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Optimal level of human intracranial theta
activity for behavioral switching in the
subthalamo-medio-prefrontal circuit

Maëva Laquitaine 1, Mircea Polosan2, Philippe Kahane 2, Stephan Chabardes2,
Jérôme Yelnik3, Sara Fernandez-Vidal3, Philippe Domenech 3,4,5 &
Julien Bastin 1,5

The ability to switch between rules associating stimuli and responses depend
on a circuit including the dorsomedial prefrontal cortex (dmPFC) and the
subthalamic nucleus (STN). However, the precise neural implementations of
switching remain unclear. To address this issue, we recorded local field
potentials from the STN and from the dmPFC of neuropsychiatric patients
during behavioral switching. Drift-diffusion modeling revealed that switching
is associated with a shift in the starting point of evidence accumulation. Theta
activity increases in dmPFC and STN during successful switch trials, while
temporally delayed and excessive levels of theta lead to premature switch
errors. This seemingly opposing impact of increased theta in successful and
unsuccessful switching is explained by a negative correlation between theta
activity and the starting point. Together, these results shed a new light on the
neural mechanisms underlying the rapid reconfiguration of stimulus-response
associations, revealing a Goldilocks’ effect of theta activity on switching
behavior.

Behavioral switching allows us to rapidly adapt to changing demands
and depends on a set of high-level cognitive functions from the
anticipated application of abstract rules and the inhibition of no longer
relevant choices to the selection and execution of the most adaptive
response1,2. However, the neuro-computational mechanisms under-
lying our ability to rapidly adjust our behavior in response to unpre-
dictable and sudden environmental changes remains poorly
understood.

Early evidence suggests that the hyperdirect pathway connecting
the dorso-medial prefrontal cortex (dmPFC) to the subthalamic
nucleus (STN) implements behavioral switching, action stopping or
response conflict3–6. Yet, previous studies have mainly focused on
action stopping or speed-accuracy trade-off adjustments to “conflict”

(also referred to as choice difficulty or choice uncertainty)7–9. Previous
human intracranial studies showed that human dmPFC and STN neu-
rons’ firing rate, as well as theta ( ~ 5–10Hz) prefronto-subthalamic
activity, increase when the best response ismore difficult to select and
require longer decision time10–14. Conversely, action stopping increases
both neurons firing rate and beta-band activity ( ~ 15–30Hz) in the
same dmPFC-STN circuit15–22. By contrast, non-invasive electro-
physiological studies of task switching yieldmixed findings in terms of
temporal dynamics, frequency regime and putative brain circuits23–25,
highlighting the need for more direct human electrophysiological
recordings to establish a precise mapping between prefronto-
subthalamic neural dynamics and key cognitive processes underlying
behavioral switching.
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Drift diffusion models posit that response selection proceeds by
accumulating evidence up to a decision threshold in a winner take all
fashion. This class of model was also shown to be relevant in the
context of rule switching to tease apart the behavioral variability
arising from switching between set of rules and the selection of a new
response, which seems to occur sequentially26,27. Conversely, studies
combining direct electrophysiological recordings with a drift diffusion
modeling of perceptual choices revealed that decision-threshold
adjustments to difficulty were associated with STN-dmPFC neural
activity either in theta or beta bands, depending on the cognitive
context8,28. However, to the best of our knowledge, such a neuro-
computational dissection has never been performed using invasive
human electrophysiological recordings in the dmPFC-STN circuitry
during behavioral switching. Moreover, the use of different experi-
mental tasks in human neuroimaging and monkey single-cell litera-
tures has made it difficult to compare the cognitive and neural
processes at play during behavioral switch across techniques and
species (but see ref. 29 for an exception).

Thus, critical questions about how neural activity relates to
behavioral switching remain unaddressed: Do nodes in the dmPFC-
STN hyperdirect circuit exhibit specific temporo-frequency signatures
associated with switching between behaviors? Does neural activity
within these brain regions relate to trial-by-trial fluctuations in beha-
vioral performance, suggesting a close link between successful neural
computations and participants’ ability to implement behavioral
switching? What are the neuro-computational principles underlying
these brain-behavior associations?

