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ABSTRACT
Within the deep learning paradigm, finite impulse response (FIR) filters are often used to encode
audio signals, yielding flexible and adaptive feature representations. We show that a stabilization
of FIR filterbanks with fixed filter lengths (convolutional layers with 1-D filters)leads to encoders
that are optimally robust against noise and can be inverted with perfect reconstruction by their
transposes. To maintain their flexibility as regular neural network layers, we implement the
stabilization via a computationally efficient regularizing term in the objective function of the
learning problem. In this way, the encoder keeps its expressive power and is optimally stable and
noise-robust throughout the whole learning procedure. We show in a denoising task where noise
is present in the input and in the encoder representation, that the proposed stabilization of the
trainable filterbank encoder is decisive for increasing the signal-to-noise ratio of the denoised
signals significantly compared to a model with a naively trained encoder.

1. INTRODUCTION

In traditional machine learning, the procedure of feature extraction was often considered
conceptually separated from the actual learning problem and made use of classical signal
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processing methods such as time–frequency transforms, principal component analysis, etc. [1, 2]
Nowadays, there is a strong tendency towards designing end-to-end neural network architectures,
in which feature extraction becomes an implicit procedure that is seamlessly embedded into the
one model that aims to solve the whole learning problem at once [3, 4]. In many neural network
architectures, this procedure is implemented as an encoder layer that maps the input signals to a
suitable feature space and is learned together with the rest of the model parameters [5].

For audio applications, encoders are usually based on the operation of convolution. A
standard architecture is a convolutional layer with 1-D filters that maps audio signals in their
“raw waveforms” into the encoder space. From a classical signal processing perspective, this map
corresponds to a finite impulse response (FIR) filterbank Φ with filters φ j ∈ RN , j = 1, . . . , J that
decomposes a signal x ∈RN into the J ×N array given by

(Φx)[ j ,n] = (x ∗φ j )[n]. (1)

All standard linear time–frequency representations, such as the short-time Fourier transform or
the constant-Q transform can be implemented in this way. If the encoder is trainable, the entries
of the single filters φ j [k] are parameters of the model and are updated via gradient descent so that
a given objective function is minimized. Trainable filterbank encodings in end-to-end models
have been used successfully for source separation [6] and denoising. However, drawbacks come
with this kind of signal encoding, such as less interpretability and controllability of the features
that the rest of the model uses to solve the learning problem. The fundamental assumption in this
work is that

if noise is involved in the learning procedure it is particularly preferable to have
stable and redundant encoder representations.

Such stable and redundant encoders are defined in a frame-theoretical context and are called
tight. In many signal processing applications, tightness has been shown to be the key property
when signal representations are exposed to noise [7–9]. The stability property (condition number
close to one) guarantees that small perturbations of the input of the encoder result in small
errors in the output, while redundancy acts as a compensation mechanism that allows a better
reconstruction from noisy coefficients. In the machine learning context, this can be seen as an
optimal setting against adversarial examples since any manipulation of an input that changes the
encoding significantly needs to come with a significant change of its magnitude too. A previous
publication has shown for an image classification task that this is not only an abstract conceptual
advantage [10].

A standard problem where we assume that our assumption applies is when unwanted noise
should be removed from a signal, i.e., in a denoising task. This is often done via a masking process
in the encoder domain (encoder–mask–decoder model). Classical (non-deep-learning-based)
methods are Wiener filtering [11], CASA [12, 13], or block-thresholding methods [14], where the
encoder is a time–frequency transform and the decoder its inverse. In a deep learning paradigm,
encoder, decoder, and mask are neural networks that are optimized via gradient descent to
minimize an objective that reflects the quality of the denoised signal [6, 15].

Noise, however, does not only appear on the input level but also within a neural network. For
example, it is known that adding noise to the layers during training can improve the generalization
of a model [16]. Also here, we conjecture that tight encoding have advantages. The goal of this work
is to identify where these advantages reside.

In Section 2, we discuss the theoretical background of tightness, and in Section 3 we derive
a stabilization mechanism that keeps a trainable filterbank encoder tight throughout training.
In Section 4, we demonstrate the effectiveness of this mechanism on an encoder–mask–decoder
model optimized to denoise audio signals. In an extended setting, additional noise is introduced
after the encoder. We can show that a model with a tight encoder reaches a significantly higher
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signal-to-noise ratio of the denoised signals to the residual noise than the same model without
stabilization.

