to assess the performance of evaluated methods. The
mean intersection-over-union (mIoU) on the semantic labels
indicates the ability of the method to predict correct semantic
segmentations, irrespective of the change. The binary change
(BC) score depicts how well a method can predict a semantic
change while the semantic change (SC) score focuses on
the semantic prediction for pixels where a change actually
occurs. The semantic change segmentation (SCS) score is
the average of both previous scores.

4.2. Baselines

4.2.1 Mono-temporal

We evaluate two state-of-the-art semantic segmentation meth-
ods designed for SITS: UTAE [14] and TSViT [41].

UTAE [14]. The U-Net with Temporal Attention Encoder
(UTAE) consists of a U-Net architecture where a temporal
attention mechanism squeezes the temporal dimension be-
fore the decoding branch. Thus, the model outputs a single
segmentation map for the whole input time series. This
method shows competitive performance on recent segmenta-
tion benchmarks [41, 43].

TSViT [41]. In contrast to UTAE, the Temporo-Spatial
Vision Transformer (TSViT) has a fully-attentional architec-

6



ture, processing the tokens first temporally then spatially.
It was shown to improve semantic segmentation on several
datasets [41].

Both these methods output a single prediction map for
a given SITS as input. In order to evaluate them on the
SITS-SCD task, we follow the setting of Toker et al. [43]
where the monthly segmentation maps are predicted inde-
pendently from one another by using as input signal one or
several images in the month. In the monthly setting, only
the first image of each month is used, and the input time
series is actually composed of a single image. In the weekly
setting, a SITS of six images - corresponding to an image
every 5 days through the month - serves as input to obtain
the monthly prediction. Toker et al. [43] show that a daily
setting - where all images of a month are used as a SITS
to predict a monthly segmentation map - does not improve
over the weekly setting, thus we do not consider it in this
work. We set same values of L, D and d for UTAE-based
methods as with our method for fair comparison. For TSViT,
we set the feature dimension to 512 so that the number of
trainable parameters is of the same order of magnitude as
other evaluated methods. Additional details on our UTAE
and TSViT implementations are provided in Section B of the
appendix.

4.2.2 Bi-temporal

We evaluate two state-of-the-art bi-temporal SCD methods:
A2Net [24] and SCanNet [12].

A2Net [24]. A2Net first extracts multi-stage feature
maps from a pair of images with a shared-weight Mo-
bileNetV2 [37]. The difference of the two feature maps
at all stages are combined and decoded into a binary change
mask and two semantic segmentation maps.

SCanNet [12]. The Semantic Change Network (SCanNet)
has a three-branch encoder-decoder architecture. The
image pairs and the concatenation of intermediate feature
representations are used to learn two sets of semantic tokens
(one for each time stamps) and a set of change tokens.
All tokens are concatenated and processed by an inner
transformer. The output is decoded into a binary change
mask and two semantic segmentation maps.

There are multiple manners to adapt bi-temporal meth-
ods to SITS-SCD. We train both methods with all possible
ordered image pairs. At inference, a SITS is divided in con-
secutive image pairs that are segmented independently. We
only consider the semantic outputs and disregard the pre-
dicted binary change maps at inference. Additional details
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Figure 4. Impact of D on performance. We compare the impact
of the spatial feature size D on performance (a) for our model and
UTAE-based methods in the setting without domain shift and (b)
for our model in the three domain shift settings. In each case, we
report the SCS score (left) and the mean IoU (right).

on our A2Net and SCanNet implementations are provided
in Section B of the appendix.

4.2.3 Multi-temporal

We evaluated TSSCD [17], a state-of-the-art pixel-wise
multi-temporal approach, adapting a one-dimensional fully
convolutional network to the SITS-SCD task. Its training
requires a particular sampling of pixel time series that we
detail in Section B of the appendix.

