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In-vivo diagnosis of cerebral amyloid angiopathy:

Nicolas Raposo®®°, Charlotte Périole®® and Mélanie Planton®°

Purpose of review

Sporadic cerebral amyloid angiopathy (CAA) is a highly prevalent small vessel disease in ageing
population with potential severe complications including lobar intracerebral hemorrhage (ICH), cognitive
impairment, and dementia. Although diagnosis of CAA was made only with postmortem neuropathological
examination a few decades ago, diagnosing CAA without pathological proof is now allowed in living
patients. This review focuses on recently identified biomarkers of CAA and current diagnostic criteria.

Recent findings

Over the past few years, clinicians and researchers have shown increased interest for CAA, and important
advances have been made. Thanks to recent insights into mechanisms involved in CAA and advances in
structural and functional neuroimaging, PET amyloid tracers, cerebrospinal fluid and plasma biomarkers
analysis, a growing number of biomarkers of CAA have been identified. Imaging-based diagnostic criteria
including emerging biomarkers have been recently developed or updated, enabling accurate and earlier

diagnosis of CAA in living patients.

Summary

Recent advances in neuroimaging allow diagnosing CAA in the absence of pathological examination.
Current imaging-based criteria have high diagnostic performance in patients presenting with ICH, but is
more limited in other clinical context such as cognitively impaired patients or asymptomatic individuals.
Further research is still needed to improve diagnostic accuracy.
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Sporadic cerebral amyloid angiopathy (CAA) is a
common small vessel disease (SVD) characterized
by the accumulation of amyloid-B (AB) peptide in
the wall of cortical and leptomeningeal vessels [1].
Advancing age is the main risk factor for devel-
oping CAA. CAA pathology is found in 20-40%
in general aging population and up to 50-60%
in demented patients [2]. CAA is a well known
cause of lobar intracerebral hemorrhage (ICH),
but its clinical spectrum has been recently shown
to be much larger, including transient focal
neurological episodes (TFNE), rapidly progressive
cognitive and neurological decline related to
inflammatory CAA, cognitive impairment and
dementia [3].

There is currently no known effective therapy
for CAA. Nonetheless, treatments targeting Ap pro-
duction or clearance are currently in development
and clinical trial assessing anticoagulant strategy
in these patients are ongoing, raising the perspective
of future treatments. Accurate and early diagnosis
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of CAA has therefore important prognostic and
potential therapeutic implications.

Although diagnosis of CAA was made only with
postmortem neuropathological examination a few
decades ago, diagnosing CAA without pathological
proof is now allowed in living patients, thanks to
imaging-based criteria, which have been recently
developed or updated [4™,5].

In this review, we provide a comprehensive
update on the latest identified biomarkers and cur-
rent diagnostic criteria of CAA.
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KEY POINTS

e Over the last decades, a growing number of
biomarkers of cerebral amyloid angiopathy (CAA) have
been identified including hemorrhagic and
nonhemorrhagic MRl markers, amyloid PET, ApoE
genotype, and circulating biomarkers in plasma and
cerebrospinal fluid.

o Neuroimaging-based criteria have been recently
developed and updated, enabling accurate diagnosis
of CAA in living patients, in the absence of
pathological examination.

e Current criteria have high diagnostic performance in
intracerebral hemorrhage (ICH) presentations of CAA,
but sensitivity is more limited in non-ICH presentations
(i.e. cognitive impairment and dementia, asymptomatic
individuals).

Initially, diagnosis of CAA required brain tissue
neuropathological examination from brain biopsy
or necropsy. In the 1990s, diagnosis of CAA was
allowed in living patients with the introduction of
the Boston criteria when brain imaging demon-
strated single or multiple strictly lobar hemorrhages
in people aged 55 years or older [6]. During the last
decade, important advances in neuroimaging and
increased interest from clinicians and researchers for
CAA enabled development of novel biomarkers
of CAA.

