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Abstract

Network anomaly detection remains an important research topic in the field of cybersecurity. A network anomaly can be
defined as an activity or event that does not correspond to an expected or established traffic behavior. This includes traffic due to
cybersecurity attacks (intrusions, malware, DDoS, phishing, etc.), technical failures, or operational errors. Distinguishing between
normal and abnormal traffic is essential. Normal traffic is usually defined by a statistical baseline or an expected behavior model,
while abnormal traffic deviates from this norm. To detect these anomalies, we propose our framework named DiNATrAX . It is a
generic, cyclical, adaptable, and automatable methodology based on the use of different unsupervised machine learning algorithms.
DiNATrAX is organized into 3 functional blocks. The first block aims to collect and pre-process raw network data. The second
block allows for the splitting of the network in order to define logical sectors for analysis. For each of these, a digital signature
is generated at regular intervals. These signatures constitute our baseline for comparing network flows. Then, for each of these
signatures, we calculate its DNA which allows us to automate the comparison of different signatures. This comparison is performed
by the third block which calculates the abnormality distance between 2 consecutive DNAs. If a high abnormality distance is
detected, it highlights a variation in network activity and therefore an anomaly which may be correlated with a particular event.
Our solution allows us to highligt seven real anomalies correlated to real events from two particular sectors.

Index Terms

Network anomalies detection, digital signature, DNA, Damerau-Levenshtein distance, unsupervised machine learning, activity
deviations, network security

I. INTRODUCTION

The network anomaly detection framework DiNATrAX is based on the concept of DNA (Digital Network Assessment),
which is an evolution of the principle of digital signatures detailed in [1]. In this initial approach, network flows are captured
and then aggregated in such a way as to constitute well-defined and delimited logical network zones called sectors. This step of
grouping into sectors is carried out using an unsupervised machine learning algorithm (MLA). Clustering is a method that
allows for the identification and grouping of similar data points within larger datasets [2]. Clustering MLAs look for intrinsic
common characteristics in the data to extract similarities for grouping purposes. As a result, all data belonging to the same
cluster are deemed to be very similar based on the characteristics that comprise them.

Following the results obtained in [1], we chose to produce digital signatures based on 4 clusters. For each of these clusters, a
seed was arbitrarily set so that the clustering algorithm always produces the same clusters in the same order when the same
data is analyzed. Consequently, it will always be the same data grouped together, thus producing the same cluster with the
same identifier (ClusterId) and represented by the same color. Then, in order to detect anomalies related to a given sector, we
regularly recalculate the digital signature of the sector at different time intervals. An evolution in the proportions of network
characteristics describing traffic leads to a change in the distribution of clusters between two signatures, which reveals a change
in activity and therefore potentially a network anomaly.

This approach suffers from two major problems. Since the signatures are calculated at regular intervals but independently,
even when fixing the seed, we cannot be sure that the clusters will be computed in the same order between 2 digital signatures.
Consequently, similar data between two signatures will be distributed in the same clusters, but the clusters may not have the
same identifier. The second problem we faced regarding the analysis of digital signatures is the necessary visual processing that
the method requires, and thus the human intervention it involves to determine whether the distribution of clusters is actually
different or not. This major drawback effectively prohibits machine processing and, consequently, the automation of the analysis
process.

This led to the development of the DNA concept implemented by the DiNATrAX system described in this article, which is
structured as follows. First, Section II presents our DiNATrAX methodology centered around three functional blocks. Section III
is a complete implementation of DiNATrAX carried out within the framework of the CANCAN project [3]. Section IV presents
the results obtained and the characteristics that make DiNATrAX a generic framework.

https://orcid.org/0000-0001-5215-9046
https://orcid.org/0000-0003-1543-6731


Fig. 1. DiNATrAX Functional Blocks (FB)

II. DINATRAX – DIGITAL NETWORK ASSESSMENT & STRAND BASED ANOMALIES EXTRACTION

A. Presentation

The DiNATrAX network anomaly detection system as described by Fig. 1 is a framework that allows for: (i) the collection,
preparation & aggregation of network traces (ii) their segmentation and analysis by areas of interest, and (iii) the generation of
alerts if a network anomaly is detected and its possible correlation.

B. Definitions

The DiNATrAX system defines the notion of Sector of Interest (SOI) and employs three different time periods: Time Period
(TP), Time Slice (TL), and Time Slot (TS).

