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Abstract

In this work, we study the loss landscape of growing neural networks and show
that they have flatter minima than when trained with all of their parameters from
random initialization. Then, we further evaluate and compare the generalization
properties of both growing and non-growing models using, along with standard
measures such as the training loss and the validation accuracy, an uncommon
approximation of the population risk. The results we find suggest that growing
models have better generalization properties. This supports the argument that
flatness of the loss positively correlates with generalization in the current debate
in the scientific community about flatness. We validate our approach on a wide
range of binary Natural Language Processing tasks with large state-of-the-art deep
learning models. Our theoretical and experimental results open new perspectives
to study these questions through the prism of growing neural networks and risk
approximations.

1 Introduction
Over the last few years, along with its practical successes in multiple research domains ;
the theoretical properties of deep learning [25] have been a subject of active investigation,
from the expressivity [26], [3] and the generalization properties to the trainability [9],
[22] of a network.

Some empirical works observe that generalization and flatness of the minima found
during training are related [7], [24]. Even though most Hessian-based flatness measures
are sensible to re-scaling as pointed out in [13], some recent works [35] introduce a
scale-invariant measure to show that smaller batch sizes correlate with flatter minima and
better generalization performances. Sharper minima are thus believed to be sub-optimal
and to be avoided during learning, despite the debate still being opened [46].

We study next these questions in a challenging application domain: Natural Lan-
guage Processing (NLP), where models may range from millions to one trillion pa-
rameters and are typically fine-tuned on smaller task-specific corpora. Over-fitting and
catastrophic forgetting during the fine-tuning process may thus severely impact their
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generalization capabilities [20]. We argue that an alternative to standard fine-tuning
might be to train a growing application-specific head on top of it. We thus study in
this work whether adding neurons incrementally instead of learning them all from the
beginning could achieve a better minimum for the neural network. In the following, we
propose to intuitively justify and experimentally investigate this hypothesis by compar-
ing an incrementally growing network with one with a fixed architecture learned from
scratch, with competitive models.

2 Related Works
Growing Neural Networks : Standard Neural Networks typically use a given static
architecture, with fixed number of layers and hidden units, which are designed thanks
to time-consuming hand-engineering, through trial-and-error processes. Automating
the architecture search is thus an active field of research, often called NAS (for Neural
Architecture Search) [14], with proposals [11, 10] to use a grow-and-prune training
paradigm to iteratively add and remove units, obtaining competitive neural networks that
are much smaller then their static counterpart, the algorithms growing neural networks
commonly answering one of the following questions : where, when and how. Growing
Neural Networks (GrowNN) are often used in the field of continual learning [33] where
the model must be able to learn new knowledge over long time spans without the
new information interfering with previously learned knowledge (called catastrophic
forgetting [31]). The possibility to transfer the knowledge from a previous smaller
network to a new deeper or wider network is explored since [8], proposing an answer to
"where to insert new neurons", both in existing layers or by creating new layers. In this
field, recent works have shown that GrowNN starting from small networks, growing
both wider and deeper can prevent catastrophic forgetting and achieve accurate and
relatively small models compared to state-of-the-art models [28, 19, 43]. A recent work
[16] also focus on finding the initialization of the inserted neurons, proposing an answer
to "how to initialize the new neurons?". Those performances raise the question as to why
GrowNN achieve these results, one idea being that as the parameters space topology
becomes increasingly more complex through training, what was previously a local
minima can become a saddle point and be escaped by growing, yielding to a monotonic
decrease of the loss [41], in which authors require the training loss to attain plateau
before adding new parameters, while other methods grow using a predefined schedule.
Our work also contributes to this field of research that studies the loss landscape in the
context of GrowNN, by proposing a new point-of-view, as to "why" growing neural
networks might be commendable.
Loss Landscape, Smooth Minima and Generalization : The ability to generalize to
unseen data is often linked to the flatness of the minima found during training as shown
in empirical works [7, 24]: sharp minima lead to poorer generalization. The connections
between loss landscapes, generalization performances and stochastic gradient descent
(SGD) training have been important topics in machine learning for years. It has for
example been shown that for large-size neural networks, the local minima of the loss
function is often close to the global minima [9]. [44] show that SGD moves in regions
of the loss landscape comparable to a valley. Most of the recent works on the global
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properties of loss landscapes are discussed in [39] in which they review both theoretical
and empirical findings. Sharpness-based analysis is an important sub-field of the current
research on loss landscapes. A pivotal work [24] empirically shows that large-batch
training leads to sharp local minima, making generalization worse and has recently
been extended by [35] with a scale-invariant measure to escape the re-scaling problem
mentioned in [13]. It has also been shown in [21] that sharpness-based metrics perform
well when compared to other complexity metrics used to evaluate generalization. Using
sharpness-based ideas, some works show that smoothing minima lead to an improvement
of generalization performances. A notable work in this way, [17] recently proposed a
procedure which seeks to both minimize the empirical loss and its sharpness, presenting
empirical results with model generalization improvement across a wide variety of
benchmark datasets.

Finally, as generalization is by essence the capacity of the model to be correct on
every possible data points, the common train/validation/test paradigm is sometimes
pointed out as biased as it is very difficult to construct a large-scale well-annotated
dataset. To counter this issue, Deep Transfer Learning [40] uses test data from another
dataset than the training data. For binary classification tasks a recent paper [6] proposes
an approximation of the population risk that is theoretically less sensitive to over-
fitting than the standard empirical risk approximation: we propose to use it next as a
new indicator of generalization along with the standard validation accuracy to bring
complementary evidence.

3 Growing neural networks and flatness
The relation between flatness of the loss landscape and generalization of the model is
still subject to debates in the litterature. Although we do not claim to give a definitive
answer to this question, we nevertheless bring new experimental evidence in Section 5
that supports this assumed relationship. In this Section 3, we first justify theoretically
that, in the generic context of feed-forward neural network (FFNN), growing neural
networks have in expectation a more flat minimum than standard networks.

Intuitively, the proof detailed next contrasts two training regimes:

• when considering the full search space with all parameters, the SGD converges
towards an optimum that mainly depends on its distance to the initial parameters,
and not on its flatness.

• when freezing one parameter (before growing), SGD is constrained to stay on an
hyperplane H of the full search space; it then converges towards either a full-space
optimum that intersects H, or a full-space saddle point that is a minimum on H:
we may ignore for now these saddle points, as they do not change the conclusions
of the proof as shown next.

