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1 Introduction

This technical report aims to complement the conference paper [Van Damme et al., 2024] by providing ad-
ditional experiments or further details that could not be included in the paper.

1.1 Data availability

— This extensive analysis is based on the work described in [Van Damme et al., 2024] ;

— The open-source implementation of the MIAA algorithm in the tracklib library [Méneroux and van Damme, 2024] ;

— Multi-sensors and multi-canopy traces acquisition with the ground truth
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2 Data and material

Since our goal is to reconstruct the geometry of the path from a given subset of GPS trajectories, disre-
garding the time dimension, each dataset used in this study contains trajectories following the same route,
travelling in the same direction, and having approximately the same start and end points. In this study, the
data used consist of a collection of datasets that respect these conditions, aligning with those outlined in
[Etienne and Devogele, 2014].

The scenarios of greatest interest for studying the aggregation method are paths under forest cover, due to
the noise effect, and those containing a series of sharp handling challenges in aggregation. Moreover, our
analysis will be carried out by using both synthetic and real trajectories. Thus three categories of data are
considered :

1. Realistic Synthetic GNSS Trajectories : These simulated trajectories provide a controlled environ-
ment to test the algorithm’s performance under various predefined conditions, allowing us to assess its
accuracy and robustness ;

2. Multi-Sensor Trajectories : data collected with different sensors (professional, watched and smart-
phone applications) to evaluate how well the algorithm handles the heterogeneity of sensor data.
Multi-sensors trajectories are acquired by following a repeatable data collection protocol, we defined ;

3. Real world data (i.e. crowdsourced datasets), more specifically three crowdsourced datasets categories
(terrain-constrained itinerary, infrastructure-constrained and multi-scale) ; this choice is not strictly
metrological but rather qualitative : to investigate graphically how the algorithm performs on real
typical cases.

2.1 Synthetic GNSS trajectories

In order to assess the metrological performances of the algorithm (i.e. its ability to reconstruct accurately the
common path followed by all the individual sample trajectories) it is required to test it on a large array of
configurations, with a substantial amount of GPS trajectories. This raises two operational problems :

∼ First, to compare the estimated trajectory with the real route actually followed by the individual
samples, it is required to perform a costly and time-consuming on-the-field survey to measure the
ground truth. This is especially problematic since moderately to densely covered forest areas are of
interest, where the direct use of precision carrier-phase GNSS with Real-Time Kinematic fast and
convenient procedure is often impossible. Therefore, ground truth has to be measured with classical
surveying traverse, tied to an absolute reference point, possibly located hundreds of meters away ;
spending a full day of topometric survey for each case study is not realistic.

∼ Secondly, for each case study, individual GNSS trajectories must be collected by walking several
times along the ground truth route. Because GNSS error is known to be auto-correlated in time
[Roberts, 1993], for a realistic acquisition of data, trajectories must ideally be sampled at different
times of day, which increases again drastically the effort needed to collect real data.

To overcome these limitations, it was first decided to proceed to extensive experimentation of the algorithms
on simulated GNSS trajectories. This enables to simulate as many case studies as needed, with potentially
unlimited number of GNSS trajectories, and a readily available ground truth track to compare the results
with.

This methodology however, requires an accurate modeling of auto-correlation error of GNSS trajectories, to
avoid non-realistic simulations, as depicted for example in Fig. 1, which can also result in topological errors
[Bonin, 2002, Vauglin, 1997].
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Y (m)
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Figure 1 – Example of a non-realistic simulation of a GNSS trajectory with a white noise process, completely
missing out the true correlation pattern of GNSS measurements.

GNSS errors were then modeled through their covariance function
γ(s1, s2) = Cov(X(s1), X(s2))

describing the statistical covariance between positioning errors X(s1) and X(s2) at two locations s1, s2 ∈ R+
(described trough their curvilinear abscissa along the ground truth trajectory).

Further, the error X is supposed to be a second-order stationnary process (hence described only by the
difference s2 − s1), and is modelled to take into account different error components in the GNSS trajectory
measurement process, as illustrated on Fig 2.

Y (m)

X (m)

Coordinate system GNSS error White noise

Figure 2 – Illustration of the three error components in the GNSS trajectories. From left to right : (1) a long
wave-length process describing coordinate system errors, (2) an intermediate wave-length process descri-
bing GNSS observation errors (auto-correlated in space and time) and (3) a white noise process (e.g. heat,
vibrations, electronic noise).