1) Sectors & Sectors of Interest (SOI): Detecting anomalies in a LAN-type network can be approached directly and globally,
that is, by analyzing all the raw traffic generated by the equipment. However, this approach is not feasible if one wishes to
detect anomalies in a larger network, such as a MAN. Indeed, it is not possible to grasp the network as a whole and to directly
and fully process all the data circulating in the links. To do this, the network topology must be divided into logical zones or
sectors. There are no strict or universal rules for defining these logical zones and for this division into sectors. They can be
freely delimited based on the topology, the characteristics available during the capture of network frames, hence the generic
aspect of DiNATrAX .

Among all these available sectors, only some of them may present a particular interest (such as network periphery, a
geographical location, a critical network service, etc.). These sectors of particular interest are called Sectors of Interest or SOIs.
Depending on the logical division made, its granularity, or the network anomaly to be searched for, it may be interesting to
group some of these sectors together. This notion of SOI allows for a level of abstraction above the network topology, enabling
the traffic to be described in a functional manner.

2) Time Period (TP): This refers to the time period during which network data is collected for analysis. It is the period over
which the study will be conducted.

3) Time Slice (TL): The time period TP is divided into time slices TL of equal duration. For each of these TLs, a digital
signature is generated, and then the DNA and its associated strand are calculated. This represents the elementary unit of time
that allows for the detection of a variation in computer network usage and therefore a potential anomaly.

4) Time Slot (TS): The TS period corresponds to the sampling frequency of network usage. The higher the TS, the greater
the granularity and thus the volume of data collected increases, thereby improving the precision with which network activity is
described.

C. Functional Blocks

1) FBI — Data Collection & Pre-Processing: This first functional block allows for the collection of network data in raw
format using specific tools or equipment. Therefore, it takes raw network frames as input.

Then, it ensures the pre-processing of the collected data for analysis. This pre-processing mainly involves cleaning, consolidating,
possibly selecting certain attributes (the ’Features Selection’ parameter), or enriching the raw traces (the ’Raw Data’ input), and
then aggregating them. These aggregated traces are then merged by SOI to allow analysis by well-defined and identified logical
zones.



As a result of the FBI, we obtain aggregated and merged data describing the network usage for each of these logical zones
or sectors (the ’Sectors Data’ output) for the considered TP period.

2) FBII — SOI Analysis: The FBII component represents the heart of the DiNATrAX system. This functional block is
responsible for the analysis of aggregated data corresponding to the supervised TP period and related to the selected sector of
interest (the ’Sectors Data’ input). This sectorial analysis proceeds in four distinct phases: (i) the extraction of data from each
of the sectors constituting the selected SOI (ii) the division of the SOI data into TL time slices (iii) the definition of digital
signatures for each TL period (TL Digital Signature or TLDS) (iv) the calculation for each digital signature of the DNA and its
associated strand.

The TLDS digital signatures represent the distribution of data in clusters, carried out by the K-Means algorithm, taking
into account all the characteristics available in the dataset. From these clusters, we derive what we have named DNAs (Digital
Network Assessments) and their associated strands. Concept of DNA was proposed by [4] and employed by [5].

In the DiNATrAX framework, DNAs are the string representations of clusters created by K-Means based on a particular
characteristic denoted as F . This characteristic materializes the network behavior we want to monitor and highlight its evolution,
variation over time (data volume exchanged, use by type of protocol, ports involved in communications, returned HTTP codes,
TCP flags, etc.). All values or ranges of values that this characteristic F can take are plotted on the x-axis, and the occurrence
of each of these values is represented on the y-axis during the projection of TLDS. The choice of the criterion materializing
the occurrence of F is free.

DNAs consist of as many sequences as there are clusters. A sequence is a string describing the composition of a cluster
where each character identifies a value of F included in the cluster (Seq1 = ADC & Seq2 = BC). The maximum length of a
sequence is defined as the Precision. The values making up the sequence belong to the set constituted by the different possible
values or ranges of F . They are sorted according to their occurrence, which allows obtaining a coded “image” of the clusters.
The DNA is then constructed by concatenating the sequences with the ’-’ character, ordered according to the occurrence of the
first value of F in the sequence. In case of a tie, it is the total occurrences or “Volumes” constituting the sequence that will
allow ranking. Indeed, the higher the volume of a sequence, the more representative the cluster described by this sequence will
be of F .