The crux of the proof is that there are, in expectation, more flat minima on H than in the
full space (proportionally), because flat minima occupy a larger volume than sharp ones
in the full space, so the hyperplane H is more likely to intersect flat rather than sharp
minima. Let us now detail this proof.
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3.1 Justification
Let Re(θ) ∈ R+ be the empirical risk to minimize, with θ ∈ Rd the model parameters.
Let us assume that Re(θ) has N local minima: (θ∗1 , . . . , θ

∗
N ) that are drawn uniformely

in the domain of θ. Each such local minimum is associated with a local volume V (θ∗i ),
called the basin of attraction, which is defined as the volume around θ∗i so that when a
properly tuned SGD algorithm enters, it then almost surely converges towards θ∗i [15]

In this subsection, we present a theoretical result that growing neural networks
converge towards flatter minima than same-sized standard FFNN. To do so, we will
compare next the expected volumes V (θ̂) of the local minima to which the SGD
algorithm converges, respectively with and without a growing step. To do so we make
the following hypothesis, that are further discussed in the Supplementary Material.
- Hyp1: Starting from random initialization parameters θ0 ∈ Rd that is not already
within any basin of attraction, we assume that the SGD algorithm converges towards
the closest local minimum θ̂ = argmini ||θ∗i − θ0||2. Note that this assumption can
be replaced by a weaker version as discussed in the Supplementary Material, but this
hypothesis makes the reasoning much easier to follow.
- Hyp2: θ0 does not start in any basin of attraction.

Let us start with the classical SGD that operates on the full d-dimensional domain.
Because both θ0 and all θ∗i are uniformly sampled in this domain, and because Hyp1
only depends on the distance between θ0 and the θ∗i , the SGD algorithm will randomly
converge towards any of the minima, and

E[V (θ̂)] =
∑
i

p(θ̂ = θ∗i )V (θ∗i ) =
1

N

∑
i

V (θ∗i ) (1)

Let us now study this landscape for the growing model. It is easier to start from the
final (post-growing) Rd space, and extract from it the Rd−1 space that existed before
the model grew: we assume next for clarity that we make the model grow by adding
only a single parameter. Let us note (O,ϑ1, . . . , ϑd) the Cartesian coordinate system
of the full Rd space. The Rd space is exactly the same as in the classical case with the
same Rd-dimensional local optima (θ∗i ). Starting from this d-dimensional space, we
can "remove" one parameter dimension, say the first dimension ϑ1, to visualize the loss
landscape before growing. "Removing" ϑ1 is equivalent to setting the first coordinate
of any point to zero: θ∗i,1 = 0, which defines an hyperplane H on which training is
performed before the growing phase. To compute the probability that H intersects the
volume around any Rd-dimensional local optima (θ∗i ), we approximate this volume
by the largest axis-aligned bounding box inscribed in the basin of attraction, which
coordinates are:

[θ∗i,1 − τi,1 : θ∗i,1 + τ ′
i,1]× · · · × [θ∗i,d − τi,d : θ∗i,d + τ ′

i,d].

We can then relate the bounding box size to its volume : V (θ∗i ) ≃
∏d

j=1(τ
′
i,j − τi,j).

We further assume a last hypothesis :
- Hyp3: τ ′i,1 − τi,1 is conditionally independent with (τ ′i,j − τi,j)2≤j≤d given V (θ∗i ).

Hyp3 is motivated by the fact that there is no privileged direction for the basins of
attraction; on the average, the width of the basin of attraction along the particular first
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dimension is the same as along any other dimension, so:

E[V (θ∗i )] ≃
d∏

j=1

E[τ ′
i,j − τi,j ] ≃ E[τ ′

i,1 − τi,1]
d (2)

Let p(Hi) be the probability that H intersects the basin of attraction V (θ∗i ). Because
the locations of the optima in the Rd-dimensional space are uniformely distributed,
and because H follows the first dimension ϑ1 = 0, the probability that H intersects
V (θ∗i ) is proportional to τ ′i,1 − τi,1. So, with V1 the width of the domain along the first
dimension,

p(Hi) =
1

V1
(τ ′

i,1 − τi,1) (3)

We have just derived two equations that intuitively state that H is more likely to
intersect a larger basin of attraction than a sharp one. We will use these equations
later, but we first need to decompose the expectation according to the intermediary
Rd−1 optimum that appears in the growing process. Indeed, optimisation in the growing
network proceeds as follows: first, θ0 is uniformely sampled on H . Then SGD converges
towards θ̂H ∈ H that is within the basin of attraction of either one of the θ∗i , or of
one of the S saddle points {θS1 , . . . , θSS} on H . After that, one parameter is added to
the model. And finally, SGD proceeds further in the full Rd space, starting from θ̂H

and converging towards θ̂ ∈ {θ∗1 , . . . , θ∗N}. So the final average volume is E[V (θ̂)] =∑N
i=1 V (θ∗i )p(θ̂ = θ∗i ).
The proof of the following Theorem 2 can be found in the Supplementary Material.

Theorem 1.
p(θ̂ = θ∗i ) =

S +Np(Hi)

N(S +
∑

j p(Hj))
,

Theorem 2 gives : E[V (θ̂)] = 1
N

∑N
i=1 V (θ∗i )

S+Np(Hi)
S+

∑
j p(Hj)

.
So for growing models, the expected volume of the minima is a weighted average of

all existing minima. It is easy to analyze which of these minima get a larger weight:

S +Np(Hi)

S +
∑

j p(Hj)
> 1 ⇐⇒ p(Hi) > E[p(Hi)].

From Eq-3 and Eq-2, we have E[p(Hi)] = 1
V1
E[V (θ∗i )]

1
d so we have actually

partitioned the set of optima θ∗i into two disjoint subsets:
- the largest optima with p(Hi) >

1
V1
E[V (θ∗i )]

1
d

- the smallest optima with p(Hi) ≤ 1
V1
E[V (θ∗i )]

1
d .

Applying Eq- 2 to each subset, we can show that, on the average, the first subset
corresponds to optima with a volume that is larger than the mean of all volumes. So,
on the average, the minima that get a larger weight are also the minima with the
largest volume. So the final expected volume is larger with growing models than with
non-growing models that follow Eq- 1.