4.3. Results

4.3.1 Leveraging long-term temporal information

In Table 1, we report the performance obtained on Dynam-
icEarthNet and MUDS in all three settings. Additional quan-
titative and qualitative results can be found in Sections D
& E of the appendix. Our architecture performs better than
other evaluated baselines in all settings and on both datasets
in terms of binary classification and semantic segmentation.
We discuss SC and SCS performance in Section 4.3.3. We
explain the better scores obtained by our model by its ability
to extract temporal knowledge from long-term images of the
time series.
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Figure 5. Qualitative change detection results. We show the binary change detection maps predicted by our model and competing methods
in the setting without domain shift for randomly selected input images. From top to bottom, we show the input pairs at time T1 (01/09/2018)
and T2 (01/09/2019), the ground truth binary change map and the predictions of different methods for DynamicEarthNet (i-vi) and MUDS
(vii-xi). For TSViT and UTAE we use the weekly setting for DynamicEarthNet and the monthly setting for MUDS. Best viewed in color.

To confirm this intuition, we investigate various infer-
ence schemes in the setting without domain shift and report
the results in Table 2. We evaluate the performance of our
method when performing inference on sub-sequences of the
full 24-month image sequence of sizes 6, 8, 12 and 24. We
also explore various ways to sample these sub-sequences,
as visualized by the colors on the left of the Table. The
results clearly show that the performance improves when
longer series are used at inference, validating our hypothesis
that our model leverages temporal information over a long
temporal range. Interestingly, one can also see that for a
given input sequence length, having sub-sequences that span

the 24-month period is better than using successive slices of
the full time series. This seems particularly important when
using short sequences.

Another indicator of our method’s ability to learn more
informative features than UTAE-based methods is that its
performance improves as the spatial feature size D increases,
as illustrated on Figure 4a. While the SCS score and the
mIoU of our architecture increases as the model gets bigger,
there is no significant increase in UTAE performance for fea-
ture size higher than D = 128. This shows our architecture
can better leverage spatial information.

Qualitatively, we report the predicted binary change detec-
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Figure 6. Qualitative segmentation results in different settings. We show the segmentation maps predicted by our model in different
settings for randomly selected input images. From top to bottom, we show the input image (on 01/07/2019), the corresponding ground
truth, the predictions without domain shift, the predictions with temporal shift and the predictions with spatial shift. Images from (i-vii) are
taken from DynamicEarthNet and (viii-xi) from MUDS. We highlight areas where our method fails in the spatial domain shift setting on the
‘agriculture’ ⃝ and the ‘impervious surface’ ⃝ classes for DynamicEarthNet and the ‘building class’ ⃝ for MUDS. Best viewed in color.

tion maps for pairs of images one year apart without domain
shift in Figure 5. Our predictions show significantly fewer
false positive than competing baselines.

4.3.2 Comparing domain shift settings

The results from Table 1 show that spatial domain shift has
the most significant impact on performance, both regard-
ing semantic and change detection scores. For all evaluated
methods, we observe an average relative drop of the mIoU
from the setting without domain shift to the spatial shift set-
ting of 31.9% on DynamicEarthNet and of 10.5% on MUDS.
The SCS score similarly decreases by 39.0% on Dynam-
icEarthNet and by 20.7% on MUDS. This drop is explained
by the diversity of geographies contained in these two global
datasets. The fact the performance drop is smaller on MUDS
than on DynamicEarthNet is likely related to the fact that the
geographic variability is less pronounced on buildings than
on other land-cover types. On DynamicEarthNet, the drop
of IoU for the ‘impervious surface’ class (i.e. artificial land)
is only of 23.0%, similar to the drop observed on MUDS,
while it is 49.7% on average for the other land-cover classes.

The impact of the domain shift can be seen qualitatively in
Figure 6, where we show segmentation results of our method
trained in each setting on the same images. We highlight
in red circles areas where ‘agriculture’ is classified as ‘for-
est’ and in pink circles, areas where ‘impervious surface’ is

classified as ‘soil’ in the spatial setting on DynamicEarthNet.
On MUDS, though some buildings are not detected in the
spatial setting as highlighted by the blue circles, our method
seems to rarely classify ‘not building’ as ‘building’ in any of
the settings.

In figure 4b, we analyze the relation between the model
size and performance for our method in the different do-
main shift settings. Two effects are striking. First, while
performance exhibits gradual improvement as the number
of parameters increases in the absence of domain shift and
under temporal shift conditions, there is no significant im-
provement in mIoU in the spatial shift setting, and only
a slight increase in the SCS score. This again highlights
the importance of spatial domain shift. Second, this graph
confirms that the semantic segmentation results are similar
without domain shift and in the temporal setting (which can
also be seen qualitatively in Figure 6), but change detection
performance is clearly impacted by temporal domain shift.
We believe we are the first to highlight this very specific
impact of temporal domain shift for change detection.