To refine the analysis and thus improve the relevance of detection, the associated strand of each DNA is calculated. They are
deduced from the DNAs and represent the ordered list of occurrences of the different values of F constituting the DNA. The
criterion for measuring occurrences for the values making up the strands is different from that used for measuring occurrences
during the construction of the DNAs. This allows combining multiple characteristics and confirming or refuting the variation.

The following example illustrates how DNAs and their associated strands are constructed. We assume that F can take the
following values: A, B, C, D & E. The number of occurrences for each of these possible values of F are: A = 10, B = 100, C
= 5, D = 50, and E = 1. The sequences are constituted according to the clusters as follows: Seq1 = BDA, Seq2 = BD, Seq3 =
AC & Seq4 = DAC. The DNA corresponding to this TLDS will then be: BDA-BD-DAC-AC and its associated strand will
thus be: BDAC because ’E’ does not appear in the DNA.

Once constituted, all DNAs and strands related to a SOI, as well as the data aggregated by TLDS, are passed to the third
functional block in charge of anomaly detection.

Thus, this second block provides to FBIII the list of DNAs and their associated strands for each TL slice for the considered
TP period and for the selected SOI (output “DNAs & Strands”). This FB is executed cyclically for each SOI to be analyzed.

3) FBIII — Anomalies Detection: FBIII’s role is to detect network anomalies that may have occurred during the TP period
and to send an alert if an anomaly is detected. The elements used by this functional component are the DNAs and strands
describing the network usage of each SOI (input “DNAs & Strands”) as well as the aggregated data by SOI (input “TLs Data”).
The use of aggregated data alongside DNAs and strands refines detection and limits the number of false positives. This improves
the overall anomaly detection performance of the DiNATrAX system by reducing false positives.

The actual anomaly detection is thus carried out using two different and complementary processes, namely: (i) the calculation
of the distance between 2 consecutive DNAs and the calculation of the distance between the 2 corresponding strands for all
DNAs and strands. From these distances, we calculate the corresponding abnormality distances. (ii) the use of an unsupervised
MLA which allows us to extract from the TL aggregated data the different aberrant values or Outliers. The study of the
distribution of the various parameters available in these network data helps to confirm the extracted outliers.

FBIII, if possible, correlates the detected anomalies with events that could explain these changes in behavior within the
network and raises and transmits alerts to a supervision tool detailing the aggregated data that enabled the detection of the
anomaly. This correlation step is optional as it requires either having implemented a real-time analysis or having a knowledge
base of events that may have occurred.



Fig. 2. BTS covering Center of Paris Area

TABLE I
’APPGROUP’ – APPLICATION TYPE

appGroup Type appGroup Type appGroup Type
0 ou A Unknown 7 ou H Others 14 ou O VPN
1 ou B Web 8 ou I Control 15 ou P VVM
2 ou C P2P 9 ou J Games 16 ou Q MMS
3 ou D Download 10 ou K Streaming 17 ou R StreamAVSP
4 ou E CloudStorage 11 ou L Chat 18 ou S Portal
5 ou F Mail 12 ou M VoIP
6 ou G DB 13 ou N MailOperator

III. IMPLEMENTATION

For this study, DiNATrAX was implemented in Python and tested with real data provided by Orange, a major French
mobile operator, as part of the CANCAN project [3] and written in the form of a Jupyter file downloadable from our
repository [6]. These data consist of network flows captured at each Base Transmitting Station (BTS), for which we have
GPS coordinates, aggregated by TS over a day and by the ’appGroup’ field. This attribute characterizes the type of mobile
application used by Orange subscribers. Table I details the correspondence between the references of the application groups and
their equivalence in terms of applications. These correspondences were provided by the mobile operator.

These aggregated data thus represent the activity generated by subscribers in the GSM network area covering the entire
Ile-de-France region. Total number of BTS is equal to 2,736 from which traffic was captured. Fig. 2 is the projection onto a
map of some BTS covering the Paris center area by using their GPS coordinates included into aggregated data.

A. By-Sector Aggregation

Given the extent of this network and the number of BTS or sources to consider, it is impossible to detect an anomaly by
directly analyzing all the data that have been generated. Therefore, this step aims to group BTS into sectors. The challenge is
to determine which BTS are close enough to be considered neighboring in order to include them in the same sector and then
merge the data emitted by sector. A sector is thus an area consisting of several BTS close to each other and viewed as a single
source.