In order to make the final link between the volume and flatness, we may now
further assume that a scale-independent flatness measure, such as proposed in [35], is
correlated to the volume V (θ∗i ). Note that this correlation is subject to debates, see
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for instance [46], however the authors note that flatness measures on average correlate
with the volume. Assuming this result, our proof shows that growing neural networks
converge in expectation towards optima that are flatter than classical neural networks.

3.2 Experimental Framework Presentation
Recent works [29, 23] propose to insert specific neurons in order to avoid bad minima.
In the following, we investigate whether progressively inserting new neurons throughout
training has an impact on the loss surface and the generalization performances. More
precisely, our work’s main focus is to explore whether growing approaches may intrin-
sically lead to topologically different minima in terms of flatness and generalization
that may explain why growing approaches lead to better results than the standard ones
in recent works. We do not explore advanced heuristics to grow the model, but adopt
a simple growing strategy as we are interested in studying the properties of growing
algorithms. In this way, we try not to answer one of the "where, when or how" questions
about growing neural networks, but rather give insights on the "why". Furthermore, it
has been shown in previous works [27, 32] that advanced NAS techniques are often
only marginally superior to simple random search. We thus propose an experimental
framework in which we answer the standard questions about growing as follows.
When : Neurons are incrementally inserted at a regular pace (with a constant time
interval) during the learning phase. Where : The growth process can be seen as a
standard insertion of a new layer, as done for example historically in [8], [38] or [36],
achieved through multiple steps that are neuron insertions. How : The new neurons
initialization follows the standard initialization scheme.

The goal here is to obtain a predefined target architecture at the end of the growing
process, we thus have to insert a predefined number of neurons for each new layer to
be able to compare strictly equivalent neural network architectures. Note that the proof
in Section 3.1 does not rely on any specific algorithm, however we provide the exact
insertion scheme and used algorithm in the Supplementary Material.

4 Evaluating generalization in neural models
In this section, we introduce another generalization metric that is complementary to
the standard validation accuracy. Indeed, there are several potential issues with the
validation accuracy: the validation corpus is often too similar from the training corpus to
represent real-world and long-term generalization gap; it may also be too small, biased
and have erroneous labels; it may also be too costly to annotate such a corpus for some
applications. Finally, it is best practice to analyze multiple metrics instead of a single
one to assess a model’s property.

Most classifiers are trained by minimizing the empirical risk, which approximates the
population risk on a finite training labeled corpus, but may also make the model overfit
this corpus. So this empirical approximation might not be the best option to evaluate the
generalization property of the trained model. Therefore, the standard approach rather
computes the empirical risk on a held-out validation corpus. But this validation corpus
might also not represent correctly the full population p(x, y). We thus propose next to
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exploit another approximation of the population risk, initially proposed in [1], that does
not require any supervised label. This risk is based on the assumption that the class
prior P (y) is known and that the distribution of the classifier output scores may be well
approximated by two real Gaussians with parameters (µ0, µ1, σ0, σ1). The generalized
central limit theorem justifies this assumption in high-dimensional space. The authors
of [6] further show that, for binary classifiers and the hinge loss, this approximation of
the risk leads to the following closed-form expression:

R(µ, σ) =
P (y = 0)

2
(1 + µ0)

(
1− erf

(
−1− µ0

σ0

√
2

))
+ P (y = 0)σ2

0N(−1;µ0, σ0)

+
P (y = 1)

2
(1− µ1)

(
1 + erf

(
1− µ1

σ1

√
2

))
+ P (y = 1)σ2

1N(1;µ1, σ1)

(4)

where N(x;µ, σ) is the standard Normal probability density function. They further
identify experimental conditions that satisfy the assumptions required in [1]. These
conditions imply to compute the risk in a neighborhood of the empirical optimum, which
is fulfilled in our experiments. The four Gaussian parameters are computed with any
Gaussian Mixture Model estimation method applied to the set of model scores obtained
after a forward pass over an (unlabeled) corpus.

We can note in Eq-4 that the risk does not directly depend on the training data, but
it only depends on the four Gaussian parameters, which are themselves estimated on
the whole training corpus, or on a large-enough batch. In other words, the Gaussian
mixture may be viewed as a distribution that smooths the model output scores with only
four learnable parameters. Consequently, R(µ, σ) only weakly depends on individual
samples from the training dataset, and may thus be considered as quite robust to
overfitting. In addition, this method is unsupervised, and R(µ, σ) may thus be estimated
on larger collection of available data than labeled training sets. In our experiments,
we have only computed the risk on the standard training corpus, but in a wide variety
of applications, it is relatively easy to collect unlabeled data to further improve the
estimation of the risk. Because this risk approximates the true classifier risk and is
less sensitive to overfitting than the standard empirical risk, we propose to use it as
an indicator of the generalization capabilities of our models and verify this claim
experimentally.

5 Experimental Setup
The Metaeval [37] benchmark contains a collection of 101 NLP tasks for meta-learning
and extreme multitask learning, including more than 50 binary classification tasks
with very variable sizes, between a few hundred examples to hundreds of thousands
examples.

5.1 Unsupervised Risk as a Generalization Measure
We study next the relation between the unsupervised risk described in Section 4 and
the validation accuracy to assess the generalization capabilities of binary models. We
propose to fine-tune RoBERTa [30] and its distilled counterpart DistilRoBERTa on
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Epoch Test Accuracy Training Corpus Metrics

Emp. Risk Unsup. Risk

Epoch 1 42.75% 0.789 0.715058
Epoch 2 61.08% 0.536 0.592852
Epoch 3 63.31% 0.381 0.537434
Epoch 4 64.58% 0.252 0.355821
Epoch 5 65.83% 0.181 0.341291
Epoch 6 66.04% 0.119 0.340728
Epoch 7 66.53% 0.091 0.338699
Epoch 8 67.27% 0.064 0.334629
Epoch 9 65.59% 0.047 0.341341
Epoch 10 65.03% 0.037 0.343245

Table 1: Evaluation of RoBERTa on CoLA. The empirical and unsupervised risks are
computed on the training corpus. The accuracy is computed on the test corpus and
measures generalization.

the binary classification tasks presented in Section 5 and to evaluate generalization
performances and unsupervised risk.