4.3.3 Limits of current methods and future work

Binary change detection on DynamicEarthNet and MUDS
is a challenging task. The BC score in all settings and for
all methods is relatively low, below 23%. This clearly is
an obstacle for the application of current methods for SITS-
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SCD. To understand this low performance, it is important to
note that there are very few changes occurring in these two
datasets: the proportion of pixels that semantically change
from one month to the next is of 1.28% in DynamicEarth-
Net and of 0.03% in MUDS. This makes the SC and SCS
scores, for which our method is not always better than com-
peting baselines, hard to interpret since they focus on very
few pixels on which change is accurately detected. How-
ever, this is consistent with practical use cases where seman-
tic changes, e.g. the construction/destruction of a building,
droughts/floods or deforestation, are rare events at a global
scale. Thus, while we believe that adapting SITS-SCD meth-
ods to address temporal and spatial domain shifts for multi-
year and global applications is an important challenge, we
also argue that improving performance in the setting without
any domain shift is important, and will likely require better
addressing the scarcity of change data. On MUDS especially,
no method significantly outperforms a random baseline giv-
ing random labels to each pixel (see the ‘Random’ line in
Table 1).

5. Conclusion
This paper introduces a novel architecture for semantic
change detection in satellite image time series (SITS-SCD)
and a detailed analysis of the impact of temporal and spatial
domain shifts on this task. Our method outperforms exist-
ing baselines for semantic segmentation and binary change
segmentation across various evaluation settings, demonstrat-
ing its effectiveness in extracting temporal knowledge. Our
analysis outlines that spatial domain shift has a significant
impact on overall performances, and that temporal domain
shift impacts more specifically change detection. However,
it also suggests that even in the absence of domain shift, the
performance of current methods for SITS-SCD is limited.
We believe this is due to the rarity of significant changes, un-
derlining the importance of addressing data scarcity. Overall,
our study contributes to advancing SITS-SCD methods and
highlights avenues for future research in this area.
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Appendix A - Dataset details
No domain shift setting. As illustrated in Figure 3a, SITS
are spatially divided in 4 sub-SITS in this setting. We number
all 512×512 quarters of the 1024×1024 SITS from 1 to
4. We follow the 4-fold validation scheme described in
Table A2a, where a distinct quarter is kept for test purposes
for each fold.

Spatial shift setting. We detail here the organization of
DynamicEarthNet and MUDS’s areas of interest into 5 dis-
tinct subsets for the spatial shift setting for reproducibility.
The no domain shift and temporal shift settings are fully
explained in Section 3.2. In Table A1, we report the com-
positions of each subset for both datasets. Areas of interest
are designated in the table by their unique ID. Note that
these subsets have been formed randomly for MUDS (two-
class dataset) and in order to have similar class distributions
for DynamicEarthNet (multi-class dataset). We show the
class distribution for each fold in this setting in Figures A1
and A2. We follow the 5-fold validation scheme described
in Table A2b inspired by [14].

DynamicEarthNet

Set 1 Set 2 Set 3 Set 4 Set 5

2235 3403 13 2528 4620 13 1417 3281 13 1311 3077 13 1700 3100 13
4254 2915 13 2850 4139 13 1487 3335 13 2470 5030 13 2006 3280 13
4421 3800 13 4240 3972 13 2415 3082 13 2832 4366 13 2029 3764 13
4768 4131 13 4426 3835 13 2459 4406 13 4223 3246 13 2065 3647 13
5111 4560 13 4780 3377 13 2624 4314 13 4622 3159 13 2697 3715 13
5989 3554 13 4856 4087 13 3002 4273 13 4806 3588 13 4791 3920 13
6730 3430 13 5926 3715 13 3998 3016 13 5863 3800 13 4881 3344 13
6752 3115 13 6381 3681 13 4127 2991 13 6204 3495 13 5125 4049 13
6810 3478 13 6813 3313 13 4169 3944 13 6466 3380 13 6468 3360 13
6824 4117 13 7026 3201 13 4397 4302 13 7367 5050 13 6475 3361 13
8077 5007 13 7312 3008 13 4838 3506 13 7513 4968 13 6688 3456 13