2. TIGHT FILTERBANK ENCODINGS

We study the robustness of a filterbank encoding Φ against noise via the notion of stability that
is associated with the definition of a frame. A filterbank Φ is called a frame for RN if there are
constants 0 < A ≤ B such that the Lipschitz-type inequality

A · ∥x∥2 ≤ ∥Φx∥2 ≤ B · ∥x∥2 (2)

holds for all x ∈ RN . The optimal upper bound is given by the squared operator norm of Φ and
the optimal lower bound by the inverse of the squared operator norm of the pseudoinverse Φ† =
(Φ⊤Φ)−1Φ⊤. Here, Φ⊤ denotes the transposed filterbank of Φ. The condition number associated
with Φ is given by κ = B/A, where A,B are the optimal bounds, and determines the numerical
stability of Φ. If A = B then Φ is optimally stable in this sense and is called a tight frame. One can
think of tight frames as orthonormal bases that allow redundancy, i.e., we have optimal stability
for the non-unique encoder coefficients of any input signal.

The central property of a tight frame is that for any x ∈ RN we have the Parseval-like
decomposition

x = A−1Φ⊤Φx. (3)

Therefore, tight frames with A = 1 are also known as Parseval frames. Note that Equation 3 is
equivalent to Φ† = A−1Φ⊤, which yields a particularly convenient way to reconstruct any x from
its encoding. Reconstruction via Φ† is particularly desirable as it provides the reconstruction with
minimal Euclidean norm.

Tight frames are known to have particular benefits in the presence of noise [8, 9]. In the
context of a filterbank encoder in an end-to-end regime, we discuss two different settings.

Noise in the Encoder. In classical signal processing, it is often assumed that the transmission
of encoded signals is tainted with noise. In our context, this kind of perturbation appears in a
specific training technique that involves the introduction of artificial noise in a neural network
layer to increase the generalizability of the model. For the reconstruction of the input signal from
the non-unique noisy coefficients, redundancy has been shown to bring conceptual advantages
[7]. In particular, it is known that an encoding byΦ is maximally robust against noise ifΦ is a tight
frame with unit norm elements, in the following sense:

Theorem 1 (Fickus et al., [9]). Let Φ form a uniform frame, i.e. all elements have equal norm, E
be encoder noise that consists of independent draws from a uniform or normal distribution, and
let x̃ = Φ† ((Φx)+E) denote the reconstruction from the noisy encoding. The mean-squared error
E
[∥x − x̃∥2

]
is minimal if and only ifΦ is tight.

Alternatively, we can see this by considering the (linear) signal-to-noise ratio SNR∗(Φx,E) =
∥Φx∥/∥E∥ and observing that the reconstruction of the noise source is bounded as

∥Φ†E∥2 ≤ κ

SNR∗(Φx,E)
∥x∥2. (4)

Clearly, the RHS in Equation 4 is minimal if κ= A/B = 1, i.e.,Φ is tight.

Noise in the Input. For many applications, clean data is not available. Instead, we have a
dataset of noisy signals of the form x + e, where x is the ideally clean signal and e an unknown
source of noise that should be removed. If Φ is tight we can make use of the energy preservation
property to see that

∥Φ(x +e)∥2 = A · ∥x +e∥2 = A · (∥x∥2 +2 · 〈x,e〉+∥e∥2)≤ A · (∥x∥2 +2 · ∥x∥ ·∥e∥+∥e∥2) .
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Hence, we can ensure that the noise only affects the energy of the encoder proportional to its own
energy. In other words, we have direct control over the energy deviation of the encoding in the
sense that input perturbations are always scaled by the same constant A in the encoding. This is
particularly interesting in the context of adversarial examples, which are designed in a way that
small perturbations have an essential impact on the output of a trained model. In fact, ensuring
tightness of all convolutional layers in a neural network with A = 1 increases the robustness of the
network against adversarial examples in classification tasks [10].

To relate the robustness property from Theorem 1 to this setting we use an encoder–mask–
decoder model for the task of denoising. Such a model is closely related to Gabor filters [17], and
is known as frame multiplier in mathematics [18]. Formally, it can be written as

MΦ,M ,Ψ(x +e) =Ψ(M ⊙ (Φ(x +e))),

where ⊙ denotes the point-wise multiplication, M is a mask for the encoded signals, and Ψ a
decoder. In the end-to-end regime, the learning problem consists in optimizingΦ,Ψ, and M such
that

MΦ,M ,Ψ(x +e) ≈ x

for any x “of interest”. Let us now assume that we have an oracle that gives us an adaptive mask
MΦ such that

MΦ⊙Φ(x +e) =Φx̃ +δ, (5)

where the residual noise δ is much smaller than the original noise e, i.e., ∥δ∥ ≪ ∥e∥, and the
coefficients of the clean signal are not affected too much by the masking, i.e., ∥Φx̃∥ ≈ ∥Φx∥. Then,
by Theorem 1, we obtain the best reconstruction of x in terms of x̃ if Φ is a tight frame with
unit norm elements and Ψ = A−1Φ⊤. We emphasize that this oracle assumption might be naive
and does surely not hold in general. Still, we believe it is reasonable to assume that tightness is
beneficial.