To address these questions, we used intracerebral recordings
collected in two groups of rare neuropsychiatric patients implanted
with depth electrodes, which allowed us to record from the dmPFC
and the STN (respectively), while these patients performed a beha-
vioral switching paradigm previously used in monkeys3,4 to record
multiunit activity from both the dmPFC and the STN. We show that
behavioral switching depends on theta activity occurring in both
dmPFC and STN. Critically, trial-by-trial fluctuations of theta activity
negatively correlated with behavioral switching performance in both
brain structures, which translated in a neural HDDM accounting for

observed RTs and performances as a modulation of the initial level of
evidence by theta activity, prior to response selection, during switch
trials. Our findings demonstrate that although theta activity in the
dmPFC and in the STN increases on average during switch trials, too
high an increase might paradoxically induce premature incorrect
switch responses that are detrimental to adaptation.

Results
We administered a reactive behavioral switching paradigm to two
groups of post-surgery neuropsychiatric patients while intracranial
electroencephalographic activity (iEEG) was recorded, and to one
group of healthy controls. The first group consisted of three patients
with drug-resistant partial epilepsy implanted with linear depth mac-
roelectrodes in the dorso-medial prefrontal cortex (dmPFC). The sec-
ond group consisted of four patients with severe and drug-resistant
OCD implanted with deep brain stimulation macroelectrodes in the
subthalamic nucleus (STN). The third group consisted of ten healthy
controls (from whom we collected only behavioral recordings). We
report demographic and clinical data in Table S1, 2.

Each trial started with two colored squares (yellow/pink) ran-
domly displayed on each side of a central white square (Fig. 1). After
500ms, thewhite central square turned either pink or yellow (ongoing
rule) to prompt the patient to press a button indicating on which side
of the screen the cue matching the central square color was displayed
(left/right bimanual response). This stimulus-response association rule
pseudo-randomly changed every 2 to 6 trials. Overall, the task con-
sisted of two to four sessions composed of 50 switch trials each
(138 ± 49 switch trials per subject).

Patients were instructed to select the correct response as quickly
and as accurately as they could. Hence, the task required to form a
preliminary response by preemptively applying the previous rule as
soon as the current stimulus pair was displayed. In switch trials (20%of
trials), patients had to override this preliminary response to instantiate
and apply the new rule, resulting in the selection of the alternative
action. To promote speeded decisions, in line with the original studies
inmonkeys3,4, we implemented a response timewindowfor non-switch
trials (excluding switch trials, which typically have longer durations).
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Fig. 1 | Behavioral task and results. a Task-switching paradigm. Patients had to
indicate on which side the stimulus (STIM)matching the central square color (RULE)
was. This response was followed by a feedback cue (FB) indicating whether it was
correct and/or whether it fell within the allowed response timewindow. b Behavioral
performances of patients with OCD (upper row; n =4), epilepsy (EPI: middle row;
n= 3) and of healthy controls (HC: bottom row; n= 10). Evolution of hit rates and
reaction times averaged according to trial relative position to switch trials (left and
central panels) or as a function of trial type (red: switch; black: non-switch) and

accuracy (hit or error). Error-bars indicate SEM between patients. Two-tailed paired
t-tests showed that patients (OCD and EPI; n= 7) and healthy controls made more
errors on switch trials (patients: p= 1.09 × 10−4; HC: p = 5.73 × 10−5), were longer
during correct switch trials (p =9.66 × 10−5; HC: p = 7.61 × 10−5) and their reaction
times were also significantly faster during incorrect switch trials relative to incorrect
non-switch trials (p = 2.02 × 10−2; HC: 2.29 × 10−2). *p <0.05. See also Table S3 for
statistics across trials of each of the sevent patients. S: switch (sw) trial; S-2 and S + 2:
non-switch (nsw) trial occurring two trials before (S-2) or after (S + 2) a switch.
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An incorrect feedbackwas given during non-switch trialswhenever the
response time exceeded a predefined limit. The limit was adjusted
based on participants’ performance after each switch trial: it increased
by a 40ms increment after incorrect switch trials and decreased by the
same increment after correct switch trials, ensuring adaptive strin-
gency. Note that this procedure did not censor observed RT distribu-
tions and maintained a consistent level of time pressure throughout
the task as participants quickly reached a (fixed) floor value (300ms).