Lobar cerebral microbleeds

Definition and mechanisms: Cerebral microbleeds
(CMBs) are silent brain hemorrhages visible on
MRI blood-sensitive sequences, characterized by
small foci of hemosiderin deposits [7]. CMBs are
well known neuroimaging markers of SVD, and their
distribution is suggestive of SVD subtype [8"]. While
lobar CMBs are associated with CAA, nonlobar
CMBs indicate arteriolosclerosis (also named hyper-
tensive angiopathy) [9*"].

Detection: CMBs appear as small (2-10mm),
hypointense, ovoid or round lesions on T2x-
weighted gradient recalled echo (T2+-GRE) or sus-
ceptibility weighted (SWI). See figure for illustrative
images. Guidelines for detection and mimics have
been published [10,11].

Link with CAA: Lobar CMBs are neuroimaging
markers of CAA included in the MRI-based Boston
criteria [4"™"]. Importantly, the clinical context (ICH,
cognitive impairment, ischemic stroke, healthy
population) and other imaging markers of SVD
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may affect the diagnostic and prognostic (e.g. risk
of ICH or cognitive decline) value of CMBs, and
should be therefore considered when evaluating
CMBs.

Cortical superficial siderosis

Definition and mechanisms: Cortical superficial side-
rosis (cSS) refers to linear deposits of hemosiderin on
the surface of the CNS, restricted to the convexity of
the brain hemisphere [12]. Increased evidence sug-
gest that ¢SS may result from repeated bleeding
within the subarachnoid spaces [13-16].

Detection: ¢SS is defined as a homogeneous hypo-
intense curvilinear signal intensity on T2%-GRE or
SWI in the cerebral cortex, within the subarachnoid
space, or both [17]. ¢SS is typically delineated on
blood-sensitive sequences as two almost parallel,
bilinear hypointensities within the cortex, showing
a “tracklike” appearance [18].

Link with CAA: Growing evidence suggests that
cSS is a key neuroimaging marker of CAA. Although
¢SS is detected in 0.7% of the general population
[19], prevalence of ¢SS is 20% in patients with CAA
without ICH [20] and 40-60% in CAA patients with
ICH [20-22]. In a validation MRI-pathology study,
cSS was observed in 23 of 38 patients with patho-
logically-proven CAA vs. O of 22 subjects with ICH
not related to CAA [22]. ¢SS has been linked to
transient focal neurological episode [23] and APOE
¢2 allele [24], and is included in the MRI-based
Boston criteria [4"%,22].

Convexity subarachnoid hemorrhage

Definition and mechanisms: In patients with CAA,
acute convexity subarachnoid hemorrhage (cSAH)
can occur in two distinct contexts: (a) in the absence
of acute ICH (isolated cSAH), or (b) simultaneously
with acute lobar ICH. Two main mechanisms have
been advanced to explain cSAH in CAA: (i) leakage
from a lobar ICH into the subarachnoid space; (ii)
rupture of meningeal vessels directly into the sub-
arachnoid space [17].

Detection: Isolated cSAH corresponds to a sub-
arachnoid bleeding confined to the convexities of
the brain that does not extend into the parenchyma,
sylvian fissures, ventricles, or basal cisterns [25]. In
general, both noncontrast CT and MRI can detect
acute subarachnoid hemorrhage with high sensitiv-
ity [26-29]. On MRI, acute cSAH appears as linear
hyperintense signal on FLAIR (suggestive of acute
blood), with a corresponding hypointense signal
(but not constant) on T2xGRE or SWI in the sub-
arachnoid space that affected one or more cortical
sulci of the cerebral convexities. In patients with
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CAA, acute c¢SAH is more frequently observed in
association with an acute lobar ICH.

Link with CAA: A growing number of cohort
studies have linked CAA and isolated cSAH [30-
34]. CAA is now considered as the main cause of
cSAH in subjects older than 60years [25,35]. The
clinical presentation of cSAH related to CAA con-
sisted typically in TFENEs and ¢SS is observed in up to
90%. Recent studies of patients with acute ICH
suggest that presence of cSAH is independently
associated with underlying CAA pathology and is
now included in the CT-based Edinburgh criteria [5].
cSAH may also be a risk factor for ICH recurrence in
patients with CAA-related ICH [36].