Given the theoretical motivation for tightness, we are left with two practical problems when
aiming to employ tightness in a deep learning regime:

1) Unit norm tight frames are very restrictive and inherently difficult to construct deterministically.

2) If we start with a tight filterbank, how can we ensure that it stays tight during training?

We aim to solve these two problems by proposing a stabilization scheme that is tailored to the
optimization of trainable filterbank encoders via gradient descent.

3. TRAINABLE TIGHT FILTERBANK ENCODINGS

3.1. Tight Initialization

The unit norm assumption is a strong restriction that is not invariant under small perturbations.
Hence, it seems that it is too rigid to be included in the iterative procedure of gradient descent.
Therefore, to approach Problem 1) we drop the unit norm assumption and use a standard way of
constructing the nearest tight filterbank with A = 1 to a given one.

Lemma 1 (Christensen [7]). Let the filterbank Φ with filters φ j be a frame. The filterbank Φ♯ with

filters (Φ⊤Φ)−
1
2φ j is the Parseval frame closest toΦ in the Euclidean norm.

This provides a method to tighten any filterbank frame, i.e., is suitable for any initialization
scheme of a trainable encoder as long as it yields a frame. A random initialization is valid.
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Figure 1: For the implementation of the denoising model we use an encoder–mask–decoder
architecture in the low-parameter regime (≈ 460k parameters). Noise e is always present in the
input, and in an extended experimental setting, noise E is additionally introduced in the encoder.
The encoder is a conv1d layer with 128 filters of length 32 and the decoder its transpose.

3.2. κ-Penalization

To tackle Problem 2) we propose to enforce the trainable filterbank encoder to keep the tight frame
property by adding a term to the objective function that penalizes a large condition number. Let
L (M ; x) denote any differentiable objective function that is parametrized by the weights of the
model M for an input x, and perform empirical risk minimization with the modified objective

Lβ(M ; x) =L (M ; x)+β ·κ. (6)

The hyperparameter β controls the importance of the penalization of large κ to the learning
problem. The gradient of κ with respect to the filter entries of the encoder φ j [k] is found
straightforwardly on the Fourier side. This becomes clear in the next section.

3.3. Fast Computation and the Gradient of κ

The computation of (Φ⊤Φ)−
1
2 and κ can be done efficiently using the FFT paradigm. Denoting by

φ̂ j the discrete Fourier transforms (DFT) of the filters φ j (which are zero-padded to have the same

length as the input), thenΦ⊤Φ is diagonalized asΦ⊤Φ=U∗ΣU , where Σ= diag
(∑J

k=1 |φ̂k |2
)

and U

is the unitary DFT matrix. This makes the computation of (Φ⊤Φ)−
1
2 , and with that the construction

of the nearest Parseval filterbankΦ♯ from Lemma 1 very easy and computationally efficient.
For an efficient computation of κ note that the optimal bounds A,B in Equation 2 are given

by the smallest and largest eigenvalue of Φ⊤Φ, which coincide with those of Σ since U is unitary.
Hence [19], they are given by

A = min
0≤k≤N−1

J∑
j=1

|φ̂ j [k]|2, B = max
0≤k≤N−1

J∑
j=1

|φ̂ j [k]|2. (7)

From Equation 7, it is also possible to deduce an explicit expression for the gradient of κ. It is well-
defined if the filterbank forms a frame. Using FFT methods we can compute κ and its gradient
fast enough to include it in the iterative procedure of gradient descent without significant loss of
speed.

4. NUMERICAL EXPERIMENTS ON DENOISING

We apply the proposed stabilization scheme of tightening and κ-penalization in a denoising task
using a encoder–mask–decoder architecture. In the following, we describe the experimental setup.

4.1. Dataset

We use the UTD North Texas Vowel Database for the clean speech samples [20]. It consists of
recordings from ten male, ten female, and 30 children containing the 12 monophthongal vowels
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Model Objective SNR [dB] κ

Tight conv1d - SNR + 0.5κ 5.58 1

Conv1d - SNR 2.61 5.06

Tight conv1d + noise - SNR + 0.5κ 0.81 1

Conv1d + noise - SNR -0.25 4.98

Table 1: Denoising benchmark on NTVOW with Gaussian noise. For “+ noise”, there is Gaussian
noise additionally in the encoder. The SNR [dB] is computed on the validation set, and for the
condition number of the encoder κ= 1 is optimal.

present in American English. In total, there are 3190 samples with a length of around one second.
As a processing step, we downsample the recordings from the original 48 kHz to 16 kHz. For every
speech sample, we add white Gaussian noise with a signal-to-noise ratio (SNR) ranging from -6 to
9 dB in randomly chosen steps of 1 dB. The target signals are the original clean speech signals.