Given that we have the GPS coordinates of the BTS, the chosen solution for defining these sectors was to use an MLA capable
of aggregating geospatial data, namely DBSCAN. This method has been tested and implemented by [7], [8] in their work on



Fig. 3. Stade de France SOI & its BTS (red marks)

detecting points of high activity from geographic data from various sources. DBSCAN requires defining several hyperparameters,
including the ϵ parameter, which determines the maximum distance at which points can be from each other to be considered as
belonging to the same group. It was set at ’0.15’, which corresponds to a radius of 150 meters. Fig. 3 details the sector of the
Stade de France (ClusterId = 1171) as well as the BTS that compose it within a 150-meter radius and whose data have been
aggregated. An aggregated data sample by TS, ’Cluster,’ and ’appGroup’ is presented in Table II.

B. By-TL SOI Slicing

A SOI can consist of one or several sectors defined by their ’ClusterId’ (see Section II-B1). To analyze the SOIs, it is
therefore necessary to extract only the data from the concerned sector(s). This selection of clusters can be done either visually
by projecting the sectors onto a map background or by searching for the ’ClusterId’ of the sectors to be retained from the
GPS coordinates of their centroid. Once the SOIs for analysis are selected, the considered analysis period (TP) is divided into
equivalent time slices (TL).

In the context of this study, we selected about ten SOIs composed of one or several sectors. Fig. 4 is the projection of the
sectors making up the SOI of the Gare de Lyon. The aggregated data related to each of these SOIs are then divided by TL to
extract their digital signature.

C. TL Digital Signature Extraction

For each SOI, the digital signature of each of the TLs is calculated using the unsupervised MLA K-Means. Machine
learning is an important component of data science. Through statistical methods, these algorithms can perform classifications or
regressions, which allows for the discovery of essential information in the context of data exploration projects.

According to the works [9], [10], the authors must perform a statistical analysis for each of the parameters contained in the
network captures in order to aggregate them. In the context of DiNATrAX , these analyses are carried out by the K-Means
algorithm. The data from each TL are grouped into clusters. The distribution of data in the clusters thus formed based on
the characteristic F constitutes the digital signature of each of these TLs: TL Digital Signature (TLDS). These signatures

TABLE II
AGGREGATED DATA SAMPLE

TimeSlot ClusterId grpDesc appGroup Duration Users Flows Packets
2019-05-07 1171 Chat 11 2,230 4365 13,480 10,331
2019-05-09 1171 Chat 11 2,342 4324 15406 11,660
2019-05-08 1171 Web 1 595.825 2 4 765
2019-05-01 1171 Web 1 1,546.769 3 3 971
2019-04-29 1171 VVM 15 18.084 1 1 145



Fig. 4. Gare de Lyon SOI composed of 3 sectors

(a) 1st Saturday of April (b) 2nd Saturday of April

(c) 3rd Saturday of April (d) 4th Saturday of April

Fig. 5. Stade de France SOI TLDS (TP=1 month & TL=24H)

can be materialized by projecting the clusters onto a plane whose x-axis represents the characteristic F to be analyzed and
the y-axis a parameter characterizing its evolution. For the analysis of CANCAN data, we chose ’Flows’ on the x-axis and
F = appGroup to detect anomalies related to changes in user behavior materialized by the type of application used. Fig. 5
represents the digital signature of the 4 Saturdays of April 2019 for the SOI of the Stade de France.”

Once all the TLDS are generated, the next step is to compare them two by two. If an evolution in the distribution of clusters



is observed between two consecutive TLDS, this implies that there has been a variation in the characteristic F (’appGroup’).
This comparison requires human intervention as it requires visual interpretation. Indeed, as discussed in Section I, the numbering
of clusters and therefore the color associated with them may vary from one signature to another. As a result, although the
distribution of data is identical between two signatures, they could be interpreted as different if an automated comparison was
employed.

Hence the concepts of ’Digital Network Assessment’ (DNA) and ’Strand’ defined and used by DiNATrAX .

D. DNAs & Strands Computation

For each signature, what we have called the DNA and its associated strand are calculated. The calculation of the DNAs
provides us with a first indication of the existence or absence of a potential anomaly. Then, the abnormality distance of each
strand is calculated. The letters making up the strands are sorted according to a different parameter representing activity, here
the number of users (’Users’) per ’appGroup’. These two pieces of information allow us to confirm or deny the presence of an
anomaly in the considered SOI when moving from TLn to TLn+1. This calculation is performed for each TLDS of TP of the
considered SOI and repeated for each of the SOIs to be studied. Results obtained for the Stade de France SOI are presented
and explained below based on Table III and Fig. 6.