Behavioral performance: the cost of switching
Given the striking similarity between OCD and epileptic patients’
behavioral patterns (see Fig. 1), in the following, we report behavioral
statistics pooled across the two groups of patients. It is noteworthy
that these behavioral patterns closely mirrored those observed in
healthy controls (Fig. 1b), while we also found consistent findings from
ANOVAs followed by post-hoc tests performed separately for each
group and even for each patient within the group (dmPFC group: Fig.
S1; STN group: Fig. S2; see also Table S3 for statistics). First, we per-
formed an analysis of variance (ANOVA) onmean reaction times (RTs),
which demonstrated a significant interaction between trial type
(switch vs. non-switch) and accuracy (hit vs. error) (F(1,24) = 15.12;
p = 6.98 × 10−4; Fig. 1b; repeated measures ANOVA). Post-hoc compar-
isons confirmed that RTs on correct trials were significantly longer on
switch trials in comparison to non-switch trials (99 ± 11ms; t(6) = 9.14;
p = 9.66 × 10−5; paired two-tailed Student’s t-test). RTs were also sig-
nificantly faster during incorrect switch trials relative to incorrect non-
switch trials, supporting the idea that errors during switch trials
resulted from a failure to override the preliminary response to apply
the new rule (−86ms± 28ms; t(6) = −3.07; p = 2.02 × 10−2; Fig. 1b; paired
two-tailed Student’s t-test). Unsurprisingly, patients also made sig-
nificantly more errors on switch trials in comparison to non-switch
trials (switch cost(error)= 26 ± 3%; t(6) = 8.09; p = 1.09 × 10−4; paired two-
tailed Student’s t-test).

Behavioral switching: Neural activity in the dmPFC-STNnetwork
To investigate whether neural activity in the dmPFC-STN network
reflected behavioral switching, we first contrasted the power esti-
mated in the time-frequency domain between correct switch (Sw/Hit)
and correct non-switch (NoSw/Hit) trials across all recording sites
within each brain region. dmPFC and STN LFP recordings were ana-
lyzed separately since thesedata came fromdistinct groups of patients
(dmPFC: n = 33; STN: n = 24 recording sites). There was a significant
increase in theta activity at rule onset when switching, both in the
dmPFC (Sw/Hit vs NoSw/Hit, [−156ms; +664ms], sum(t(32)) = 232.7,
pc = 1.33 × 10−4, Fig. 2a, b) and in the STN ([4ms; +1088ms],
sum(t(23)) = 653.5, pc = 1.00 × 10−4, Fig. 3a, b), as well as an increase in
high-gamma activity (dmPFC: [+98ms; +625ms], sum(t(32)) = 488.4,
pc = 1.67 × 10−5, Fig. 2a; STN: [-523 ms; +189ms], sum(t(23)) = 327.8,
pc = 5.58 × 10−4, Fig. 3a). These switch-related changes in theta and
high-gamma activity replicated when time-locking iEEG activity at
response, which further revealed an increase in dmPFC’s beta
(15–30Hz) activity (Sw/Hit vs NoSw/Hit; [−631ms; 229ms],
sum(t(23)) = 743.6; pc = 1.67 × 10−5, Fig. 2a and Fig. S3).