MUDS

Set 1 Set 2 Set 3 Set 4 Set 5

1446 2989 13 1549 3087 13 1736 3318 13 1327 3160 13 1429 3296 13
1474 3210 13 2345 3680 13 2027 3374 13 1433 3310 13 1950 3207 13
1831 3648 13 4056 2688 13 2176 3279 13 2265 3451 13 2287 3888 13
3041 4643 13 4102 2726 13 2383 3079 13 2528 4620 13 2309 3217 13
4061 3941 13 4553 3325 13 2459 4406 13 3911 3441 13 2732 4164 13
5184 3399 13 4742 4450 13 4802 4803 13 4838 3737 13 3699 3757 13
5342 3524 13 4815 3378 13 4816 3380 13 5753 3655 13 4196 2710 13
6460 3366 13 4819 3372 13 5105 3761 13 5927 3715 13 4688 2967 13
6679 3549 13 5156 3514 13 5193 2903 13 6460 3370 13 4840 4088 13
6813 3313 13 5916 3785 13 5759 3655 13 6468 3360 13 5557 3054 13
6993 3202 13 6678 3579 13 6154 3539 13 6678 3548 13 6691 3363 13
7394 5018 13 6838 3742 13 6864 3345 13 6764 3347 13 6763 3346 13

Table A1. Composition of subsets in the spatial shift setting.
For reproducibility, we share the composition of our subsets in the
spatial shift setting. Areas of interest are designated by their unique
ID.

Additional details for MUDS. MUDS dataset is not origi-
nally designed for semantic segmentation (where annotations
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Figure A1. Class distribution per fold on DynamicEarthNet in the
spatial shift setting.

are semantic masks) but rather for object detection with poly-
gons labeling all buildings contained in the images of the
dataset. To adapt the annotations for our task, we color the
interior of polygons in white on a black background to ob-
tain binary semantic mask where 0 corresponds to the class
‘not building’ and 1 to the class ‘building’. Note that some
images of MUDS are not exactly of size 1024×1024 but
have a side of size 1023. These images are resized alongside
with their semantic mask to the size 1024×1024. Finally,
some images from MUDS were acquired on 2017 and 2020:
they are discarded for our study. Finally, MUDS comes with
‘unusable data mask’ annotations, i.e. binary masks indi-
cating zones where the data cannot realistically be labeled
because of cloud, shadows or geo-reference errors. 3.35%
of total pixels are concerned: they are discarded from our
metrics.

Fold Train Val Test Fold Train Val Test

I 1-2 3 4 I 1-3 4 5
II 2-3 2 3 II 2-4 5 1
III 3-4 1 2 III 3-5 1 2
IV 4-1 4 1 IV 4-1 2 3

V 5-2 3 4
(a) No domain shift setting (b) Spatial shift setting

Table A2. 4- and 5-fold cross validation schemes for the setting
without domain shift and the spatial shift setting. Each line gives
the organization of the splits into train, validation and test set for
each fold. The temporal domain shift scheme follows the usual
train, validation, test single fold procedure.

Appendix B - Implementation details

We train all models on up to 4 NVIDIA GeForce RTX 2080
Ti or NVIDIA V100 GPUs in a data parallel fashion.
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Figure A2. Class distribution per fold on MUDS in the spatial shift
setting.

UTAE. We used UTAE official Pytorch implementation3

with default parameters, except for the spatial feature size
D that we change according to our different experiments.
For positional encoding, we use the number of days after
01/01/2018 at the time of acquisition of the image. For ex-
ample, an input time series for UTAE weekly corresponding
to September 2018 will have [243, 247, 252, 257, 262, 267]
as positional encoding vector, since 01/09/2018 is the 244th
day since 01/01/2018, and the 5th, 10th, 15th, 20th and 25th
days of each months are additionally selected in the weekly
setting, following [43].

TSViT. We used TSViT official Pytorch implementation4

with default parameters except for the feature dimension
that we set to 512 for fair comparison with other evaluated
methods, in terms of trainable parameters, even though [41]
shows in their supplementary material that the feature size
has only a limited impact on performance. We use an input
image size of 64×64, since a size 128×128 is exceeding
GPU memory capacity. We use the same positional encoding
as we do with UTAE.