BERT [12] is a well-known and reference contextual word embeddings model that
is pre-trained with a Denoising Autoencoding objective and is at the basis of most state
of the art results in many Natural Language Processing (NLP) tasks. RoBERTa builds
on BERT’s language masking strategy, but fine-tunes the original BERT model with a
different choice of tasks and conditions. As most of today’s state of the art NLP models,
RoBERTa is a complex and large neural network, which thus faces issues related to
over-parametrization. It is composed of 355 million parameters stored in 24 layers of
self-attention, with a classification head on top to output the desired number of classes.

The results are reported in Table 3. Similar results on other datasets are available
in the Additional Contents. We can note that the unsupervised risk is correlated to the
test accuracy, which is the standard metric to measure generalization performances:
when the test accuracy increases, the unsupervised risk decreases and vice-versa. The
empirical and unsupervised risks measure different risks as the empirical risk decreases
all the way through the 10 epochs, while the unsupervised risk attains its minimum at the
8th epoch and then increases. This minimum of the unsupervised risk corresponds to the
best test accuracy, just before the accuracy decreases because of over-fitting. On these
experiment, the unsupervised risk seems to be empirically less sensitive to over-fitting
than the standard empirical risk approximation, which confirms the theoretical findings
discussed in Section 4.

5.2 Growth of RoBERTA’s classification head
The goal of this section is to check the correctness of the intuition formalized Section 3.1,
namely whether the minimum found by a growing neural network is flatter than a
minimum found by a standard FFNN. To do so, we propose to compare standard
Transformers models for NLP classification tasks with their counterparts in which
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we replaced the standard classification head with a growing classification head which
ultimately will have the same architecture as the standard one. The classification head
of RoBERTa (respectively DistilRoBERTa) is classically composed of a two-layers
feed-forward network with 1024 (resp. 768) hidden neurons. We thus propose next to
replace this classification head with a bare one-layer feed-forward network, and to grow
it until it reaches the same number of parameters as the reference classification layer.
The main pre-trained model, i.e., every parameter except the final classification head, is
fine-tuned as such, without any further modifications.

The growth training process is studied and compared with a standard training process.
We call "last", "valid" and "risk" the final models obtained by optimizing respectively
the empirical loss, validation accuracy and unsupervised risk. Starting from the same
model without hidden layer in the classification head, we proceed as follows, we train
the model for three epochs, then add one third of the hidden parameters to the model
state corresponding to the best epoch with respect to the chosen metric. We repeat
this process until having full models (for a total of 12 epochs for each model). The
experiments were run 5 times with random seed for each model. Some results for
DistilRoBERTa on corpora from the Metaeval benchmark are presented in Table 5.
Those corpora were chosen because of the variety of sizes, priors on the train set and
relative difficulty. For a more detailed presentation of each corpus, the set of used
hyper-parameters and other experimental results, see the Additional Contents. The goal
here is not to achieve state-of-the-art results on the given corpora through extensive
hyper-parameters search, but to compare standard and growing models with a given
and coherent set of hyper-parameters in order to isolate the effect of the growth on the
models’ performances and loss surfaces.

Dataset Model Emp. Risk Val. Acc. Spectral Norm U. Risk

Pers.-Eloquence

Normal 0.14 ± 0.02 0.7555±0.005 (1.60 ± 0.58) × 109 0.45±0.02
Grow Last 0.25 ± 0.03 0.755 ± 0.005 (3.3 ± 0.2) × 108 0.46 ± 0.02

Grow Valid 0.24 ± 0.04 0.760 ± 0.005 (1.5 ± 0.4) × 108 0.45 ± 0.01
Grow Risk 0.15 ± 0.01 0.767 ± 0.001 (1.2 ± 0.3) × 107 0.31 ± 0.03

Pers.-Specificity

Normal 0.24 ± 0.01 0.814 ± 0.006 (1.88 ± 0.14) × 109 0.23 ± 0.05
Grow Last 0.340 ± 0.007 0.823 ± 0.003 (2.15 ± 0.07) × 107 0.12 ± 0.04

Grow Valid 0.26 ± 0.02 0.822 ± 0.004 (1.14 ± 0.52) × 107 0.14 ± 0.01
Grow Risk 0.360 ± 0.004 0.816 ± 0.002 (3.64 ± 0.22) × 107 0.21 ± 0.07

CoLA

Normal 0.11 ± 0.02 0.57 ± 0.02 (4.61 ± 0.05) × 109 0.41 ± 0.02
Grow Last 0.15 ± 0.01 0.57 ± 0.02 (2.35 ± 0.03) × 109 0.39 ± 0.04

Grow Valid 0.120 ± 0.005 0.60 ± 0.01 (2.03 ± 0.09) × 108 0.317 ± 0.012
Grow Risk 0.13 ± 0.02 0.594 ± 0.016 (7.65 ± 0.31) × 108 0.33 ± 0.02

Emobank-Dom.

Normal 0.29 ± 0.02 0.63 ± 0.01 (9.8 ± 0.5) × 108 0.29 ± 0.04
Grow Last 0.53 ± 0.04 0.62 ± 0.02 (1.07 ± 0.30) × 109 0.38 ± 0.03

Grow Valid 0.35 ± 0.01 0.69 ± 0.02 (6.22 ± 0.18) × 108 0.21 ± 0.04
Grow Risk 0.412 ± 0.015 0.64 ± 0.01 (6.7 ± 0.3) × 108 0.27 ± 0.02

Justice

Normal 0.23 ± 0.01 0.57 ± 0.01 (2.1 ± 0.5) × 109 0.16 ± 0.05
Grow Last 0.35 ± 0.01 0.55 ± 0.01 (1.22 ± 0.14) × 109 0.12 ± 0.01

Grow Valid 0.35 ± 0.07 0.56 ± 0.03 (1.36 ± 0.12) × 109 0.11 ± 0.02
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Dataset Model Emp. Risk Val. Acc. Spectral Norm U. Risk

Grow Risk 0.36 ± 0.04 0.56 ± 0.02 (1.78 ± 0.31) × 109 0.10 ± 0.03

Offensive

Normal 0.06 ± 0.01 0.79 ± 0.01 (3.02 ± 0.31) × 109 0.420 ± 0.013
Grow Last 0.19 ± 0.02 0.80 ± 0.01 (4.78 ± 0.17) × 108 0.37 ± 0.02

Grow Valid 0.11 ± 0.01 0.845 ± 0.014 (8.50 ± 0.09) × 107 0.22 ± 0.01
Grow Risk 0.17 ± 0.03 0.84 ± 0.02 (9.3 ± 0.2) × 107 0.25 ± 0.02

Virtue

Normal 0.085 ± 0.005 0.68 ± 0.01 (2.40 ± 0.15) × 109 1.04 ± 0.02
Grow Last 0.27 ± 0.01 0.73 ± 0.02 (2.40 ± 0.34) × 108 0.57 ± 0.03

Grow Valid 0.30 ± 0.02 0.80 ± 0.03 (3.50 ± 0.37) × 107 0.34 ± 0.02
Grow Risk 0.23 ± 0.04 0.76 ± 0.02 (9.30 ± 0.11) × 108 0.40 ± 0.05

Table 2: Evaluation of the proposed growing network on corpora from the Metaeval
benchmark with DistilRoBERTa base. The empirical risk, unsupervised risk and spectral
norm are computed on the training corpus.