Next, we focusedour analyses on contacts exhibiting a differential
activity when there was a change of stimulus-responsemapping or not
(i.e., contrasting switch vs. non-switch trials independently from
accuracy) to investigate the precise time course of theta (5–10Hz) or
gamma (60–200Hz) band activities in the dmPFC (Fig. 2) and in the
STN (Fig. 3). In the dmPFC, we found that the timing of theta and
gamma activities differed between switch hit and switch error trials.
Theta activity peaked at response when patients failed to switch
(0 ±0.32ms), but peaked significantly earlier when the switch was
successful (Sw/Hit vs. Sw/Err, −279 ± 60ms; t(13) = −4.6, p = 4.54× 10−4

paired two-tailed Student’s t-test). Consistent with previous neuronal
recordings in monkey dmPFC3, we observed a similar pattern in the

high-gamma band where activity peaked before the response for
correct switches (−129 ± 26ms) and after the response when it was
missed (+90 ± 40ms; Sw/Hit vs. Sw/Err, −219 ± 42ms; t(8) =−5.23;
p = 7.93 × 10−4; paired two-tailed Student’s t-test, see Fig. 2e). This high-
gamma activity peak in the dmPFC reliably followed the peak of theta
activity (Sw/Hittheta vs. Sw/Hithigh_gamma, −149 ± 44ms; t(21) =−2.5;
p = 2.02 × 10−2 unpaired two-tailed Student’s t-test). Furthermore, both
theta and gamma activities were also significantly higher for incorrect
than for correct switch trials (Theta band: Fig. 2c: Sw/Hit vs. Sw/Err,
[−299 ms, +522ms] relative to response, sum(t(13)) = 85.1,
pc = 1.67 × 10−5; Gamma band: Fig. 2E, Sw/Hit vs. Sw/Err, [−6ms,
+366ms] relative to response, sum(t(8)) = 57.7, pc = 1.67 × 10−5). Taken
together, these results demonstrate that successful behavioral
switching depends on a structured pattern of increased theta/high-
gamma activity in the dmPFC from rule onset to response and pre-
cisely controlled in both time and amplitude. Consistent with this
hypothesis, we found a significant amplitude-amplitude coupling
between high gamma and theta activities in the dmPFC during correct
switch trial (Fig. S4; [0–500ms] time window post-rule onset;
t(13) = 4.96; p = 2.61 × 10−4; one sample two-tailed Student’s t-test). This
couplingwas no longer significant during switch error trials (t(13) = 2.16;
p = 5.04 × 10−2 > 0.05). Comparing directly the coupling strength for
switch hit vs. switch error confirmed a higher theta-gamma coupling
for correct switches (t(26) = 2.27; p = 3.14 × 10−2; paired two-tailed Stu-
dent’s t-test).

In the STN of OCD patients, similar to what we observed in the
dmPFC of epileptic patients, theta activity was significantly higher for
incorrect than for correct switch trials (Sw/Hit vs. Sw/Err, see Fig. 3c,
[−0.04 s, 0.39 s] relative to response; sum(t(7)) = 24.1, pc = 1.91 × 10−3).
Moreover, theta activity in the STN peaked at response (Sw/Hit:
−0.076 ± 0.042 s) when OCD patients successfully switched, but
peaked after the response when they failed (Sw/Err: +0.172 ± 0.051ms;
Sw/Hit vs. Sw/Err, −219 ± 39ms; t(7)= −5.37; p = 1.00× 10−3; paired two-
tailed Student’s t-test), with a timing (relative to response) reminiscent
of the dmPFC’s high gamma activity observed in the group of epileptic
patients (Sw/Hit vs. Sw/Err, −219 ± 39ms; t(8)= −5.23; p = 7.93 × 10−4;
paired two-tailed Student’s t-test). Finally, there was no difference in
STN high gamma activity prior to/at the response between correct and
incorrect switches, which reflected instead the upcoming motor
response (Ipsilateral vs. Contralateral, Fig. S5). Instead, we found that
theta increase for successful behavioral switches was larger in the STN
ipsilateral to the newly selected response than in the contralateral STN,
but not for unsuccessful switches (see Fig. S6, t(7) = 2.15; p =0.03),
suggesting a direct role for STN theta oscillations in rule-switch
execution. Recognizing that dmPFC and STN recordings were
obtained fromdistinctpatient groups, therebyprecluding dmPFC-STN
connectivity analyses, we thought that it remained interesting to
compare theta dynamics across these patient groups and structures.
Our analysis revealed a consistent temporal lag in rule-switch-related
theta increase in the STN compared to the dmPFC (dmPFC-STN theta
onsets relative to the rule: dmPFC: −0.419 ±0.03 s; STN:
−0.234 ±0.08 s; t(20) = −2.57, p = 1.81 × 10−2, see Fig. S7). Moreover, the
theta increase peaked significantly later in the STN than in the dmPFC
(peak latencies in dmPFC: +0.199 ±0.074 s vs. +0.575 ± 0.052 s in the
STN, t(20) = −3.54, p = 2.08 × 10−3). Overall, this dmPFC-STN theta/high-
gamma dynamic suggests that the dmPFC might drive STN neural
activity when external cues trigger a rule-switch and casts the STN as
an executive structure downstream the dmPFC along the hyperdirect
pathway.

