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ANOMALY DETECTION IN SINGLE SUBJECT VS GROUP USING MANIFOLD LEARNING
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? ICube UMR 7357, Université de Strasbourg, CNRS, Strasbourg, France

ABSTRACT

This paper compares several linear and non-linear multivari-
ate models for the detection of abnormal patterns in neu-
roimaging data, when comparing a single subject to a normal
control group. The proposed methods learn the manifold
spanned by the normal controls using non-linear dimension
reduction techniques. The image of a subject is projected on
the control group manifold either via a standard projection or
through an embedding/reconstruction scheme. A comparison
of the reconstruction with the subject’s original neuroimaging
data allows for the detection of abnormal patterns by way of
statistical tests on the residuals. The different abnormality
detection methods are assessed on synthetic data and real
(MRI) neuroimaging data. The importance of non-linear
modeling of the manifold in the reduced-dimension subspace
is highlighted, as well as robustness to large abnormalities.

Index Terms— Anomaly detection, subject vs group
comparison, manifold learning, PCA, Isomap, LLE.

1. INTRODUCTION

1.1. Context

We consider the detection of abnormal patterns in neuroimag-
ing data, in the context of comparing a single subject to a nor-
mal control group. Standard approaches for anomaly detec-
tion [1] are related to the one-class classification problem, in
which one tries to detect outliers (corresponding here to “ab-
normal” subjects) with respect to a learned distribution of nor-
mal controls. These approaches will make a global statement
about the subject class (i.e. pathological or not) but do not
provide a spatial localization of abnormal patterns within the
subject’s image data. On the other hand, the approaches de-
veloped for localizing subject-specific abnormalities [2] gen-
erally resort to univariate voxel-wise or ROI-based statistical
tests and often rely on Gaussian distribution assumptions [3].

In this paper we present and compare different methods
for the detection and localization of subject-specific abnor-
mal patterns within the framework of subject-versus-group
comparison. The proposed methods rely on global (multivari-
ate) non-linear models of normal image data, which allow for
the representation of complex spatial patterns with non Gaus-
sian distributions. The manifold of normal image patterns is
learned from a control group with the help of non-linear di-
mension reduction techniques. Identifying abnormalities is

mathematically associated with finding the projection of a
subject onto the manifold in which the control group lies. The
proposed projection paradigm is described in section 2, along
with the five different models tested in this paper. In section
3, experiments on synthetic and real data underline the benefit
of using non-linear multivariate representations, compared to
standard univariate or multivariate linear approaches.

2. METHODS

2.1. The projection onto the manifold paradigm

We use the strategy developed in [4, 5] to provide localized
anomaly detection, when a normal control database is avail-
able. In essence the paradigm consists in “projecting” any
new subject image Y onto a learned manifold representing the
normal controls. The “projection” µ(Y) will correspond to
the image closest to that of the tested subject Y, while belong-
ing to the normal controls manifold. The residual Y− µ(Y),
which is representative of any abnormalities present in Y, is
computed and converted into a p-value map (or a z-score map)
that can be thresholded for detection purposes. The p-value
conversion requires at first the estimation of the probability
density function (pdf ) of the residual value at each component
(voxel) under H0 (when the subject belongs to the control
group). To learn the geometric structure of the control group
while coping with the huge dimensionality of the data, di-
mension reduction algorithms are used. They transform high
dimensional data points into lower dimensional embeddings
while “untangling” the data geometry. We will also need a re-
construction operator ρ, that reconstructs a high dimensional
sample from a low dimensional one. As a result, we have
µ = ρ ◦ π, where π is the embedding (dimension reduction)
operator.

Specifically, the proposed approaches work as follows
from a learning set X of controls: first, the projection opera-
tor µ is learned from a subset of X. Then, given µ, another
subset of X allows to compute the pdf s of the residual values
at each voxel underH0. For the sake of simplicity, the pdf s of
the residuals are supposed to be independent and to follow a
zero mean Gaussian pdf with a standard deviation that varies
across the voxels. Consequently, a z-score map related to
the testing of a new subject Y is obtained by dividing each
component of Y − µ(Y) with the related standard deviation.



2.2. Proposed multivariate models

All the proposed projection methods use multivariate models
except the first one GLM, which is the reference univariate
model. For comparison purposes, we also consider PCA as a
standard linear projection model. The third model (RNGPA)
uses linear dimension reduction but non-linear robust model-
ing in the subspace, while the last three models are based on
non-linear dimension reduction.

2.2.1. General Linear Model (GLM) [3]

The General Linear Model (GLM), popularized by the soft-
ware Statistical Parametric Mapping [6] (SPM), is a standard
statistical tool for medical images group analysis. It has also
been used in a degenerate case to compare a subject to a
group [3]. The classical GLM is univariate. In subject ver-
sus group analysis, it amounts to using a constant projection
operator µ that simply returns for each voxel the mean m of
the control group [3].