A2Net and SCanNet. We use A2Net and SCanNet Py-
torch implementation available in the Unified Framework
for Change Detection5. We train over all possible ordered
pairs of images. We investigate several inference pairing
strategies in Table B1 where the image pairs are defined as
follows:
• Consecutive: (x2t,x2t+1) with t ∈ {1, ..., 12};
• 12 months apart: (xt,xt+12) with t ∈ {1, ..., 12};
• 6 months apart: (xt,xt+6) with t ∈ {1, ..., 6} ∪
{13, ...18};

• Random: (xt1 ,xt2) with [t1, t2] ∈ {[0, 15], [1, 13], [2, 9],
[3, 23], [4, 10], [5, 14], [6, 18], [7, 19], [8, 21], [11, 12],

3https://github.com/VSainteuf/utae-paps
4https://github.com/michaeltrs/DeepSatModels
5https://github.com/guanyuezhen/UFCD

Pairing A2Net SCanNet
SCS↑ SC↑ BC↑ mIoU↑ SCS↑ SC↑ BC↑ mIoU↑

Consecutive 22.2 32.9 11.5 47.2 24.8 35.8 13.9 53.0
12 months apart 22.0 32.9 11.2 48.2 24.9 36.6 13.2 54.6
6 months apart 21.0 31.4 10.5 48.0 23.0 33.9 12.1 53.5
Random 21.9 33.0 10.8 48.4 24.5 36.4 12.6 54.7

Table B1. Inference pairing for bi-temporal SITS-SCD. We
report the SCS, SC, BC and mIoU of A2Net and SCanNet for
various manners of pairing time stamps at inference.

SCS↑ SC↑ BC↑ mIoU↑
d = 4 31.7 41.0 22.4 60.5
d = 16 31.5 40.8 22.2 60.4

Table C1. Impact of d on performance. We report the SCS, SC,
BC and mIoU of our method in the setting without domain shift on
DynamicEarthNet for two values of d.

[16, 17], [20, 22]}.
It is not clear what is the best strategy to divide a SITS
into pairs of image for bi-temporal SITS-SCD approaches
since the conclusion drawn depends on what is the consid-
ered score and is not always consistent across methods. For
these reasons, we stick to the ‘consecutive’ strategy that we
deemed is the most natural.

TSSCD. We use TSSCD official Pytorch implementation6.
Since the method requires pixel time series as input, we
flatten 128×128 image patches. At inference all 16,384 re-
sulting pixel time series are used in a batch. During training,
we randomly sample 64 pixel time series out of them.

Appendix C - Impact of d on performance
In the paper, we investigate the impact of the spatial feature
size D. While the feature maps contain spatial representa-
tions, the keys and queries of the attention mechanism store
temporal information. Thus, we also analyze the impact of
the dimension of keys and queries d. We train and evalu-
ate our model on DynamicEarthNet in the setting without
domain shift with d = 16 instead of d = 4 and report the
results in Table C1. We see little difference if not a very
slight decrease for all metrics.

Appendix D - Additional quantitative results
We report in Table D1 the per-class mean intersection-over-
union (IoU) in the setting without domain shift on Dynam-
icEarthNet and MUDS. Our method not only achieves best
performance in terms of mean IoU but also on each class in
all seetings on MUDS and in the setting without domain shift
and in the temporal shift setting on DynamicEarthNet. Note

6https://github.com/CUG-BEODL/TSSCD
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Method Input type Strategy DynamicEarthNet MUDS
imp. surf. agr. forest wetlands soil water mean not build. build. mean

N
o

do
m

ai
n

sh
if

t

TSViT monthly Single image Single 26.7 46.5 72.6 13.3 56.7 87.1 50.5 91.8 28.6 60.2
UTAE monthly Single image Single 33.7 53.7 75.9 11.8 59.6 87.7 53.7 92.7 41.5 67.1
TSViT weekly SITS Single 29.5 49.4 73.9 9.4 56.8 86.6 50.9 — — —
UTAE weekly SITS Single 33.9 56.4 76.6 10.6 60.8 88.2 54.4 — — —
A2Net Image pair Bi 26.2 38.2 71.1 7.6 54.2 86.1 47.2 91.5 31.5 61.5
SCanNet Image pair Bi 30.7 53.7 74.6 12.8 58.6 87.9 53.0 92.1 37.6 64.9
TSSCD Pixel-wise SITS Multi 0.2 11.5 65.6 0 44.9 81.3 33.9 80.5 14.9 47.7
Ours SITS Multi 41.6 67.3 80.3 17.9 65.5 90.5 60.5 93.8 50.2 72.0