Consistent with this view, we found that neural activity in the
dmPFC further encoded the anticipation of upcoming rule switches:
dmPFC’s beta activity at stimuli onset increased in proportion with the
probability of rule changes (dmPFC: [−846ms; −534ms],
sum(t(32)) = 59.99, pc = 9.33 × 10−4, Fig. S8), 500ms before the onset of
the cue indicating that the rule had changed. Indeed, in our task, the
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probability of switch increased with the number of previous con-
secutive non-switch trials. Patients implicitly used this information to
anticipate switches so that switch costs were large if a switch occurred
after 2–3 non-switch trials (switch cost(2nsw) = −43 ± 13%, switch
cost(3nsw) = −37 ± 7%). This effect disappeared if a switch occurred after
5-6 non-switch trials (switch cost(5nsw) = −17 ± 14%, switch
cost(6nsw) = 3.4 ± 13%, see Fig. S8).

It is noteworthy that ourmain results were statistically robust and
reproduced when using mixed-effect analyses to assess differences in
theta activity between correct switch and non-switch trials, both in the
dmPFC (t(5455) = 4.72, p = 2.4 × 10−6; see also Fig. S9) and in the STN
(t(6244) = 3.69, p = 0.00023; see also Fig. S10), aswell as betweenhit and
error switch trials (dmPFC: t(1284) = 4.26, p = 2.2 × 10−5; STN:
t(1332) = 2.33, p =0.019). Finally, we tested whether baseline had an
influence on subsequent theta dynamic in dmPFC and STN by com-
paring the time course of theta power across conditions separately for

high vs. low level of theta power prior rule-onset (Fig. S11; from -250ms
to 0ms; median split). This revealed that neither dmPFC (Fig. S11A–C)
nor STN (Fig. S11D–F) baseline theta power significantlymodulated the
post-rule theta peak amplitude across conditions.

Trial-by-trial fluctuations in theta/high-gamma bands predict
successful behavioral switching in dmPFC and in the STN
To explore the functional role of dmPFC-STN theta/high-gamma
dynamic, we then investigated whether spontaneous trial-by-trial
fluctuations in neural activity related to actual fluctuations in beha-
vioral performance. To do so, we tested brain-behavior correlations
between normalized theta or high-gamma activity and performances
during switch and non-switch trials separately for each brain region
and for each trial type (dmPFC: Fig. 2d–f; STN: Fig. 3d–f).

During switch trials, there was a negative correlation between
theta activity trial-by-trial fluctuations and performances, both in the
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dmPFC and the STN (dmPFC: Fig. 2d; βhit~switch = −0.33 ± 0.06;
t(13) = −5.67, p = 7.65 × 10−5; STN: Fig. 3d; βhit~switch = −0.13 ± 0.03;
t(7) = −4.24, p = 3.82 × 10−3). However, during non-switch trials, there
was no influence of STN theta activity trial-by-trial fluctuations on
performances, while a negative correlation between theta activity and
performances was still found in the dmPFC (theta:
βhit~nonswitch = −0.14 ± 0.02; t(13) = −6.19, p = 3.29 × 10−5 < 0.01), suggest-
ing a functional decoupling of STN and dmPFC theta activities during
non-switch trials. Interestingly, we also found significant positive cor-
relations between performances and pre-response high-gamma activ-
ity in the dmPFC during switch trials (Fig. 2f; βhit~switch = 0.18 ± 0.05;
t(7) = 3.32, p = 1.06 × 10−2), whereas this correlation was negative during
non-switch trials (Fig. 2f; βhit~nonswitch = −0.09 ± 0.01; t(7) = −5.66,
p = 4.75 × 10−4 < 0.01). Thus, during non-switch trials, there was a
negative correlation (i.e., like what was observed in its theta band and