2.2.2. Principal Component Analysis (PCA) [7, 8]

PCA is a linear dimension reduction technique that provides
an analytic solution for both the dimension reduction and the
reconstruction operators. Dimension reduction of a test sub-
ject Y is performed as: π(Y) = y = WT (Y −m), where
m is the mean vector of the normal control training set, and
W is a projection matrix that is composed of the eigenvec-
tors associated to the highest eigenvalues, obtained with the
Karhunen-Loeve transformation of the training set. The re-
construction ρ(π(Y)) is derived as: ρ(y) = Wy +m.

2.2.3. Robust non-Gaussian probabilistic PCA (RNGPCA) [5]

This method is based on probabilistic PCA, which provides
the link between a complete multivariate probabilistic model,
dimension reduction (by PCA) and maximum likelihood den-
sity estimation. The generative model writes: Y = Wy +
m + ε. W and m are learned, as previously, from a set of
normal controls X with standard PCA. The pdf of subspace
variable y is modeled as a mixture of Gaussian kernels whose
bandwidth is estimated with cross-validation (this parameter
was set manually in [5]). In addition, a non-Gaussian noise
model, robust to outliers, is specified for ε, yielding a com-
pletely non-linear statistical model. The dimension reduction
y = π(Y) of a new subject Y is performed via robust Max-
imum a Posteriori (MAP) estimation using a mean shift and
a semi-quadratic algorithm. The reconstruction ρ(π(Y)) is
performed with the generative linear model (see [5] for de-
tails).

2.2.4. Isometric Mapping (Isomap) [9]

Isomap is a manifold learning technique that aims to best pre-
serve the geodesic distances between the original samples.

The computation of geodesic distances is achieved with the
Dijkstra’s shortest path algorithm over a weighted graph com-
puted from the samples. Preserving the distances in the low-
dimensional space is achieved by means of multidimensional
scaling [10]. Isomap does not naturally allow for neither an
extension of the embedding to new points, nor a reconstruc-
tion of an embedded point. We address the first issue (corre-
sponding to the specification of π) with the Nyström exten-
sion [11, 12], and the second one (specification of ρ) by treat-
ing it as a supervised regression problem with the Nadaraya-
Watson kernel regression [13] (the bandwith of the kernel is
estimated using a cross-validation strategy).

2.2.5. Locally Linear Embedding (LLE)-based approach

LLE [14], like Isomap, provides nonlinear dimensionality re-
duction. It yields a neighborhood preserving mapping, the
preserved local properties being the weights that best recon-
struct each data point from its neighbors. In our paradigm,
using the LLE mapping would require to address the problem
of extending the embedding to new points and of reconstruct-
ing embedded points. However, we propose simply to define
the projection operator µ from the LLE weights: given a test
sample Y and its K-nearest neighbors, µ(Y) is defined as
the best (linear) reconstruction of Y from its neighbors in the
normal group X. The weights are computed as in [14]: they
are constrained to sum to one and a L2 loss function is used.
Optimization is achieved by solving a linear system of equa-
tions [15]. In order to penalize large weights, a regularization
term is added in the system of equations [15]. One can easily
show that this leads to a ridge regression problem:

µ(Y) =X. argmin
w

(
‖Xw −Y‖22 + λ‖w‖22

)
s.t.

∑
i

wi = 1, wi 6= 0⇔ i ∈ V(Y)
(1)

where λ is the regularization parameter and V(Y) is the
set containing the indexes of the neighbors of Y in X.

2.2.6. Robust LLE-based approach (RLLE)

In LLE, the L2 distances are heavily affected by abnormal
voxels and can prevent from finding correct neighbors. More-
over, the reconstruction weights are estimated using a L2 loss
function, and thus abnormal components have a large influ-
ence on the reconstruction (ideally, they should have no in-
fluence on the results). In order to obtain a method that is
robust to abnormal components, we define an iterative algo-
rithm for robust locally linear projection (RLLE) which works
as follows: given a test sample Y, we first perform a robust
projection onto its L2 neighbors by minimizing the L1 recon-
struction error (instead of L2). Then, we repeat the following
step until convergence: we use the neighbors of the current
projection to obtain a new projection of Y (by minimizing
the L1 error reconstruction). Convergence is achieved when



the L2 neighbors of the new projection are identical to those
of the current projection. At iteration k, the new projection
µ(Y)k+1 is derived from the previous one µ(Y)k as follows:

µ(Y)k+1 =X. argmin
w

(
‖Xw −Y‖1 + λ‖w‖22

)
s.t.