White matter hyperintensities

Definition and mechanisms: CAA is also recognized as
a significant contributor to white matter hyperin-
tensities (WMH). Growing evidence suggest that
beta-amyloid accumulation in the vessel wall can
lead to impaired vascular reactivity, resulting in
hypoperfusion [37*,38].

Detection: The Boston Criteria v2.0 integrate
WMH features as novel MRI marker for CAA with
multispot spatial distribution, defined as more than
ten T2-weighted FLAIR small circular or ovoid
hyperintense lesions in the subcortical white matter
of both hemispheres [4™].

Link with CAA: Although WMH multisport
pattern is associated with CAA-related ICH and
other imaging markers of CAA (i.e. lobar CMBs
and enlarged perivascular spaces in the centrum
semiovale), a WMH peri-basal ganglia pattern is
associated with Hypertension-related ICH and imag-
ing markers of arteriolosclerosis (i.e. deep CMBs and
enlarged perivascular spaces in the basal ganglia)
[39].

Enlarged perivascular spaces

Definition and mechanisms: Perivascular spaces are
extensions of the extracerebral fluid space around
small cerebral vessels as they course from the brain
surface into and through the brain parenchyma
[40,41]. They are usually not visible on conventional
neuroimaging. However, they become visible on
MRI when enlargement of the potential space
occurs, possibly secondary to impaired interstitial
fluid drainage and are named enlarged perivascular
spaces (EPVS) [42].

Detection: EPVS are defined as small (< 3mm)
round or linear CSF isointense lesions (T2-hyper-
intense and T1/FLAIR hypointense with respect to
brain) along the course of penetrating arteries [43].
They can be detected in the centrum semiovale

1350-7540 Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

(CSO) white matter, the basal ganglia (BG), the
hippocampus and the midbrain. Several visual rat-
ing scales have been developed and validated
[44,45].

Link with CAA: EPVS are emerging markers of
SVD, observed both in CAA and hypertension angi-
opathy (i.e. arteriolosclerosis). Their distribution
pattern may suggest the underlying SVD. EPVS in
the basal ganglia (BG-EPVS) have been linked to
hypertension and imaging markers of hypertensive
angiopathy (i.e. lacunes, WMH and deep CMB)
whereas EPVS in the CSO (CSO-EPVS) are associated
with Alzheimer disease (AD) as well as MRI markers
of CAA, amyloid PET positivity and CAA pathology
[44,46-54]. Severe CSO-EPVS are now included in
the Boston criteria V2.0 [4™].

Apolipoprotein E genotype

Definition and mechanisms: The apolipoprotein E
(ApoE) gene, located in chromosome 19q13.2, com-
prises 3 alleles (¢2, €3, and e4). Compared to the
most common APOE &3 homozygous genotype,
ApoE €2 and/or €4 allele carriers have increased risk
of CAA.

Link with CAA: ApoE genotype is the most
important genetic risk factor identified for sporadic
CAA. Neuropathological studies suggested that
APOE &4 may enhance vascular AR deposition in
a dose-dependent fashion, while APOE &2 promotes
vascular breakdown of amyloid-laden vessels [55-
57]. Cohort studies reported that APOE &2 was
associated with ¢SS [58] and increased risk of symp-
tomatic ICH [59] whereas APOE g4 was linked to
higher burden of lobar CMBs [24].

Amyloid positron emission tomography (PET)

Definition and mechanisms: Detecting during life
vascular amyloid deposition rather than brain
injury may have important implications. Amyloid
PET tracers, originally developed to identify amyloid
plaques in AD, have been evaluated in CAA.

Detection: Different amyloid PET tracer and
methods allow in vivo detection and/or quantifica-
tion of amyloid deposition in brain parenchyma and
vessels. Visual assessment of PET images and quan-
titative methods are commonly used to analyze
amyloid PET.