Generation of GNSS trajectories was done independently on each of the two planimetric components, with
a methodology described in [Ripley, 2009] and also employed in [Méneroux et al., 2023] : with a random
generator, we sampled n i.i.d. unit-variance and zero-mean gaussian values, compiled in a vector x. It can
easily be shown that, for any positive-definite matrix Σ ∈ Rn×n, the random vector y = Ax where A is
a Cholesky factor of Σ, is a realization of a correlated random vector Y having covariance matrix Σ. The
covariance matrix Σ is formed with Σi j = γ(s j − si) (Cf. example in Figure 3).
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Figure 3 – Example of 5 synthetic GNSS trajectories (blue) generated on a common ground truth track
(dashed line).

Application : In [Van Damme et al., 2024], the used methodology is the following : for each case study,
a reference track is simulated (or extracted from an existing topographic database) and is considered as
the ground truth track from which all GNSS trajectories are simulated. The error between the estima-
ted and ground truth track is then evaluated, which in turn, enables to assess the sensitivity of the algo-
rithm to all its parameters. Similar methodologies have been used for example by [Biljecki et al., 2015] and
[Zhang and Yang, 2015].

In our experimentation, trajectories have been generated with a noise generated with a 100 m range Gaus-
sian Process and with a 50 cm-amplitude for referencement error, completed by a noise generated with a
5 m-amplitude exponential covariance process (GPS error) ([Grejner-Brzezinska et al., 2005]) with a 50 m
correlation scope and completed by 1 m white noise process (vibrations, electronic noise, etc.).

Which translates to the following code using the Tracklib library ([Méneroux and van Damme, 2024]) :

# Generate a track

tkl.seed(123)

base_lacets = tkl.generate(0.4, dt=10)

chemin = tkl.noise(base_lacets , 20, tkl.SincKernel(20),

direction=tkl.MODE_DIRECTION_ORTHO)[::3]

chemin = chemin[80:250]

chemin.scale(10)

# Generate a collection of five identical tracks

N = 5

tracks3 = tkl.core.TrackCollection([chemin]*N)

# Generate noise to get realistic GNSS trajectory

tracks3.noise(0.5, tkl.GaussianKernel(100))

tracks3.noise(5, tkl.ExponentialKernel(50))

tracks3.noise(1, tkl.DiracKernel())

# Visualisation

plt.plot(chemin.getX(), chemin.getY(), color="black", linestyle=’--’, linewidth=1)

for track in tracks3:
plt.plot(track.getX(), track.getY(), color="royalblue", linestyle=’-’, linewidth=1)
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2.2 Multi-sensors and multi-canopy traces acquisition

To asses the impact of canopy and the sensors on precision accuracy, we defined and implemented a data
collection protocol.

First, based on the literature, we identified three types of canopy (i.e. open area, moderate coverage, and
heavy coverage). Additionally, we delineated five types of sensors (i.e. mobile phone equipped with Visio-
Rando application, Polar GPS device, Garmin GPS device, Keymaze device and professional Ublox GPS
sensor chip).

Second, for each type of canopy, the following data collection protocol was defined :

∼ Identification of areas without spatial constraints (e.g. bridge, stream, unobstructed)

∼ Identification within a rectangle of an Origin/Destination route with moderate winding and approxi-
mate length of 300 m.

∼ Collect five round trips following the route exactly.

Third, the field work was done by two of the authors of this paper. The placement of the sensors is also
relevant according to the literature [Blunck et al., 2011]. To limit this effect, the GPS watches were worn on
the wrist, the professional GPS devices were carried in a bag with the antenna positioned externally, and the
mobile phones were held in the hand. Data collection has been carried out during the summer season. In
total, for the three types of canopy and five sensors, 150 trajectories are collected.

Application : In [Van Damme et al., 2024], our experiments focus only on dense forest 50 trajectories col-
lected with five sensors are shown in Figure 4.

Figure 4 – Set of 50 trajectories collected with five sensors in dense forest and ground truth route.

The ground truth route is obtained through a topometric survey conducted by a group of students as part of a
topometric project, under the supervision of the authors of this paper and their teachers [Calloch et al., 2024].
Absolute positioning is conducted through GNSS differential static positioning of a set of reference points
located in open-sky conditions, between 300 and 500 meters from the surveyed route. Topometric determi-
nation of the route geometry is performed with surveying traverse. The output ground truth is sampled with
about 42 points (i.e. about 1 point every 7 meters) with an absolute positioning accuracy of 5 mm in each 3D
axis (1σ) (Cf. Figure 4).
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2.3 Crowdsourced traces

To validate the results obtained with synthetic GNSS tracks and data acquired according to the proposed
protocol, we have chosen to test the algorithms on crowdsourced trajectories, as these will be used to derive
pressure and route frequency indicators for the end-users.