∑
i

wi = 1, wi 6= 0⇔ i ∈ V(µ(Y)k)
(2)

Optimization is achieved using sequential quadratic pro-
gramming. Convexity of the criterion and of the constraints
ensures convergence to a global minimum (it may be not
unique since the criterion is not strictly convex).

3. EXPERIMENTS

3.1. Comparison of methods on synthetic data

We first create a synthetic dataset in which we control the lo-
cation of abnormalities. As it can be quite cumbersome to
sample directly from a high-dimensional space, we embed a
half-sphere (to avoid any closed manifold issue) of dimension
d into a space of dimension D with D >> d. To this end, an
orthonormal transformation that maps the low- to the high-
dimensional space is randomly generated. The embedding
mapping is thus linear, but the data in the latent space is dis-
tributed non linearly. Control data are generated as follows:
we first sample N points on the half-sphere. The orthonor-
mal transformation is then applied to each point, producing
N points of dimension D. Finally, a zero-mean Gaussian
noise of variance σ2 is added independently on each com-
ponent of the points. σ is specified so that the L2 norm of
most of the noisy samples are between 0.95 and 1.05, inde-
pendently from the value of D (the L2 norm of the noise-free
samples is 1), thus “preserving relatively well the topology of
the manifold”. The abnormal data are generated as the control
ones except that anomalies are introduced in α% of the com-
ponents. The components that present the highest variance in
the control data are selected to be abnormal. Anomalies are
introduced as a multiple of the noise standard deviation: 4σ
is added to selected components.

We present results obtained with different parameter set-
tings for data generation. We start from an easy case (EC)
(N = 10000, D = 100, d = 3 and α = 30) : the training
set is composed of a high number of points (N = 10000)
compared to the intrinsic dimension of the manifold (d = 3)
and the high-dimensional space is of dimension D = 100.
Finally, α = 30% of components are selected to be abnormal
for the creation of abnormal subjects. Then, we derive three
more challenging settings from the EC case as follows: (i)
we increase the intrinsic dimension (d = 20) from the EC
setting, (ii) we reduce the number of samples (N = 500)
from EC , and (iii) the number of created abnormal compo-
nents is reduced to α = 5 in EC. These three new settings
are denoted respectively ECd, ECN , and ECα. Results are

expressed in terms of AUC (Area Under the ROC Curve). In-
stead of integrating the true positive rate for a false positive
rate from 0 to 1, we integrate it only from 0 to 0.01 because
the behaviour of the ROC curve is of no interest for large
values of the false positive rate in a medical context. Since
the modified AUC score is now at most equal to 0.01, it is
multiplied by 100 so that it may vary from 0 to 1. Table 3.1
presents results obtained in terms of the modified AUC score
for the different settings (EC,ECd,ECN , and ECα). In all
settings, the number of neighbors for Isomap, LLE and RLLE
was set to 30, the number of dimension for all dimension re-
duction methods was set to 20 and the λ regularizing param-
eter for RLLE and LLE was set to 0.01.

EC ECd ECN ECα
GLM 0.005 ±0.001 0.010 ±0.001 0.005 ±0.005 0.001 ±0.001
PCA 0.129 ±0.052 0.151 ±0.033 0.151 ±0.076 0.670 ±0.148

RNGPCA 0.674 ±0.163 0.370 ±0.157 0.651 ±0.105 0.917 ±0.019
ISO 0.386 ±0.027 0.028 ±0.003 0.248 ±0.046 0.841 ±0.087
LLE 0.252 ±0.014 0.081 ±0.011 0.185 ±0.041 0.653 ±0.080

RLLE 0.521 ±0.050 0.092 ±0.011 0.492 ±0.069 0.859 ±0.052

Table 1. Modified AUC scores (best possible score is 1, and worst is
0) for the four presented experiments and for each presented method.

We can first note that the univariate GLM approach pro-
vides very bad results for all settings. This is due to the fact
that it does not properly model the distribution of the data.
PCA globally gives poor results. Overall, RNGPCA, which
relies on non-Gaussian and robust modeling, is a clear win-
ner, whatever the parameter settings. The second best method
is RLLE, which also relies on robust subspace modeling. The
other nonlinear methods (ISO, LLE) give mixed results and
are very sensitive on parameter settings. PCA-based meth-
ods are less affected by an increase of the intrinsic dimen-
sion d or by a decrease of the number of samples N . In-
deed, the other methods rely on a neighborhood that may be
strongly disturbed by the emptiness of the latent space. Fi-
nally, we can observe that for all methods, results obtained
with the ECα setting are better than those obtained with the
EC setting. This is especially true for PCA, ISO and LLE that
are not robust to an excessive proportion of abnormal compo-
nents. These results clearly show that robustness to abnornal
components is a crucial feature of the best methods. They
also show that a linear-projection method such as RNGPCA
can compete with non-linear dimension reduction approaches
provided that an appropriate non-linear model is used in the
reduced subspace.