6 Discussion
Table 3 suggests that the unsupervised risk described in Section 4 might be used
as a proxy to assess the generalization capabilities of binary models when a corpus
representative of unknown or future test conditions is not available. We then use this
unsupervised risk as a growth criterion and present our results in Table 5. The results
presented in Table 5 suggest that growing neural networks indeed achieve a flatter
minimum than their standard counter parts and that flatter minima tend to generalize
better, no matter the generalization metric used. In fact, apart from the Justice data set
where the results on every metric are really close to each other no matter the model, we
can observe that the empirical and unsupervised risks indeed measure different risks:
the empirical risk is always better for the standard model than for the growing models,
which intuitively results from the fact that the standard models have more time to update
all of their parameters simultaneously, and thus reach better minima. Conversely, most
growing models have a better unsupervised risk. It may be possible to view growing a
network as a form of regularization, but note that the reference models are also trained
with all best practices in terms of regularization strategies, as designed in [30]. The
lowest unsupervised risk reached by any model also often correlates with the flatter loss
landscape, as measured by the spectral norm. Lastly, with our simple growth paradigm,
choosing to grow the best model with respect to a chosen metric (whether the validation
accuracy or the unsupervised risk) seems to lead in general to better results than simply
growing the last model. The best metric to choose for growing seems to be the validation
accuracy, which can be explained by the fact that validation accuracy is also our final
evaluation criterion, the "growing valid" models thus acting as oracles with regard to
this metric. In practice, the good results obtained when growing from the unsupervised
risk are more interesting as no validation corpus is required.

The proposed approach has two main fundamental limitations. First, the growing
process introduces an additional hyper-parameter as compared to the standard training
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process, that is the frequency at which to grow the model. This hyper-parameter shall
be tuned in addition to the standard hyper-parameters to tune, which may increase the
development time. Hopefully, this hyper-parameter may not be the most difficult to
tune, as we have observed that the intuitive equi-repartition of the growing steps within
standard number of epochs give reasonably good results, at least in our experiments.
Second, the precise growing procedure shall be adapted to every type of neural network
and training procedure; for instance, recent neural architectures may exploit sparse mix-
ture of experts instead of classical feed-forward networks, or advanced NAS algorithms
may be used to design the model. In such cases, the growing process has to be adapted
to the specifics of the system, for instance to decide which parts of the network shall be
grown (the gating model and/or each expert vs. adding a new expert?) and to ensure
a smooth interaction between the growing process and the NAS algorithm. This gives
flexibility and control means to the developer, at the cost of an increased complexity
and design time.

7 Conclusion
In this work, we give both theoretical and experimental evidence that growing neural
networks converge in expectation towards flatter minima than a comparable network
initialized with all parameters. We further show experimentally that these flatter minima
better generalize than the standard training regime when growing the classification head
of state-of-the-art large NLP neural networks. We study this generalization property
of models both with a standard metric, validation accuracy, and with an uncommon
approximation of the population risk that does not require annotated labels, and may
thus advantageously complement the validation accuracy and even replace it when the
validation corpus is missing or when future test conditions are hard to predict.

In summary, we established new connections between growing neural networks,
flatness of the loss surface and generalization of neural networks. These connections
give a fresh view on the study of properties of deep neural networks, and open novel
perspectives to explore in the three field respectively concerned by generalization,
progressive networks and classifier risk approximation. In future works, we also plan
to investigate more concrete applications of this work, such as model selection and
early stopping when there is no available validation data to approximate the mismatch
between training and unknown test conditions.
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A Appendix

A.1 Detailed Analysis of the Link between Growing Neural Net-
works and Flatness

A.1.1 Proof of Theorem 1

In this subsection we detail the proof of the Theorem 1 presented in the main paper. As
a remainder, we defined :

• the random initialization parameters θ0 ∈ Rd and we assumed that the SGD
algorithm converges towards the closest local minimum θ̂ = argmini ||θ∗i −θ0||2.
Note that this assumption (Hyp 1) can be replaced by a weaker version as detailed
next.

• the hyperplane H of the full search space. When freezing one parameter (before
growing), SGD is constrained to stay on an hyperplane H of the full search space
and then converges towards either a full-space optimum that intersects H, or a
full-space saddle point that is a minimum on H.

• p(Hi), the probability that H intersects the basin of attraction V (θ∗i ).

• As we detailed in the main paper, optimisation in the growing network proceeds
as follows:

– First, θ0 is uniformely sampled on H .

– Then SGD converges towards θ̂H ∈ H that is within the basin of attraction
of either one of the θ∗i , or of one of the S saddle points {θS1 , . . . , θSS} on H .

– After that, one parameter is added to the model.

– Finally, SGD proceeds further in the full Rd space, starting from θ̂H and
converging towards θ̂ ∈ {θ∗1 , . . . , θ∗N}.

Then, we have the following results :
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Theorem 1.
∑S

j=1 p(θ̂ = θ∗i , θ̂
H = θSj ) =

S
N(S+K) .

with K =
∑

i p(Hi) the number of real optima whose basin of attraction intersects
with H .

Proof. p(θ̂ = θ∗i , θ̂
H = θSj ) = p(θ̂ = θ∗i |θ̂H = θSj )p(θ̂

H = θSj )) =
1
N × 1

(S+K) .