To this end, our third experiment was carried out considering tracks downloaded from Visorando 1 and from
Wikiloc 2, websites offering donwloading tracks published online by contributors. The GPS sensors used are
therefore unknown, as well as data changes, context conditions.

In this experiment, we focused on hiking activity in the mountain area of the Pralognan Valley in the French
Alps. Specifically, from all the trajectories, we selected some of them having specific and challenging confi-
gurations and spatial constraints : terrain constraints (e.g. ridge, river), infrastructure support (e.g. switchback
trail) and variations of the shape of the path (e.g. a straight line followed by a series of twists and turns with
varying distances between them). Note that, in a dataset, all the selected trajectories have the same origin/-
destination (Cf. Figure 5). Note that, traces may have been previously filtered via a simplification algorithm
like Douglas-Peucker. Indeed, all geometries offer the same characteristics like vertex of bends, turns in
route. If this was not the case, traces would be more dissimilar in shape.

Figure 5 – Trajectories in three differents contexts with spatial constraint : (a) ridge (terrain constraint), (b)
series of sharp (infrastructure constraint), (c) heterogeneous trail shape (scale variation)

As the reviewers suggested in [?], considering a broader approach based on real world data would be inter-
esting. This could be done by generalizing the first context : a route with terrain constraints is a corridor,
covered by an acceptable number of traces, for which we can guarantee they have actually followed the path.
For example, in addition to ridge paths, constrained route segments can include trails along the mountain-
side, trail sections bordered by fences or rock walls. This can be addressed by defining a protocol to extract
such trajectories, involving running spatial and topological queries to identify such areas, and then cross-
referencing them with traces dataset. To ensure the representativeness of such constraint contexts, we use
crowdsourced data issued from collaborative platforms. Eventually, the geometry of the road section stem-
ming from an accurate topographic database is used as the ground truth. Alternatively, ground truth dataset
may be collected directly on the field with topometric surveying. The algorithm will be run on all extracted
constrained route segments, providing a quasi-metrological validation on real data. Although this approach
is relevant, we could not further develop it due to the paper length constraints, so it will be explored in future
works.

1. www.visorando.com
2. www.wikiloc.com
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3 Formalization of the original algorithm

This section formalizes the algorithm proposed [Etienne and Devogele, 2014] lacking in a mathematical
description to better describe its properties.

Considering a set of trajectories, where each trajectory is defined as an n ordered points :
X = (xi)i=1..n , with xi ∈ R2 and GPS records in a 2D space.

Let d be a distance (Euclidian, Manhattan, etc.) between those points :
d : R2 × R2 → R+.

Note that heights and timestamps for example, could also be considered with xi, yi ∈ R3 or R4, and defining
d accordingly to measure distance between three-dimensional timestamped records.

An aggregated trajectory, notedAX, is defined as the best geometric representation of a set of trajectories
X following exactly the same route defined from an origin to a destination :

AX = (x j), j=1..m,
where x j represents the aggregated points of matched points for the j-th point in the master trajectory.

We defined an accurate aggregated trajectory, noted AAX, an aggregated trajectory that optimizes a
quality criterion Q, with respect to the ground truth G (unknown). More formally, AAX optimizes E[Q],
where E is the expected value of the quantity Q. The main challenge is to define Q, and then to compute it in
an approximate and satisfactory way, which is our focus.

One might say, a trace T1 is a good partial representation of T2 if QT2→T1 is minimal with Q being the square
root of the mean of the squared distances between each point in T1 and its closest neighbor on T2.

Thus, the quality of the traceAAX can then be evaluated from the average of the partial qualities :
AAX = (QAAX→G +QG→AAX) ÷ 2, with G the ground truth.

3.1 Algorithm initialization and termination

As mentioned before, this algorithm uses an iterative refinement approach that improve the existing solution
at each step, continuously performing multiple matches. And each iteration is composed of three steps :
trajectory matching, representative selection on trajectory sections and aggregation of representative points.

But first algorithm initialization consists of choosing a first trajectory, will be called the master trajectory,
R = (r j) j=1..m. This process involves defining a set of reference positions ((r j) j=1..m), which are all the
vertices of the master polyline. Selecting a master trajectory, to start the algorithm, avoids having to match
all the trajectories in pairs.

And finally, the iterative process stops when the difference between the aggregated trace and the master trace
is below a minimum threshold.

3.2 First step : trajectory matching

The points of each trajectory will be matched with the master trajectory. To be more precise, a matching
between the trajectory X and the master trajectory R is a bipartite graph (X, R, µ) with no isolated vertex
and where µ are the set of matching links. Note that the connectivity constraint imposes that each point in X
is linked to at least one points in R, and reciprocally. We denote byM(n,m) the set of all possible matching
between two trajectories containing n and m points respectively.