3.2. Application on a database of AD patients

We applied the previous two best methods (RNGPCA and
RLLE) and the GLM approach, that is widely used in neu-
roimaging, to a real dataset comprising MRI samples of
both healthy subjects and Alzheimer’s disease (AD) patients.
The healthy subjects serve as a control group over which
AD patients are projected to localize the anomalies. We



used three public databases OASIS [16], ADNI [17] and
IXI (http://brain-development.org/ixi-dataset/), as well as an
internal database. This extended dataset contains a total
of 1507 structural MRI images (around 1000 of which are
healthy subjects scans).

3.2.1. Preprocessing

All images are registered using the ANTS [18] registration
tool. ANTS provides for each image a deformation field
warping this image from its original space to a common one,
as well as to a template (defined in the common space). For
the observations, we consider volumetric information that
informs on how each anatomical structure of the brain has
to be reduced or enlarged to match the structures composing
the template. This is achieved, for each deformation field, by
computing the determinant of the Jacobian (DJ) of the defor-
mation field at each voxel (i.e. the differential matrix of the
vector field). To make the DJ images invariant to the subjects
head volume, each image is divided by its sum. Finally, to put
both the volumes atrophies and hypertrophies on a common
scale, we compute the voxel-wise log of the normalized DJ,
as multiplying or dividing the volume of an inner structure by
a factor α corresponds to adding or subtracting α to the log
of DJ.

3.2.2. Abnormality detection

For each tested method (GLM, RNGPCA, RLLE), we com-
puted individual z-score maps for each AD subject., We can-
not verify that all detected anomalies are coherent with the
medical history of the tested subjects but since all subjects
suffer from AD, the intersection of the detected maps should
be in accordance with the pathology. That is why we com-
puted the voxel-wise proportion of z-scores greater than 3 (in
magnitude) for a given voxel.

Figure 1 presents the detection results. We can first note
that the 3 methods detect the parahippocampal regions (see
bottom images of Figure 1). This is a consistent result be-
cause the volume of the hippocampus is a known biomarker
of AD. Then, one can observe that the GLM results differ
significantly from the two other ones, as it introduces quite
a nearly full detection of the ventricles in a large number of
cases (> 20%), while only some of the edges of the ven-
tricles are detected with multivariate methods. This differ-
ence is related to the fact that the size of the ventricles may
vary strongly in the normal control group. Most of them have
small ventricles but some of them have very large ventricles.
In the case of the GLM approach, large ventricles of a AD
subject are detected as abnormal because most of the normal
controls have small ventricles. In the case of the RLLE ap-
proach, an AD subject (with large ventricles) may be well
reconstructed because the method selects, as the neighbor-
hood, the few controls that also have large ventricles. As a
result, ventricles may be well reconstructed and may be not

GLM RNGPCA RLLE

Fig. 1. Percentage of AD subjects in which a voxel had a z-
score greater than 3 in magnitude. Only mean detections over
15% are represented. Top: axial slice, bottom: coronal slice.

considered as abnormal. Similarly, with the RNGPCA ap-
proach, the distribution of the normal controls in the reduced
subspace may indirectly account for the size of the ventricles.
Therefore, the reduction of an AD subject (with large ven-
tricles) will lead to a reduced subject whose reconstruction
may have large ventricles. Two different conclusions can be
drawn. One can conclude with the GLM approach that, in the
average, AD subjects have larger ventricles than normal con-
trols. With the other approaches we see that the ventricle size
is not specific to AD. This example highlights the interest of
using non-linear multivariate approaches for a fine analysis of
abnormal patterns in neuroimaging data. Finally, RNGPCA
and RLLE provide very similar results, with maybe a small
advantage to the RLLE method that provides more detections
in the expected areas.

4. CONCLUSION

In this paper, we have compared several linear and non-linear
methods for performing anomaly detection in images in the
single subject versus group setup. The proposed methods
were based on manifold learning methods such as PCA, LLE
or Isomap. We confronte these methods to the most widely
used algorithm for anomaly detection in medical images: the
GLM. We presented results over both a non-linear, synthetic
dataset and a real MRI dataset with focus on Alzheimer’s Dis-
ease. The two methods that clearly stand out (RNGPCA and
RLLE) both rely on non-linear subspace modeling and imple-
ment robustness to large anomalies. The results obtained on
the AD data set must still be analyzed in depth by a medical
expert, based on the history of each patient.
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