4.2. Encoder/Decoder Design

We initialize a trainable filterbank encoder (conv1d) with 128 filters of length 32 at random and
tighten it according to Lemma 1. We set the decoder to be the transposed filterbank of the encoder
and do not optimize it during training, i.e., the weights are shared. If the proposed stabilization
mechanism yields an approximately tight encoder, the decoder corresponds closely to the dual of
the encoder at every step of training.

4.3. Mask Model

Based on the log magnitude responses of the encoder, the model estimates a mask that is applied
to the encoder filterbank responses before being decoded. Our model is a simplified version of the
architecture proposed in [21]. See Figure 1 for a schematic description. The mask model consists
of a feedforward layer (FF) with ReLU activation, a GRU layer, and another feedforward layer with
sigmoid activation. It has 460.672 trainable parameters and, hence, plays in the low-parameter
regime.

4.4. Training

As a learning objective we use the negative SNR of the denoised signal M (x), computed by
SNR(x, x −M (x)) = log(∥x∥/∥x −M (x)∥), and modified to penalize a large condition number κ
according to Equation 6. This gives the objective

Lβ(M ; x) =−SNR(x, x −M (x))+β ·κ. (8)

We choose β = 0.5. As an extension, we introduce Gaussian noise to the encoder with zero mean
and a variance uniformly chosen between 10−3 and 10. This results in an average SNR of the
encoder and the noise approximately between −2 and 2 dB. As optimizer, we rely on ADAM with a
learning rate of 10−5 using 90% of the dataset chosen at random. Validation is done on the residual
10% every 10 epochs. The batch size is set to 16.

5. DISCUSSION AND CONCLUSION

Overall, we can observe from Figure 2 that the proposed stabilization scheme (tight initialization
and κ-penalization) for the trainable filterbank encoder works as expected in both settings (with
and without noise in the encoder): It keeps the encoder perfectly tight throughout the whole
training procedure (κ ≈ 1.00026). If the training is done naively, i.e., without stabilization, the
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Figure 2: Condition numbers of the encoders for all models are depicted per epoch. Using the
proposed stabilization scheme keeps the condition number successfully at one all the time, i.e.,
the encoder stays tight. The condition number for non-stabilized encoders increases gradually.
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Figure 3: The mean SNR values of the denoised signals on the training (solid) and validation set
(dashed) are plotted per epoch. We added markers for the models with tight encoders. Left:
No noise in the encoder. Right: Noise in the encoder. In both settings, the models with the
stabilized encoders yield higher SNRs of the denoised signals. In the noisy setting (right), the SNR
progression of the model with the tight encoder is significantly more stable than the one with the
non-stabilized encoder.
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condition numbers increase continually (almost linearly) up to κ ≈ 5. We note that a condition
number of 5 is in general not considered to be particularly bad, however, it indeed seems to have
a large influence on the performance of the denoising model.

From Figure 3 it becomes obvious that the models with the tight encoders reach a
significantly higher SNR of the denoised signals than those without stabilization, with a difference
of about 3 dB in the last epoch! We can further see that the tight initialization seems to play an
essential role in increasing the SNR particularly fast within the first few epochs. Furthermore, also
the curves of the SNR progression during training appear to be slightly smoother in the stable
setting, which is a sign of more stable training dynamics. This is especially noticeable when
noise is in the encoder. In general, the performance in the encoder-noise setting was overall
worse that without, but the condition number seems to be affected positively. This needs further
investigation.

In summary, we motivated theoretically that tight encoder representations are more robust
against noise in the input, and that the reconstruction using the transposed encoder (which equals
its pseudo inverse) is more robust against noise in the encoder representation. Based on these
results, we made the assumption that tightness should be also beneficial in the deep learning
paradigm where noise is present. Indeed, we could show that audio signal denoising significantly
benefits from the tightness of the encodings that are used to learn a mask in terms of higher
SNRs of the denoised signals. The scheme to implement the stabilization is based on standard
results from frame theory and is straightforward and computationally efficient when making use
of FFT methods. This positive outcome of this first experiment on tight trainable encoders that
are exposed to Gaussian noise triggers a few questions. 1) Does the observed benefit extend to a
real-world setting, where background noise is not stationary anymore? 2) With the theory of frame
multipliers, can we prove also theoretically that the SNR of the denoised signals is higher if the
encoder is tight? 3) How does gradient descent interact with tightness? What is a natural choice
for β? Why does the condition number notoriously increase if no stabilization is done? These and
further questions will be explored in future work.
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