An ordered matching between trajectories X and R is a matching with the additional constraint that there
should be no pair of crossing links, i.e. that we cannot find two links (xi, r j) and (xk, rl) with i > j and k < l.
We denote byM+(n,m) the set of all possible ordered matchings between two trajectories containing n and
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m points respectively. Note that the definition of an ordered matching imposes that (x1, r1) and (xn, rm), i.e.
start and end points of trajectories X and R should be matched together respectively.

Matching algorithms based on dynamic programming approach (Dynamic Time Warping matching (DTW),
Discrete Frchet distance) are used to calculate ordered matching µ ∈ M+(n,m). The Lp-norm optimal dyna-
mic time warping matching between the trajectory X and the master trajectory R is given by :

DTWp(X,R) ∈ argmin
µ∈M+(|X|,|R|)

∑|µ|
i=1 d(xµi(1), rµi(2))p

where, for any index i ∈ [1, |µ|], the point of index µi(1) of trajectory X is linked to the point of index µi(2)
of R.

Note that the discrete Frchet distance (the method used by [Etienne and Devogele, 2014]) is similar, but not
identical to DTW, since Discrete Frchet distance seeks to minimize the maximum of distances between the
two curves, whereas DTW aims at minimizing the sum of these distances. In fact, the discrete DTW distance
given in the formula above degenerates to Frchet distance when p grows to the infinity.

Figure 6 – (a) A matching link between trajectory X and master trajectory R. (b) A connected component of
the bipartite graph associated with the matching. (c) representative and aggregation positions for a reference
position of the master trajectory R.

A connected component of the bipartite graph (X, R, µ) corresponds exactly to one or more matching links
with ni positions of X and m j positions of R. For example, in Figure 6-a and 6-b, the j-th connected com-
ponent is composed of vertex (r j1) from R, vertices (xi1 et xi2) and the two associated vertex.

3.3 Second step : representative selection on trajectory sections

At the end of matching process, positions of trajectory X can be linked to many points of R and reciprocally.
Thus, the second step of algorithm iteration is to choose for each connected component previously establi-
shed, a representative position of each group of vertices from the trajectory X : x j. This ensures that the final
aggregation is not too much influenced. If the segment of the trajectory is composed of several vertices, the
representative is calculated from all the positions of the segment, otherwise the single position is chosen.
[Etienne and Devogele, 2014], take the center of gravity of the segment. In Figure 6-c, the red circle x j re-
presents the center of gravity of the vertices xi1 and xi2).

3.4 Third step : aggregation of representative points

At this point, all positions of the master trajectory (r j) j=1..m have a unique homologous point x j from each
trajectory X. The positions of the new merged trajectory are calculated from the median of matching points.
The median aggregation operator is better suited to handle outliers. [Etienne and Devogele, 2014] add a
constraint in this step of the algorithm : each position aggregated must also be part of existing trajectory
positions, so as not to be located in an unlikely place.

At last, we iterate using the aggregated trajectory as the new master trajectory. The algorithm stops when
the distance between two subsequent estimation of the aggregated trajectory is below a predefined threshold.
The distance used is the pointwise L2 distance.
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4 MIAA : a Modular and Iterative Aggregation Algorithm

Knowing the diversity of similarity and aggregation method for trajectories, we adapt the existing algorithm
proposed in [Etienne and Devogele, 2014] by transforming it into a modular one. Modularity has substan-
tial advantages such as flexibility (i.e.a measure can be easily replaced by a another), scalability (i.e. new
measures can be easily added), and more relevant to the goal of this study, experiment testing (i.e. study the
behavior and the influence of measures and parameters in different contexts and with different data).

Figure 7 – The four components of modular and iterative aggregation algorithm for GNSS trajectories.

Figure 7 illustrates the proposed Modular and Iterative Aggregation Algorithm (MIAA) for GNSS trajecto-
ries which is composed by four components with new options. Thus, this proposal will create many variants
of the algorithm. Note that, each component corresponds to a step of the algorithm.

The open-source implementation of the MIAA algorithm have been integrated into the Tracklib library
([Méneroux and van Damme, 2024]).

4.1 Component 1 - choosing the master trajectory

This component is representing the first step of the workflow. We propose three options (Cf. Figure 8) to
get the master trajectory. The first, already proposed in [Etienne and Devogele, 2014], selects as master, the
trajectory whose length is closest to the median of the lengths of all trajectories to be aggregated. We add,
to this initial option, two new options : (1) the master trajectory is one that minimizes the sum of distances
to other trajectories and (2) the master trajectory is randomly selected from the set of trajectories to be
aggregated. These features have the advantages to study the influence of the choice of the master trajectory
on the final result.