Link with CAA: Amyloid PET using 11C-PiB and
18F-florbetapir radiotracers has been assessed in
cross-sectional studies [60-67]. Most of these studies
have shown that amyloid tracer retention was
increased in patients with CAA compared to con-
trols [68]. Due to limited sample sizes and hetero-
genicity across studies with different radiotracer,
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PET analysis methods and control groups, the value
of amyloid PET for diagnosing CAA remain uncer-
tain. Future large PET studies including subjects
with pathological examination for CAA would be
of great interest.

Circulating biomarkers

Definition and mechanisms: Detecting amyloid bio-
markers — originally developed in AD - in the
cerebrospinal fluid (CSF) or in the plasma may help
in diagnosing CAA, providing evidence of amyloid
pathology.

Detection: Core CSF biomarkers have been
explored in CAA patients. However, the number
of studies on this topic is limited and the sample
sizes of CAA cohorts are small (1 < 20). Plasma bio-
markers may offer several potential advantages com-
pared to CSF biomarkers (less invasive) or amyloid
PET (less expensive). Nonetheless, amyloid bio-
markers have low concentrations in blood, consti-
tuting an important technical challenge.

Link with CAA: Compared to healthy controls,
patients with AD show decreased level of Ap42
(without decreased level of AB40) with increased
level of total tau (t-tau) and phosphorylated tau
(p-tau) in CSF. A meta-analysis of CSF biomarkers
in sporadic CAA have shown that patients with CAA
had decreased level of both AB40 and ABR42 with
mild increase in t-tau and p-tau levels [69]. This
specific pattern of AB40/AB42 is consistent with
pathological observations that showed predomi-
nantly AB42 in amyloid plaque although vascular
amyloid contains substantial amounts of AB40 in
addition to AB42 [70]. To date, evidence of a poten-
tial role of plasma amyloid biomarkers in CAA are
scarce with conflicting data [71,72]. Nonetheless,
high-performance plasma amyloid-B biomarkers
have been recently developed in AD, showing high
performance in predicting brain amyloid-g burden
[73-77]. Their clinical utility in CAA has not yet
been assessed.

Other candidate biomarkers

Advances in neuroimaging enabled development of
novel techniques that may be of interest as a diag-
nostic tool and/or a marker of disease severity. Those
include small acute ischemic lesions on diffusion-
weighted imaging (DWI) [78-81] or cortical micro-
infarcts visible on 7 T MRI, but also on 1.5 or 3 T MRI
[82,83]. Evaluating brain network connectivity
using diffusion tensor imaging (DTI) — a noninva-
sive MRI method to quantify microscopic white
matter tissue injury — may also be useful, as a marker
of CAA severity [84-87]. Techniques assessing

22 www.co-neurology.com

cerebrovascular reactivity, which is altered in
CAA, might be useful for early diagnosis of CAA.
Among them, functional MRI [blood oxygen level-
dependent (BOLD) response] may be more sensitive
methods to detect cerebrovascular dysfunction in
CAA patients, showing altered response to visual
stimuli compared to healthy controls [88,89].

DIAGNOSTIC CRITERIA FOR CEREBRAL
AMYLOID ANGIOPATHY

Definite diagnosis of CAA requires histopathologi-
cal evaluation of brain tissue from autopsy or biopsy
samples showing characteristic vascular lesions and
accumulation of amyloid B peptide in the cerebro-
vascular wall of cortical and leptomeningeal vessels.
During the last decades, important advances in
neuroimaging have been made and diagnosticimag-
ing-based criteria have been developed or updated,
enabling CAA diagnosis in living patients in the
absence of pathological examination.

The Boston criteria

The Boston criteria are the most widely used criteria
for CAA diagnosis in research and clinical practice.
The original Boston criteria (v 1.0) were first intro-
duced in 1995 and validated in a small (n=239)
single center cohort study [6]. They included the
following categories: (a) definite CAA, based on
pathological proof of CAA on full autopsy, (b) prob-
able CAA (with or without pathological proof),
defined as evidence of at least 2 brain hemorrhages
strictly located to lobar (i.e. cortical and cortico-
subcortical) regions, including ICH and CMBs, ()
possible CAA, defined as a single lobar hemorrhage.