Te
m

po
ra

ld
om

ai
n

sh
if

t TSViT monthly Single image Single 24.4 34.5 71.1 15.7 52.5 86.1 47.3 91.4 22.2 56.8
UTAE monthly Single image Single 37.0 50.5 74.9 17.4 55.5 86.8 53.7 92.9 39.0 66.0
TSViT weekly SITS Single 28.4 42.4 72.1 22.4 54.2 88.0 51.4 — — —
UTAE weekly SITS Single 37.4 52.8 75.1 15.8 57.9 89.0 54.7 — — —
A2Net Image pair Bi 32.8 33.2 69.5 7.1 50.6 86.8 46.7 91.5 20.8 56.1
SCanNet Image pair Bi 31.3 55.9 76.0 23.3 58.3 88.7 55.6 92.3 33.4 62.8
TSSCD Pixel-wise SITS Multi 0 0 62.2 0 39.0 75.2 29.4 83.3 15.9 49.6
Ours SITS Multi 42.5 66.3 79.6 30.0 61.8 90.2 61.7 94.0 48.2 71.1

Sp
at

ia
ld

om
ai

n
sh

if
t TSViT monthly Single image Single 12.2 9.6 55.8 0 40.4 69.4 31.2 90.8 8.9 49.8

UTAE monthly Single image Single 27.1 11.1 64.2 0.1 43.0 76.1 36.9 92.1 33.9 63.0
TSViT weekly SITS Single 15.1 13.4 55.7 0.7 40.7 67.6 32.2 — — —
UTAE weekly SITS Single 29.1 15.1 63.1 0.1 43.4 76.3 37.8 — — —
A2Net Image pair Bi 24.6 19.9 63.4 0.1 41.7 77.7 37.9 90.9 15.1 53.0
SCanNet Image pair Bi 22.0 14.9 64.1 0.1 46.5 75.9 37.3 90.1 27.6 58.8
TSSCD Pixel-wise SITS Multi 0.1 1.7 61.7 0 39.2 34.9 22.9 78.4 8.7 43.6
Ours SITS Multi 30.2 16.8 62.5 0.3 45.2 76.2 38.5 92.5 39.9 66.2

Table D1. Per-class IoU. We report for our method and competing methods the per-class mean intersection-over-union (IoU) in the setting
without domain shift on DynamicEarthNet [43] and MUDS [44].

that performance are consistent across all methods, with the
hardest class being also the less represented in the datasets
(‘wetlands’ on DynamicEarthNet and ‘building’ on MUDS).
An additional comment to be made is that the pixel-wise
method TSSCD [17] performs much worse than all others,
once again showing that spatial context-related information
leveraged by whole-image methods is crucial for segmenta-
tion tasks with SITS. This is a well-known fact in remote
sensing, already discussed in [46] for example.

Appendix E - Additional qualitative results
We show in Figures E1 and E2 the semantic predictions of
our model for 12-month time series on DynamicEarthNet
and MUDS respectively in the setting without domain shift.
Our architecture is able to capture changes while jointly
processing the whole time series at once. Note how our
model can classify accurately buildings masked as ‘unusable
data’ in MUDS dataset.
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Figure E1. Qualitative segmentation results on DynamicEarthNet. We show the segmentation maps predicted by our model in the setting
without domain shift for four randomly selected input SITS from DynamicEarthNet. For each SITS, we show the monthly input time series
from January to December 2019 (top row), the corresponding ground truth (middle row) and the predictions (bottom row).
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Figure E2. Qualitative segmentation results on MUDS. We show the segmentation maps predicted by our model in the setting without
domain shift for four randomly selected input SITS from MUDS. For each SITS, we show the monthly input time series from January to
December 2019 (top row), the corresponding ground truth (middle row) and the predictions (bottom row).
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