Figure 8 – Heuristics for choosing a trajectory master
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4.2 Component 2 - matching trajectories with the master trajectory

This component is linked to the second step of the algorithms and contains different measures to compute
the distance between two trajectories. Among the many similarity measures, we considered four measures :
in addition to the matching based on the discrete Frechet distance, we add as new variants, two methods
parameterized with Lp-norm (p ∈ 1, 2) and the nearest neighbour matching.

Figure 9 – Heuristics for choosing a similarity measure for matching trajectories

Clearly, the Nearest Neighbour distance differs from the others because it does not preserve the order of
position in matching between the two trajectories, as described in the Figure 9 (bottom right image).

As mentioned in the section Formalization of the original algorithm , Discrete Frchet distance seeks to
minimize the maximum of distances between the two curves. Once the maximum distance link is fixed, the
other matching links are placed in the remaining spots. In Figure 9, the matching links are either grouped for
distant points (Circled area 4) or create a large offset (Circled area 3).

DTW, both L1 and L2, aims at minimizing the sum of these distances,the matching links are therefore spaced
more evenly, as shown in the the top 2 images in the Figure 9. The difference between the L1 and L2 distances
in matching is minimal. The L2 distance is the straight-line distance, while the L1 distance follows the x-
axis and y-axis. In Figure 9, the difference between these two distances becomes significant when the links
between the points are close to the diagonals of the two axis (Circled area 1 and circle area 2).
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4.3 Component 3 - choosing the representative position of each homologous points

As mentioned in the second step of the iteration of the aggregation algorithm, it is possible that multiple
points on a trajectory are matched to the same point in the reference trajectory. Then it is required to reduce
these points to a single representative position. This can be done with different methods : center of gravity,
position with median time, position furthest from the master trajectory.

Figure 10 – Heuristics for options in [C3] for DTW L∞

With the Discrete Frchet distance (L∞) in C2, Figure 10 describe the three options. Unsurprisingly, the higher
the link cardinality, the more this option will influence the position of the representative. The choices of the
center of gravity and the position furthest from the master trajectory (Circled area 2) correspond to a spatial
strategy, unlike the option of the position with median time. In Figure 10, since the points of the track are
spaced at fixed time intervals, the difference between option 1 (Circled area 1) and option 3 (Circled area 3)
is the same.

4.4 Component 4 - aggregating the representative position

So, for each reference position (r j) j=1..m on the master trajectory R, we have a representative x j on each
trajectory R. Using an aggregation operator, a unique aggregating position can represent each reference
position r j. We propose four aggregate function to calculate aggregating position : the marginal median
([Etienne and Devogele, 2014]), the geometric median, the L2 mean and the L∞ which is the center of the
minimum covering circle. In this component, we can add a constraint with the four approaches : whether or
not to anchor the aggregated position to an existing position in the dataset’s trajectories as explained in step
3 of 3.

Figure 11 – Heuristics for options in [C4] for DTW L∞

This step is the one that determines the final position of the points in the track. In Figure 11, we can observe
that the marginal median suggests a point among the positions of the representatives of C3, whereas the
geometric mean proposes a new position for the trajectory, which can therefore be influenced by outliers.
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5 Extensive analysis and calibration

5.1 Termination of the algorithm

It should be mentioned that, to our knowledge, the termination of the algorithm has not yet been studied in
[Etienne and Devogele, 2014]. MIAA algorithm is an iterative algorithm, and there is no guarantee that it
will converge from an IT point of view. For example, at the end of an iteration, you can return to a previous
step (the merged trajectory corresponds to a previous master trajectory), therefore iterations are entering a
cycle. We demonstrate this potential drawback with a counter-example described below.

For example, consider these two trajectories shown in Figure 12-a :
X = < (68.0, 20.0), (69.0, 22.0), (69.0, 24.0), (67.0, 25.0) >
Y = < (71.0, 14.0), (71.0, 16.0), (72.0, 19.0), (70.0, 22.0) >

Figure 12 – Counter-example showing a case of non-convergence

The selected configuration is : for the master trajectory, is one that minimizes the sum of distances to other
trajectories, the DTW-L1 has been chosen for matching trajectories, the center of gravity is taken for the
representative position of each homologous and to aggregate the representative position, median aggregator
is used to ultimately be map matched over a position of the trajectories.