(a) 1st Saturday of April (b) 2nd Saturday of April

(c) 3rd Saturday of April (d) 4th Saturday of April

Fig. 6. Stade de France SOI Activity

TABLE III
Stade de France SOI DNAS & STRANDS

n Begin End DNAn Strandn Volumes
0 2019-04-06 2019-04-06 B-K-LD-EFHQJI BKLDEF 59.93-16.49-12.57-10.15
1 2019-04-13 2019-04-13 B-K-LD-EFHJQI BKLDEF 58.98-17.58-12.95-9.49
2 2019-04-20 2019-04-20 B-K-LD-EFHJQI BKLDEF 58.33-16.93-14.19-9.52
3 2019-04-27 2019-04-27 B-LE-K-QDHFNJ BKLQED 46.66-18.72-18.43-15.54



TABLE IV
Stade de France SOI ANORMALITY DISTANCES

n Begin End DNA Strand DNAD STAD ANOD
0 2019-04-06 2019-04-07 BK-B-LD-EFHQIJ BKLDEF 7 2 9
1 2019-04-13 2019-04-14 B-K-LD-EFHQJI BKLDEF 3 0 3
2 2019-04-20 2019-04-21 B-K-LD-EFHJQI BKLDEF 1 0 1
3 2019-04-27 2019-04-28 BK-B-LED-QEDHFI BKLQED 7 2 9
4 2019-05-04 2019-05-05 BK-B-LDE-DEFHQJ BKLDEF 5 2 7
5 2019-05-12 2019-05-13 BK-B-LQEDFH-LED BKLQED 7 2 9

For the analysis of the SOI Stade de France, we divided the TP period, corresponding to April 2019, into 24-hour slices to
detect anomalies related to a change in the daily activity of users registered in this area of Orange’s mobile network. We chose
to study the four TLs Saturdays contained in TP period.

TL0 contains data related to the network activity of Saturday, April 6, 2019. Fig. 5a represents TLDS0, the digital signature
of TL0. DNA0, the DNA corresponding to this signature, consists of four sequences because K-Mean is configured to create
digital signatures by distributing data into 4 clusters.

Seq3 is the expression of cluster3 according to the characteristic F here ’appGroup’. Seq3 = B because cluster3 consists
only of ’appGroup’ 1 which corresponds to the letter ’B’ representing ’Web’ applications as detailed in Table I. Seq1 = K because
cluster3 consists only of ’appGroup’ 10. Seq2 = LD because Cluster2 consists of ’appGroup’ 3 & 11. Seq0 = EFHQJI
because Cluster0 consists of ’appGroup’ 0, 4 to 9 & 12 to 18. Sequences are truncated to a length equal to the Precision.
The greater the Precision, the greater the number of different values of F considered. This means that application groups
with increasingly lower activity will be considered. The letters forming the sequences (’appGroupL’) are sorted according to
the characteristic describing the activity of the ’appGroup’, here ’Users’ which represents the number of users per type of
application, activities detailed by Fig. 6a.

Finally, for each sequence, the volume of data represented by the sequence is calculated, expressed as a percentage
(59.93-16.49-12.57-9.68). Sequences are then sorted in descending order of volumes to construct the DNA hence: DNA0 =
Seq3 − Seq1 − Seq2 − Seq0 = B −K − LD − EFHQJI . The strand Strand0 associated with the DNA DNA0 is made
up of all the values of F contained in DNA0, sorted in descending order of activity and truncated to the length Precision:
Strand0 = BKLDEF .

This process is repeated for each of the TLs. The results obtained are detailed in Table III. We can deduce that: (i) the
strands Strand0 to Strand2 are identical (ii) the DNA0 to DNA2 are almost identical except for the application groups ’J’
and ’Q’ representing ’Games’ and ’MMS’ swapped in DNA0 (iii) the activity volumes by sequence are of the same magnitude
for periods TL0 to TL2 (iv) the DNA, its strand, and the activity volumes of period TL3 are different, which highlights a
network anomaly for this period compared to periods TL0 to TL2.

According to Table I, we can conclude that on Saturdays, April 6, 13, and 20, 2019, at the SOI of the Stade de France,
users primarily used their mobile phones for ’BKLDEF’ activities: Web (60%), Streaming (17%), Chat & Download (13%),
CloudStorage, Mail, and others (10%). For Saturday, April 27, 2019, the activity corresponded to ’BKLQED’: Web (47%),
Chat & CloudStorage (19%), Streaming (18%), MMS, Download, and others (15.5%).