in pre-response beta, see Fig. S12), whereas this correlation became
strongly positive during switch trials, suggesting that dmPFC pre-
response high gamma activity reflects a neural process selective to
behavioral-switching.

Theta activity is negatively associated with the starting point
during behavioral switching in the dmPFC and in the STN
Finally, to further understand how these trial-by-trial fluctuations in
neural activity influenced behavior, we used a hierarchical drift-
diffusion model (HDDM30) to disentangle behavioral variability arising
from switching between rules vs. selecting a new response. At the
behavioral level, drift diffusion models (DDMs) are commonly used to
model thedynamicsof action selection as anaccumulationof evidence
over time until a certain threshold is reached and a response is
triggered31 (see Fig. 4a). DDMshave fourmainparameters26: the timeof
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non-decision t, the initial level of evidence z, a drift rate v (the accu-
mulation speed of the information relevant to action selection) and
thresholds a, which controls the speed-accuracy tradeoff of the
selection process and accounts well for its type I errors9,28. In our task,
we expected to find a shift of the starting point for switch trials, (1) as
correct switches were associated with slower RTs and failed switches
with faster RTs (compared to correct non-switch responses; see
Fig. 1b), (2) as dmPFC encoded a priori the likelihood of upcoming
switches and (3) as early behavioral studies suggested that, during task
switching, reconfiguring the set of rules seemed to occur before the
selection of a new response26,27. To test this hypothesis, we first fitted a
hierarchical drift diffusion model to RT distributions of correct and
incorrect responses from all patients31 (i.e., combining the behavioral
data of OCD and epileptic patients), and tested which model para-
meter best accounted for observed switch costs (M1model space, also
included all possible parameter pairs, see Methods).

We found that switch costs were best captured by a shift of the
starting point (z parameter) toward the lower (erroneous) model

boundary (Fig. 4b). Moreover, the sampled posterior distribution of z
parameter indicated that HDDM starting point was significantly lower
during switch trials (zsw =0.23 ±0.06) compared to non-switch trials
(znsw = 0.44 ±0.06; p <0.001; Fig. 4c). We found identical results when
testingwhichmodel best accounted for healthy subjects’behavior (see
Fig. S13). Posterior predictive checks confirmed that this HDDMmodel
reproduced all key behavioral patterns observed after stimulus-
response mapping changes (see Fig. 1b), for each individual in each
group (dmPFC Epileptic group; see Fig. S14; STN OCD group; see
Fig. S15).

Next, we tested whether dmPFC and STN neural activity further
modulated that initial level evidence (z). We reasoned that using
band-specific neural fluctuations to adjust trial-by-trial HDDM’s
starting point would significantly improve our model fit only if
it reflected the switches between rules. Hence, we built a second
neural HDDM model space consisting of HDDMs with starting point
modulations by all the switch-related bands identified in our pre-
vious analysis of STN and dmPFC neural activity, as well as linear and
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Fig. 4 | Behavioral switching modeling across epileptic and OCD participants.
a Drift diffusion model. Response execution is preceded by an accumulation of
evidence increasing sequentially in favor of one of the twooptions until a boundary
is reached. The decision processes start at stimulus onset and at an initial level
depending on the subject’s prior beliefs. The initial level turns out to be different
per trial type. b Behavioral model comparison. Relative value of the deviance
information criterion (DIC) per model when considering the decision threshold
model a as a reference. c Behavioral model posteriors. Probability density of the
initial level of evidence values for switch and non-switch trials. The initial level of
evidence is lower during switch trials in accordance with subjects’ belief of an
upcoming non-switch trial. The statistical difference between switch and non-
switch posteriors was significant (significance from posterior probabilities:

p <0.001). d Spontaneous trial-by-trial activities included in the neural HDDM
(hierarchical drift diffusion model) model space. Neural model comparison for
dorsomedial prefrontal cortex (dmPFC; e) and subthalamic nucleus (STN; g).
Relative value of the DIC per model with a model based on a normally distributed
noise as a reference. Neuralmodel posteriors fordmPFC (f) andSTN (h). Probability
density for the effect of theta power on the initial level of evidence z. A negative
(resp. positive) regression coefficient means z decreases (resp. increases) when
theta power increases. Here, the regression coefficient is negative for non-switch
trials and strongly negative for switch trials. The statistical difference between
switch and non-switch regression coefficient was significant (significance from
posterior probabilities: p <0.001). ***p <0.001.
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multiplicative interactions with these frequency bands (M2 model
space, see Methods, Fig. 4d).

In the dmPFC, the neural HDDM including theta fluctuations as a
modulator of the starting point outperformed other single-band
models and was not significantly outperformed by more complex
neural HDDMs including an interaction term between theta and high-
gamma neural activities (see Fig. 4e). Consistent with our other find-
ings in the STN, theneuralHDDMmodel including thetafluctuations as
a modulator of the starting point significantly outperformed all the
other neural HDDM tested (Fig. 4f). Figure 4f–h show the posterior
distribution of the regression coefficient between HDDM starting
point and residual trial-by-trial power in the theta band. The significant
shift of the posterior distribution toward negative correlation coeffi-
cients between the starting point and theta power residuals (dmPFC:
Fig. 4f; STN: Fig. 4h, both p <0.01) is consistent with our previous
observation that, although theta activity in the dmPFC-STN network
increases on average during switch trials, too high an increase
becomes detrimental to performances. Interestingly, this negative
correlation between the starting point and residual trial-by-trial theta
power fluctuations during switch trials was also observed as early as
250ms before rule onset in both the dMPFC and in the STN (see Fig.
S16), at a moment when there was no difference on average between
correct and erroneous switch. Thus, these results are consistent with
the role of a prior modulation, which is usually associated with the
starting point parameter.

Some key brain regions, known to exhibit rule-switch activity are
not mentioned in this study because an inherent limitation to intra-
cranial EEG recordings is their limited spatial sampling. Note however
that the intracranial recordings from the epileptic group allowed us to
explore brain activity beyond the hyperdirect dmPFC-STN circuitry.
For example, we found that broadband gamma (60–200Hz) and beta
(15–35Hz) power in the anterior insular cortex was higher during
correct switch trials than during non-switch trials (Fig. S17). The main
differences with the dmPFC were that (1) there was no modulation of
theta band activity in aIns and (2) the increase in both beta and
broadband gamma amplitude during incorrect behavioral switches
was only observed after the response, thus lying out of our temporal
window of interest (in this study, we focused on the exploration of the
cognitive processes related to switch between rules).

Discussion
In this study, weused human iEEG recordings in either the dmPFCor in
the STN to investigate the neural mechanisms associated with beha-
vioral switching. Our findings reveal new insights into (1) how tem-
porally coordinated neural patterns in the theta/gamma frequency
bands in the dmPFC-STN hyperdirect pathway support adaptive
behavioral switching (2) to the extent that trial-by-trial neural fluc-
tuations of these neural patterns were predictive of fluctuations in
observed behavior. (3) We also demonstrate a mechanism for beha-
vioral switching casting switch costs as a modulation of the starting
point in a drift-diffusion process tied, in turn, to a modulation of theta
power oscillations in the dmPFC-STN circuit. In the following sections,
we will delve into these three lines of results in detail.