In this configuration, the first iteration of the MIAA algorithm returns the aggregated trajectory represented
by the red line in Figure 12-b. Now let us take a closer look at the second iteration. The matching of the
trajectories with the master trajectory produces a single matching link (one vertex of X2 with one vertex of
R) except for the first reference position, we have a matching link 1-3 : (r1, x21, x22, x23) (Figure 12-c) (cor-
responds to these three points of the second trajectory x1 (71.0,14.0), x22 (71.0,16.0) and x23 (72.0,19.0)).
Consequently the center of gravity of these three points is x21 (214/3, 49/3) that is to say, the representative
position associated to r1 (Figure 12-d).

With anchor constraint, we need to match the center of gravity x21 with one of the four vertex : r1, x21, x22,
x23, respecting this order (IT implementation). There are two candidates positions with the same distance r1
and x23 (6.1388...8), so the winner is r1 (first in the list).

At the end of the second iteration, the aggregated trajectory corresponds to the master trajectory of the first
iteration. We are locked in a two-iteration cycle.
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5.2 Algorithm calibration : further details

This section reproduces the online notebook on the Tracklib documentation website ”Aggregated Trajectory :
position errors and shape deviation estimation”. It is inspired by the work presented in [Van Damme et al., 2024]
and also provides some pieces of Python code from Tracklib library ([Méneroux and van Damme, 2024]) do-
cumentation 3.

We will examine the aggregation of trajectories using two matching distances : the Frchet distance and the
DTW-L2 distance, and thus see its ability to reconstruct accurately the common path followed by all the
individual sample trajectories by comparing the position errors and the shape deviation.

Our experiment will be conducted in four steps :

1. Step 1 : creating a synthetically reference track considered as the ground truth track,

2. Step 2 : creating a set of simulated tracks from the reference track,

3. Step 3 : computing the aggregation track from the set previously constructed (step 2),

4. Step 4 : the error between the estimated and ground truth track is then evaluated.

5.2.1 Step 1 : Create reference tracks

For this experimentation, we will examine the trajectory aggregation process for different types of paths to
be reconstructed. In the context of mountain hiking, we identified three characteristic path shapes : nearly
straight segments, moderately sinuosity road segments, and a zigzagging path composed of a series of switch-
backs. To maintain shape consistency throughout the entire road segment, the generated trajectories have a
length of approximately 300 meters.

This three commonly mountain path shapes correspond to the reference tracks.

tkl.seed(123)

# ----------------------------------------------------------

# Generate the path ’Almost straight’

sentier1 = tkl.generate(0.5, dt=10)[::3]

sentier1.scale(5)

# ----------------------------------------------------------

# Generate the path ’Moderate sinuosity’

sentier2 = tkl.generate(0.1, dt=10)[::3]

# ----------------------------------------------------------

# Generate the path ’Switchbacks’

base_lacets = tkl.generate(0.4, dt=10)

sentier3 = tkl.noise(base_lacets , 20, tkl.SincKernel(20),

direction=tkl.MODE_DIRECTION_ORTHO)[::3]

sentier3.scale(4)

# ----------------------------------------------------------

SHAPES = [’Almost straight’, ’Moderate sinuosity’, ’Switchbacks’]

sentiers = [sentier1 , sentier2 , sentier3]

3. https ://tracklib.readthedocs.io/en/latest/usecase/AggregatedTrajectory.html
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5.2.2 Step 2 : Create sets of simulated GNSS trajectories

Now that we have our three reference trajectories, we want to create three sets of N simulated GNSS tra-
jectories from them. To generate realistic noise, we used an approach described in [Ripley, 2009] and also
employed in [Méneroux et al., 2023] :
with a random generator, we sampled N i.i.d. unit-variance and zero-mean gaussian values, compiled in a
vector x. It can easily be shown that, for any positive-definite matrix Σ ∈ Rn×n, the random vector y = Ax
where A is a Cholesky factor of Σ, is a realization of a correlated random vector Y having covariance matrix
Σ. The covariance matrix Σ is formed with a (stationary) covariance kernel with three parameters :

— The type of kernel : exponential, gaussian, and triangular models are used.

— The amplitude of noise : is between 0 and 5 meters, as it is quite uncommon to find building databases
with more than 5 m error amplitude. If necessary, the output tables could be extended to handle large
errors.

— The correlation scope of the noise which roughly speaking describes how far apart two errors would
remain correlated (in both amplitude and direction) : between 1 m (white noise) and 1000 m (global
translation).

In tracklib, you have to create a Kernel and use the noise method on a track.

Trajectories have been generated with a 5 m-amplitude exponential covariance process, completed by a 1 m
white noise process, a 50 cm range Gaussian Process for referencement error.