In 2010, the Boston criteria were revised with
the introduction of ¢SS, as an additional diagnostic
imaging marker, and validated in a single cohort
study (n=60). These revised criteria are known as
the modified Boston criteria (v 1.5) [22].

The original Boston criteria have high sensitivity
and specificity, and the modified Boston criteria
have shown improved sensitivity without lowering
specificity compared to the original Boston criteria.
However, the validity of these MRI-based Boston
criteria suffered from several limitations including
the limited sample size (<100) and the monocentric
design of imaging-pathological studies [6,22,51]. In
addition, included patients had predominantly ICH
clinical presentations, where the Boston criteria may
have higher diagnostic performance compared to
non-ICH presentations (i.e. cognitive impairment,
TFNE).

To address these issues, a large international
multicenter MRI-pathological study was designed
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across the International CAA Association network.
This study, published in 2022, allowed to update
and validate the Boston criteria v 2.0 in a large
multicenter cohort (n=341). Key changes of these
updated criteria include (a) integration of emerging
white matter MRI markers of CAA (i.e. severe visible
perivascular spaces in the centrum semiovale and
white matter hyperintensities in a multispot pattern),
(b) patient’s age 50years and older (vs. 55 years and
older in the Boston criteria v 1.5), (c) applicable to
subjects either with ICH or non-ICH presentations.
Compared to the Boston criteria v 1.5, the Boston
criteria v2.0 have higher sensitivity (79.8% vs. 70.8%)
and comparable specificity (84.7% vs. 88.8%). As
observed with criteria v 1.5, sensitivity of the Boston
criteria v 2.0 appears to be higher in ICH presenta-
tions than non-ICH presentations.

The Edinburg criteria

Since MRI is sometimes contraindicated, not toler-
ated or unavailable in the setting of acute ICH, the
Edinburg CT and genetic diagnostic criteria have
been developed to diagnose underlying CAA in

patients with acute lobar ICH, in the absence of
brain MRI and pathological examination [5]. Those
included the presence of ApoE &4 allele and 2 char-
acteristic CT feature of CAA-related ICH including
finger-like projections and subarachnoid hemor-
rhage. In a cohort of 62 patients with severe lobar
ICH who died and had postmortem pathological
evaluation, the Edinburgh criteria had a 96%
(95% CI, 78-100) rule in specificity when at least
2/3 markers were present (high risk), and a 100%
(95% CI, 88-100) rule out sensitivity in the absence
of these markers (low risk) [8%].

Over the last decades, a growing number of bio-
markers have been identified thanks to recent
insights into mechanisms involved in CAA provided
by animal models and advances in structural and
functional neuroimaging, PET amyloid tracers, cir-
culating biomarkers analysis. Current diagnostic
criteria have high sensitivity and specificity in
ICH presentations of CAA, but have lower perform-
ance in other clinical context such as cognitive

MRI markers of cerebral amyloid angiopathy. (a, e) Convexity subarachnoid hemorrhage (white arrow) appearing

as linear hypointense signal on T2xGRE (a), with a corresponding hyperintense signal on FLAR (e} in the subarachnoid space
that affected two cortical sulci of the cerebral convexities. (b, f) Cortical superficial siderosis (white arrowhead) delineated on
T2+GRE (b) as two almost parallel, bilinear hypointensities within the cortex, showing a tracklike appearance, without
corresponding hyperintense signal on FLAIR (f). (c, g) Multiple lobar cerebral microbleeds visible as small round hypointense
signal on T2xGRE (c) and SWI (g). (d) Severe enlarged perivascular spaces in the centrum semiovale (black arrows) visible on
T2-weighted imaging (i.e., more than 20 visible perivascular spaces in the centrum semiovale of one hemisphere). (e) White
matter hyperintensities (black arrowheads) in a multispot pattern (i.e., more than 10 small circular or ovoid T2-weighted FLAIR
hyperintense lesions in the bilateral subcortical white matter).
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presentation or mixed hemorrhages (i.e. presence of
both deep and lobar hemorrhages) [90,91]. Further
research is needed to evaluate whether novels bio-
markers including amyloid PET and circulating bio-
markers would improve diagnostic accuracy (Fig. 1).
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