Theorem 2.
∑N

j=1 p(θ̂ = θ∗i , θ̂
H ∼ θ∗j ) = p(θ̂H ∼ θ∗i ).

where θ̂H ∼ θ∗j denote that θ̂H has converged on H towards a point within the basin of
attraction of θ∗j , which is only possible when H intersects V (θ∗j ).

Proof. p(θ̂ = θ∗i , θ̂
H ∼ θ∗j ) = p(θ̂ = θ∗i |θ̂H ∼ θ∗j )p(θ̂

H ∼ θ∗j ). By definition of a
basin of attraction, p(θ̂ = θ∗i |θ̂H ∼ θ∗i ) = 1 and p(θ̂ = θ∗i |θ̂H ∼ θ∗j ̸=i) = 0.

Theorem 3. p(θ̂H ∼ θ∗i ) =
p(Hi)
S+K

Proof. p(θ̂H ∼ θ∗i ) = p(θ̂H ∼ θ∗i |Hi)p(Hi) + p(θ̂H ∼ θ∗i |H̄i)(1− p(Hi)).
The second term is null when H does not intersect with V (θ∗i ), so
p(θ̂H ∼ θ∗i ) = p(θ̂H ∼ θ∗i |Hi)p(Hi).
Because of the uniform distribution of the critical points, the probability that SGD
converges first towards any of the critical points that are on H is uniform, so
p(θ̂H ∼ θ∗i |Hi) =

1
S+K

Theorem 2. p(θ̂ = θ∗i ) =
S+Np(Hi)

N(S+
∑

j p(Hj))

Proof. p(θ̂ = θ∗i ) =
∑N

j=1 p(θ̂ = θ∗i , θ̂
H ∼ θ∗j ) +

∑S
j=1 p(θ̂ = θ∗i , θ̂

H = θSj ).
By Lemmas 1, 2, we have : p(θ̂ = θ∗i ) = p(θ̂H ∼ θ∗i ) +

S
N(S+K) .

Lemma 3 allows to conclude.

A.1.2 Discussion over the needed hypothesis

Let us now discuss the validity of the various assumptions made in the main paper
regarding the link between GrowNN and flat minima.

Our assumptions were:
-Minima are drawn uniformly: the proof stays correct if we replace it by a weaker
assumption: the volume of every minimum is independent of its location, which is
intuitively reasonable
- Hyp1 : SGD converges towards the closest minimum: as explained in the paper, we
can use a weaker version: SGD converges towards a minimum with a probability that is
proportional to its distance, which is also reasonable. However, we assumed Hyp1 as it
made the reasoning much easier to follow.
- Hyp2 : Initial parameters are not already at a minimum: even if they occur, such
rare cases do not alter the main conclusion of the proof. This hypothesis is not strictly
necessary, as the situation is quite straightforward when the SGD algorithm already
starts within a basin of attraction and this does not affect the main conclusion, but Hyp2
greatly simplifies the following derivation of the expected volume by enabling us to
omit detailing multiple rare edge cases.
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- Hyp3 : No privileged direction for basins of attraction: constraining the growing
algorithm according to such eventual privileged direction will keep our proof correct, at
the cost of more complex growing algorithm
-The volume of basins of attraction is correlated with flatness: according to [46], flatness
measures on average correlate with the volume.
- We also assumed that there exists around any minimum an axis-aligned hypercube, so
that any well-calibrated SGD entering into it will converge with probability 1 to this
optimum: it is the largest such hypercube circumscribed inside the basin of attraction.
This approximation has only 2 effects: first we need to wait longer for SGD to converge
into this hypercube when it enters the real basin of attraction, second our intersection
probability p(H) is actually slightly larger than what we compute, but our conclusions
stay the same.

A.2 Experimental Details and Additional Experimental Results
In this section, we present the whole set of hyper-parameters used to achieve the
experimental results we present. We furthermore present additional experimental results
that we could not include in the main paper due to length constraints.

A.2.1 Detailed Experimental Conditions

In this subsection, we present the exact set of hyper-parameters used to achieve the
experimental results we present in the main paper and in the following subsections. The
code for these experiments will be publicly released and open-sourced upon publication.
The experiments were run on a single TITAN X GPU. The most time-consuming part of
the experiment was to evaluate the flatness measure developed by [35] using their code
available at https://github.com/akshay-r/scale-invariant-flatness, which took several
hours of calculation for each data-set (the exact time for each data-set being depending
on the size of each data-set).

5 runs with random seeds were done for each experimental results we present. The
mean and variance of these 5 runs are usually presented (when no variance is presented,
it is because it was very low when compared to the mean). For each experiments, the
used hyper-parameters are the following :

• Initial Learning Rate is 2× 10−5

• The total number of epochs is 12 (3 epochs for each size for growing neural
networks : 3 epochs with no hidden neurons, 3 epochs with 1

3of all hidden
parameters, 3 epochs with 2

3 and 3 epochs with all hidden parameters)

• We evaluate all the metrics (loss, validation accuracy, unsupervised risk...) every
epoch.

• The other hyper-parameters are set to their default value in the Hugging Face
Transformers Training Arguments 1, with for example a batch size of 8.

1https://huggingface.co/docs/transformers/v4.19.2/en/main_classes/trainer

17



The datasets we used are the following :

• CoLA : The Corpus of Linguistic Acceptability (CoLA) is a set of 10,657 English
sentences labeled as grammatical or ungrammatical from published linguistics
literature. [42]

• Persuasion [5] : is a collection of arguments from student essays annotated with
factor of persuasiveness (Specificity, Eloquence, Relevance and Strength) with
respect to a claim.

• Emobank [4] aggregates emotion annotations on text from various domains using
the VAD representation format. Valence is defined as corresponding to the
concept of polarity, Arousal as degree of calmness or excitement and Dominance
as perceived degree of control over a situation.

• The ETHICS dataset [18] has contextualized scenarios about justice, deontology,
virtue, ethics, utilitarianism and commonsense moral intuitions.

• The Tweet Eval benchmark [2] is composed of several tasks and we more specif-
ically study the offensive language identification which consists in identifying
whether some form of offensive language is present in a tweet. It relies on the
SemEval2019 OffensEval dataset [45]

A.2.2 Unsupervised Risk as a Generalization Measure : Additional Experimental
Results

In this subsection, we present additional experimental results to further justify the use
of the Unsupervised Risk proposed by [6] as a Generalization Measure. The following
Tables 3, 4 are the evaluation of DistilRoBERTa on different datasets from the Metaeval
benchmark [37]. The empirical and unsupervised risks (respectively E. Risk and U.
Risk) are computed on the training corpora, while the accuracy is computed on the test
corpora and measures generalization. Note that the goal here is not to achieve state of
the art results, but rather to show that the unsupervised risk is indeed less sensible to
over-fitting than the empirical risk and can be used as a generalization measure.