N = 20

# Generate ’Almost straight’

tracks1 = tkl.core.TrackCollection([sentier1]*N)

tracks1.noise(5, tkl.ExponentialKernel(1))

tracks1.noise(1, tkl.GaussianKernel(0.5))

# Generate ’Moderate sinuosity’

tracks2 = tkl.core.TrackCollection([sentier2]*N)

tracks2.noise(5, tkl.ExponentialKernel(1))

tracks2.noise(1, tkl.GaussianKernel(0.5))

# Generate ’Switchbacks’

tracks3 = tkl.core.TrackCollection([sentier3]*N)

tracks3.noise(5, tkl.ExponentialKernel(1))

tracks3.noise(1, tkl.GaussianKernel(0.5))

5.2.3 Step 3 : Compute aggregated trajectory

We have two evaluations to do : compute the aggregated trajectory with Frechet distance and with L2 distance.

Each one is conducted as follows : we generate N′ random noisy traces, with N′ ∈ [1, E] and E ≤ N. For each
generation, we are going to compare the agregated trajectory against the reference track (*i.e.* the ground
truth).
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This code compute an aggregation track for a set of 10 trajectories :

FRECHET = {’Almost straight’: tkl.TrackCollection(),
’Moderate sinuosity’: tkl.TrackCollection(), ’Switchbacks’: tkl.TrackCollection()}

DTW = {’Almost straight’: tkl.TrackCollection(),
’Moderate sinuosity’: tkl.TrackCollection(), ’Switchbacks’: tkl.TrackCollection()}

represent_method = tkl.MODE_REP_BARYCENTRE

aggmeth = tkl.MODE_AGG_MEDIAN

cstt = False

master = tkl.MODE_MASTER_MEDIAN_LEN

itermax = 25

# create set of 10 trajectories

TAB = set()

while len(TAB) <= 10:
n = randint(0, N-1)

TAB.add(n)

sets1 = tkl.TrackCollection()

for idx in TAB:
sets1.addTrack(tracks1[idx])

# Frechet

p = float(’inf’)
mode = tkl.MODE_MATCHING_FRECHET

central1 = tkl.fusion(sets1, master=master, dim=2, mode=mode, p=p,

represent_method=represent_method , agg_method=aggmeth, constraint=cstt)

FRECHET[’Almost straight’].addTrack(central1)

...

# DTW

p = 2

mode = tkl.MODE_MATCHING_DTW

central1 = tkl.fusion(sets1, master=master, dim=2, mode=mode, p=p,

represent_method=represent_method , agg_method=aggmeth, constraint=cstt)

DTW[’Almost straight’].addTrack(central1)

...

Figure 13 – Aggregated trajectories for two samples of 3 and 20 trajectories and computed with Discrete
Frchet distance (in pink) and DTW-L2 distance (in blue)
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5.2.4 Step 4 : Evaluate error between the aggregated and ground truth track

Position error measurement

We compute the distance pointwiseL2 (Root Mean Square Error) by finely resampling both the aggregated
and ground truth trajectories from 120 to 1,000 points, ensuring one point every 50 cm over 500 meters.

def rmse(central, sentier):

central.resample(npts=1000, mode=1)

sentier.resample(npts=1000, mode=1)

# compute the distance NearestNeighbour

m = min(sentier.size(), central.size())

return tkl.compare(central[0:m], sentier[0:m], tkl.MODE_COMPARISON_POINTWISE , p=2)

rmse(FRECHET[’Almost straight’][s], sentier1)

...

rmse(DTW[’Switchbacks’][s], sentier3)

Which results in the following graphically :

Figure 14 – Position error measurement for each samples of N trajectories generated

From the perspective of positional accuracy, neither matching with the Frchet distance nor matching with the
DTW distance prevails : the two curves have the same shape, and the differences, regardless of the number
of trajectories in the sample, are minimal.
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Shape deviation measurement

Let’s start by aligning, with a geometric affine transformation, the aggregated track with the reference track
to abstract away from position issues. Then, we finely resample both the aggregated and ground truth trajec-
tories from 120 to 1,000 points, ensuring one point every 50 cm over 500 meters. Finally, we compute the
distance *NearestNeighbour* for all positions to estimate shape deviation.

def shapeDeviationMeasure(central, sentier):

# Align the aggregated track with the reference track

tkl.mapping.mapOn(central, sentier, verbose=False)

# resample to 1000 points

central.resample(npts=1000, mode=1)

sentier.resample(npts=1000, mode=1)