E. Abnormality Distances Computation

Now, it is necessary to confirm detected anomalies. To limit false positives and unambiguously identify relevant anomalies,
we determine for each DNA and each strand what we call the abnormality distances. These distances allow us to quantify the
detected anomalies and to send a notification only for certain ones based on predefined thresholds. These abnormality distances
are based on the principle of DAMERAU–LEVENSHTEIN distance, denoted DL(String1, String2).

For each DNAn, the following abnormality distances are calculated: DNADn = DL(DNAn−1, DNAn) and STADn =
DL(Strandn−1, Strandn) where ’n’ represents the index of the concerned TL period. From these distances, the total abnormality
distance is deduced: ANODn = DNADn + STADn. This distance ANODn materializes the amount of abnormality of the
time slice TLn compared to the previous time slice TLn−1 and therefore formalizes the rate of variation in network activity
by type of applications of users during the transitions from TLn−1 to TLn during the TP period for the considered SOI.

From Table IV, we can draw the following observations: 1) the slices TL0, TL3, TL4 & TL5 show a high abnormality
distance 2) the slices TL0 to TL2 & TL4 have identical strands ’BKLDEF’ 3) the slices TL3 & TL5 have identical strands:
’BKLQED’ 4) the slices TL0 to TL2 have very similar DNAs 5) DNA4 is a mix between DNA2 & DNA3 6) The abnormality
distances of TL0 & TL5 are identical or close 7) the slices TL3 & TL5 have almost identical DNAs. The difference is due to
the application group ’L’ (Chat) appearing in the sequence Seq3 of DNA5

From observations ’2’ and ’4’, we can deduce that the periods TL0, TL1, TL2, and TL4 present identical network activity.
From observations ’1’ to ’3’, we can deduce that the periods TL3 and TL5 present a major evolution in user activity, which
materializes two anomalies. From observations ’2’ and ’6’, we can deduce that the transition between periods TL5 and TL0 is
a return to the reputed “normal” or reference state of network activity. From observations ’1’ and ’5’, we can deduce that



TABLE V
DETECTED ANOMALIES

AnoId SOI TimeSlot ClusterId ANOD Event Ref
1 Montmartre Cmy 2019-04-08 962 7 Funeral
2 Montmartre Cmy 2019-05-02 962 6 D. Rivers’ Funeral [12]
3 Notre Dame de Paris 2019-04-15 1037+1060 4 Fire [13]
4 Notre Dame de Paris 2019-04-16 1037+1060 4 Fire [13]
5 Stade de France 2019-04-27 1168 8 French Cup Final [14]
6 Stade de France 2019-05-12 1168 6 Metallica Concert [14]
7 Gare de Lyon 2019-04-15 All 7 / 6 Orange 4G Outage [15]

Detected Anomalies (Cmy = Cemetery)

the period TL4 presents an anomaly due to a return to the activity normally observed for periods TL0, TL1, TL2. Finally,
according to observation ’7’, the network activity during these two TLs was identical. This means that mobile users used almost
the same applications and in the same proportions during these periods.

IV. CONCLUSION & FURTHER WORKS

From the analysis of these few SOIs, it appears that DiNATrAX has enabled us to identify seven anomalies. These can
sometimes be linked to specific events that explain them. To do this, we extract the outliers of each SOI from the aggregated
data using the unsupervised MLA Local Outlier Factor. LOF is an algorithm commonly used to detect unusual network
activities [11]. To confirm these outliers, a study of the distribution of the aggregated data is carried out. This study focuses on
the data of the concerned TLs and on all the data of the SOI. Table V summarizes the anomalies linked to the analyzed SOIs
and the probable events that caused them. From this table, we can affirm that we have been able to detect six anomalies related
to a change in user activity. The seventh anomaly is more likely related to a network incident as it is present in two different
SOIs.

This organization of DiNATrAX into three distinct and independent functional blocks ensures us a framework that is
transposable regardless of the network topology to be analyzed and agnostic to the type of anomalies sought: (i) the network
characteristics extracted and analyzed are freely chosen and depend only on the context in which it is deployed (ii) the time
periods, the parameter values can be adapted to best meet the needs (iii) the granularity of the sectors can be modulated to
adapt to the concerned network. We therefore plan to test DiNATrAX with other datasets and to deploy it in ”real life”.
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