A.2.3 Growth of RoBERTa’s classification head : RoBERTa large as backbone

In this subsection we present a few additional results obtained with the RoBERTa large
architecture as backbone (instead of the DistilRoBERTa base architecture for the results
presented in the main paper). Those results presented in Table 5 suggest that the claims
made in the main part of our work still hold with other architectures.

Dataset Model Emp. Risk Val. Acc. Spectral Norm U. Risk

Commonsense

Normal 0.25 ± 0.03 0.726± 0.004 (8.3± 0.4)× 109 0.20± 0.02
Growing Last 0.31± 0.03 0.735± 0.004 (5.3± 0.3)× 109 0.17± 0.02

Growing Valid 0.33± 0.02 0.73± 0.01 (1.5± 0.4)× 109 0.18± 0.04
Continued on next page

18



Dataset Model Emp. Risk Val. Acc. Spectral Norm U. Risk

Growing Risk 0.32± 0.01 0.740 ± 0.023 (1.3 ± 0.4) × 109 0.09 ± 0.01

CoLA

Normal 0.978 ± 0.002 0.854± 0.005 (1.7± 0.5)× 1010 0.33± 0.02
Grow Last 1.359± 0.003 0.852± 0.002 (9.2± 0.2)× 109 0.33± 0.02

Grow Valid 1.329± 0.004 0.858± 0.001 (4.3± 0.1)× 109 0.31± 0.01

Grow Risk 1.107± 0.001 0.869 ± 0.001 (3.6 ± 0.3) × 109 0.30 ± 0.01
Table 5: Evaluation of the proposed growing network on corpora from the Metaeval
benchmark. The empirical risk, unsupervised risk and spectral norm are computed on
the training corpus. The accuracy is computed on the validation corpus. The backbone
architecture is RoBERTA large

A.3 Algorithms and Exact Growth Settings
A.3.1 Exact Growth Settings

The experiments were conducted with a constrained type of neuron insertion process :

• a three stages insertion process, meaning the model grows new neurons three times during
training to achieve its final architecture.

• with the standard initialization scheme, meaning all the neurons follow a uniform dis-
tribution between - 1√

I
and 1√

I
to follow the initialization scheme of a Linear layer in

Pytorch 2.

The inserted neurons are thus initialized in the same way as those in the standard feedforward
neural networks we compare our network with. In this way, the insertion process is the only
difference between the two training methods, every hyper-parameter being equal otherwise. This
enables us to study several possible selection criteria to choose the model from which growing
shall proceed.

A.3.2 General Algorithm

In this section we present a general framework for growing neural networks.
Having a set of input and output vectors (x, y) ∈ Rnxm, the minimal feed forward neural

network is one with only an output layer, thus having ∀i ∈ [1,m] :

yi(x,W ) =
∑

j∈Π(i)

σj(xj · wj,i).

The underlying idea in Algorithm 0 is to start with such a model and to increase the number of
learnable parameters with the number of epochs, without any constraints on the final network
obtained with this procedure. As mentioned in [34], a model growth can be divided in two types :
a horizontal growth in which the size of a layer is increasing and a vertical growth in which the
number of layers is increasing. Intuitively, our growing procedure can be seen as a naive insertion
process :

Let’s consider a random neural network of total depth D : first, an existing neuron H on
depth l, 0 ≤ l < D is randomly chosen and a new neuron K, which inherits some its children,
is created. K also gets new parent connections with existing neurons randomly chosen in the
previous layers and can get random children connection in the subsequent layers.

2see https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
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Epoch Test Acc. E. Risk U. Risk

Epoch 1 0.7209 0.3227 0.7914
Epoch 2 0.7860 0.2593 0.5267
Epoch 3 0.7883 0.2212 0.4853
Epoch 4 0.8000 0.1984 0.4741
Epoch 5 0.8000 0.1767 0.4443
Epoch 6 0.7883 0.1485 0.3945
Epoch 7 0.7837 0.1353 0.4142
Epoch 8 0.7779 0.1145 0.4193
Epoch 9 0.7651 0.0876 0.4039
Epoch 10 0.7750 0.0789 0.4216

Epoch Test Acc. E. Risk U. Risk

Epoch 1 0.4778 0.6204 0.8484
Epoch 2 0.4939 0.5969 0.7754
Epoch 3 0.5109 0.5131 0.6021
Epoch 4 0.5316 0.4524 0.4309
Epoch 5 0.5645 0.4219 0.3154
Epoch 6 0.5702 0.3973 0.2827
Epoch 7 0.5929 0.3536 0.2440
Epoch 8 0.5771 0.2867 0.2517
Epoch 9 0.5825 0.2248 0.2481
Epoch 10 0.5903 0.2242 0.2716

Table 3: Evaluation of DistilRoBERTa on Offensive (left) and CoLA(right)

Note that if K inherits none of H’s children, the l + 1’s layer size is increased by one as at
insertion time none of K’s children can be on the l + 1 layer and K is added to this particular
layer. On the contrary, if K inherits one of H’s children that was on the l + 1 layer at insertion
time, the l + 2 is populated by this particular neuron, meaning that if for example l = D − 1, a
new layer is created as the number of output units is fixed.

Let Pt be the set of all non-output neurons at insertion step t. Let I be the set of input
neurons, of size I.

Initially, P0 = {1, ..., nI} only contains the I input neurons, because we start without any
hidden neuron. The weight matrix W0 is upper triangular with non-null transitions from the input
to output neurons that are initialized randomly, e.g., with Glorot or the uniform distribution U (the
chosen initialisation scheme will be denoted Init() in the following Algorithm 0). The depth of
the input neurons is 0, and the depth of the output neurons is 1. Then, the growing step proceeds
as shown in Algorithm 0.

As we consider the network as an unweighted directed acyclic graph, its topological ordering
is easily derived from a Depth-First Search.