# compute the distance NearestNeighbour

return tkl.compare(central, sentier, tkl.MODE_COMPARISON_NN , p=2)

shapeDeviationMeasure(FRECHET[’Almost straight’][s], sentier1)

...

shapeDeviationMeasure(DTW[’Switchbacks’][s], sentier3)

Which results in the following graphically :

Figure 15 – Shape deviation measurement for each samples of N trajectories generated

The Figure 15 still shows a close similarity between the two curves : shape deviation measurement are quite
close together and their profiles are quite similar.
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5.3 Crowd-sourced trajectories dataset

Here we present the results obtained on real data. As already mentioned, the analyse is not strictly ”metro-
logical” but rather qualitative, a graphic investigation. We define a first context : a ridge which characterises
terrain constraints (Figure 16a), a switchback trail which characterises an infrastructure support (Figure 16b)
and a straight line followed by a series of twists and turns with varying distances between them which cha-
racterises variations of the shape of the path (Figure 16c).

Note that, traces may have been previously filtered via a simplification algorithm like Douglas-Peucker.
Indeed, all geometries offer the same characteristics like vertex of bends, turns in route. If this was not the
case, traces would be more dissimilar in shape.

(a) Aggregated trajectory closely follows the ridge path

(b) Aggregated trajectory in red follow the most popular
route

(c) median operation effect in a series of bends with a
Crowdsourced dataset

Figure 16 – Aggregated trajectory result on Crowd-sourced dataset

Aggregated trajectory produced by the MIAA algorithm (red line in Figure 16b and white line in Figure 16c)
detects the road shape very well, all the bends have been detected. In the context of mountain hiking, we can
see the aggregated trajectory deviates from the road, which may make it possible to quantify the off-tracking.
In Figure 16a, we can observe that some turns are not detected, as the geometry of the aggregated trajectory
tends to generalize and lose certain inflection points.
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5.4 Perspective : performance under extreme conditions

Concerning high noise amplitude, we deliberately chose a low one (5 meters) in our experiments to adapt
to advancements in GNSS technological (new constellations, new signals, improvements in receiver elec-
tronics). However, we have not studied the case of extreme noise conditions, and we could relaunch com-
putations with extreme values, on the same synthetic GNSS trajectories datasets, with an amplitude of the
exponential covariance process from 5 meters (Cf. [Lee et al., 2023]) to 30 meters (as mentioned in the lite-
rature for errors in heavy coverage canopy areas in [Piedallu and Gégout, 2005]).

Additionally, for outlier traces, particularly off-roads, we conducted empirical tests on the multi-sensors/multi-
canopy traces dataset. With few outliers, our tests confirmed there was no impact on the aggregated trajec-
tory, demonstrating its robustness as mentioned in [Etienne and Devogele, 2014]. The algorithm computes,
for each matched points in the master trajectory, the robust median positions between all trajectories. Thus,
we decided not to further investigate robustness, in order to focus on its modularity. We could study the
performance of the algorithm with many off-roads in the sample traces to be merged. For example, the ro-
bustness analysis would consist in including a proportion p of off-roads in a given number of trajectories,
and determine how the quality of the aggregated trajectory decreases as p increases. In our opinion, with the
effect of the median, results should not be dramatically modified, at least up to p=25%. If needed, we can
run the test and add comments with a figure depicting the aggregated trajectory quality as a function of p.
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de vérité terrain pour l’étude de la précision de traces gnss de randonneurs en forêt. Technical report,
École nationale des sciences géographiques (ENSG-Géomatique).
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[Zhang and Yang, 2015] Zhang, Y. and Yang, Y. (2015). Cross-validation for selecting a model selection
procedure. Journal of Econometrics, 187(1) :95–112.

22


	Introduction
	Data availability

	Data and material
	Synthetic GNSS trajectories
	Multi-sensors and multi-canopy traces acquisition
	Crowdsourced traces

	Formalization of the original algorithm
	Algorithm initialization and termination
	First step: trajectory matching
	Second step: representative selection on trajectory sections
	Third step: aggregation of representative points

	MIAA: a Modular and Iterative Aggregation Algorithm
	Component 1 - choosing the master trajectory
	Component 2 - matching trajectories with the master trajectory
	Component 3 - choosing the representative position of each homologous points
	Component 4 - aggregating the representative position

	Extensive analysis and calibration
	Termination of the algorithm
	Algorithm calibration: further details
	Step 1: Create reference tracks
	Step 2: Create sets of simulated GNSS trajectories
	Step 3: Compute aggregated trajectory
	Step 4: Evaluate error between the aggregated and ground truth track

	Crowd-sourced trajectories dataset
	Perspective: performance under extreme conditions