Let’s suppose we use the General Insertion Algorithm to insert one neuron at a time, and
let’s explore what kind of neural networks can be achieved through repeated calls of this growth
procedure. Each neuron inserted is inserted strictly between the input and output layers. Let’s
take a random network of random size with inputs of size n and outputs of size m. This network
can be represented by its Directed Acyclic Graph, and its weight matrix WN (with N the number
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Epoch Test Acc. E. Risk U. Risk

Epoch 1 0.5806 0.6807 0.7497
Epoch 2 0.6935 0.4912 0.4680
Epoch 3 0.7580 0.446 0.2442
Epoch 4 0.7580 0.4182 0.1470
Epoch 5 0.7903 0.3018 0.0738
Epoch 6 0.7580 0.2929 0.0986
Epoch 7 0.7741 0.2995 0.1488
Epoch 8 0.7580 0.2785 0.1340
Epoch 9 0.7580 0.2692 0.1334
Epoch 10 0.7741 0.292 0.1497

Epoch Test Acc. E. Risk U. Risk

Epoch 1 0.7555 0.6206 0.7185
Epoch 2 0.7555 0.5479 0.7503
Epoch 3 0.8111 0.4726 0.5936
Epoch 4 0.8111 0.3691 0.3939
Epoch 5 0.7111 0.3252 0.2933
Epoch 6 0.7 0.3332 0.2654
Epoch 7 0.7222 0.286 0.2739
Epoch 8 0.8111 0.381 0.2362
Epoch 9 0.7888 0.2378 0.2617
Epoch 10 0.7222 0.36 0.2845

Table 4: Evaluation of DistilRoBERTa on Persuasiveness Specificity (left) and Persua-
siveness Eloquence(right)

of hidden units), that can be through topological ordering written as an upper triangular matrix
W ∗

N .
We claim that the General Insertion Algorithm can results in any upper triangular matrix of

any size (depending on the number of insertion steps we do). Indeed :

• Step 4 gives the right size for the weight matrix.

• Steps 5 to 8 give us that the inserted vertical weight vector representing the links between
the inserted neuron and subsequent neurons has only one constraint : the inserted neuron
is not linked to himself or to other neuron on the same depth (0 connection for neurons on
the same depth).

• Step 9 and 10 give us that the inserted horizontal weight vector representing the links
between previous neurons and the inserted neuron has only one constraint : the inserted
neuron is not linked to himself or to other neuron on the same depth (0 connection for
neurons on the same depth). Those constraints prevent the network from growing cycles.

• Steps 10 to 12 give us that any previous connections can be deleted if not wanted.

• Step 13 is possible thanks to the constraints preventing the network from growing cycles
and give us an upper triangular weight matrix whose only constraint is to not having a
single cycle (every row is accessible with the only constraints that there are 0 for the links
with neurons on previous depths).
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Such a topology may not be the best with regard to recent hardware constraints. For instance,
it is well-known that such sparse networks may not be easily parallelized on GPU. However, it is
possible to adapt this framework if needed in order to achieve the same topology as any standard
FFNN after the growing phase, such as proposed in the Constrained Insertion Algorithm detailed
in the following part.

A.3.3 Constrained Growth Algorithm

In this section, we adapt the growing general framework presented previously so that we obtain a
predefined target architecture at the end of the growing process, by forcing the new neurons to
be inserted directly after the input units. This constrained growing process enable us to compare
strictly equivalent neural networks in terms of architectures. We add the following constraints to
obtain the target architectures:

• We specify the size of the hidden layers as an input so that we can achieve a predefined
architecture by growing it.

• We constrain the new neurons to be inserted directly after the input units. In this way, as
soon as a layer is "completed", it is considered as an output layer and can not be modified
further.

• As long as the size of the hidden layer is not attained, two new neurons cannot be inserted
after the same input unit, so that only a layer is constructed at a time

We thus obtain the following algorithm, that builds a standard FFNN architecture with a
chosen hidden size (which is an algorithm parameter):

To illustrate the way this progressive insertion algorithm operates, the following Figure 1 is
presented.
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Figure 1: Example of neuron insertion: h(1)
2 is randomly chosen and splitted to create

the new neuron h
(2)
1 , which inherits the output connections from h

(1)
2 (red arcs) and gets

new input transitions from the previous layer (green arcs) randomly initialized.

Algorithm 0 General Insertion Algorithm
Inputs: Weights Wt ∈ IRn×n,Pt

Outputs: Weights Wt+1 ∈ IR(n+1)×(n+1)

Pt+1 with Pt ⊂ Pt+1 and |Pt+1| = |Pt|+ 1

1: Randomly sample a node j of the network : j ∼ U(Pt)
2: Get the sets Cj ,Xj ,Qj respectively

• the sets of nodes that are children of j : Cj = {i ∈ Pt | wj,i ̸= 0}.

• the sets of nodes that are topologically ordered after j : Xj = {i ∈ Pt |
d(i) ≥ d(j) + 1} (We can note that Cj ⊂ Xj).

• the sets of nodes that are topologically ordered before j: Qj = {i ∈ Pt |
d(i) ≤ d(j) ∧ i ̸= j}.

3: Create a new node n+ 1 and update Pt+1 = Pt ∪ {n+ 1}

4: Initialize Wt+1 =

[
Wt [0]n
[0]Tn 0

]
and w

(t+1)
j,n+1 = Init()

5: Choose the number of children to inherit : Let Sample α = random(0, |Cj |)
6: Inherit some children : Sample α different neurons k ∼ U(Cj) and set w(t+1)

n+1,k =

w
(t)
j,k and w

(t)
j,k = 0. Denote the set of these inherited nodes Cj,α.

7: Sample a random number of children on subsequent depths that are not in Cj,α :
Sample β = random(max(0, 1− |Cj,α|), |Xj \ Cj,α|)

8: Add new children : Sample β different neurons k ∼ U(Xj \Cj,α) and set w(t+1)
n+1,k ∼

Init()
9: Sample a random number of parent on previous depths : Sample γ =

random(0, |Qj |).
10: Sample γ different parent neurons k ∼ U(Qj) and set w(t+1)

k,n+1 ∼ Init()
11: Sample a random number δ = random(0, |Qj |) of k neurons on previous depths

that can each lose ik = random(0, |Ck|) connections.
12: Sample δ neurons k ∼ U(Qj) and i ∼ Ck connections to zero wk,i = 0
13: reorder Pt+1 topologically so that Wt+1 is triangular
14: return Wt+1,Pt+1
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