By contrasting neural activity between successful trials with and
without behavioral switching (Figs. 2 and 3), we identified a significant
increase of theta and high-gamma activity in the dmPFC-STN circuit
between rule onset and response, i.e. when cognitive processes
underlying task-switching are theoretically expected to occur. When
contrasting successful and failed switches, we further found that
switching accuracy did not only dependon themagnitude of theta and
gamma activities: increases of theta (in the STN and dmPFC) and
gamma (only in the dmPFC) band activities were also found to peak
before the response during successful switches and at the time of the
response or later during failed switches (Figs. 2 and 3, panels C and E).
Previous monkey electrophysiological studies also reported that

neuronal spiking increased in the dmPFC-STN circuit when
switching3,4, at timings similar to the increase in high-gamma activity
observed in our study for successful and failed switches. Taken toge-
ther, this suggest that a plausible neurophysiological mechanism
underlying our findings would be that, in the dmPFC-STN circuit,
increased theta band activity may control the timing of the increase in
neuronal spiking activity32, reflected inour data as an increased activity
in the high-gamma just before response. Interestingly, whereas recent
iEEG recordings during task switching or stroop paradigms focused on
high gamma oscillations29,33, these studies did neither investigate the
relative timing of theta and gamma activities, nor how these neural
proxies relate to behavior. In this study, we found that high-gamma
peak activity lagged significantly behind theta’s during successful
switch trials, suggesting that dissociable temporal components of
switching might be multiplexed by distinct frequency regimes in the
dmPFC. This view is also consistent with the amplitude-amplitude
coupling between theta and gamma activities observed in the dmPFC
during correct behavioral switch, but not during erroneous switch. An
alternative interpretation of the difference of latency observed
between theta vs. high gammapeakactivitywouldbe that high-gamma
increase would partly depend on the preceding theta activity, in line
with the extensive literature related to the theta-gamma neural coding
schemes underlying several cognitive processes32. The modulation of
theta amplitude found in the dmPFCand in the STNduring switching is
consistent with previous EEG studies in healthy participants23,25 and
with previous iEEG studies on executive control functions recording
LFP across several cortical or subcortical targets34,35,10,13. Critically, we
also found that theta activity magnitude further increased during
unsuccessful trials compared to correct switches in both brain struc-
tures. Yet, unlike the large body of studies that previously interpreted
theta increases during correct and incorrect trials as if these would
reflect two independent executive control functions, such as conflict
monitoring (in case of success) or error monitoring34,35(in case of fail-
ure), we propose an alternative view.We identified a singlemechanism
explaining parsimoniously the pattern of theta oscillations observed in
either the dmPFC or the STN: following rule change, theta oscillations
amplitude lowers the initial level of evidence available in favor of the
newcorrect response (Fig. 4) such that successwould onlyoccur for an
optimal level of theta oscillations in the circuit.

To clarify the respective role of theta andgammabandactivities in
the prefronto-subthalamic circuit, we examined how the theta and
gamma trial-by-trial amplitude fluctuations were associated with
behavioral variability across trials, separately for the dmPFC and the
STN. The initial observation was counter-intuitive, since we found that
theta activity was negatively associated with hit rate on switch trials in
both the dmPFC and the STN. In otherwords, switchingwas associated
with an increased theta activity observed when contrasting switch vs.
non-switch trials, but trial-to-trial analyses revealed that the greater the
increase, the lower the switch performance (Figs. 2d and 3d). Strik-
ingly, there was no such clear-cut relationship between theta trial-by-
trial fluctuations and performance for non-switch trials, highlighting
its functional dependence to the cognitive context. Thisfindingechoes
a previous study showing complex non-linearmodulations of decision
threshold by STN theta oscillatory activity during simple perceptual
decision-making, with a reversal of the relationship as a function of the
level of perceived choice difficulty8. At the behavioral level, we found
that switch trials (compared to non-switch trials) were best captured
by a shift of the starting point (z parameter) toward the lower (erro-
neous) model boundary in a HDDM31. This result contrasts with pre-
vious demonstration in patients with Parkinson’s disease during which
STN oscillations were found tomodulate the threshold during difficult
decisions involvingperceptual or response “conflicts”8,28,36. Differences
in the cognitive processes studied are likely to explain this dis-
crepancy, as suggested by the global slowing down reported in these
studies for both correct and erroneous responses when conflict was
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high. In our task, the erroneous responseat switch trials is the response
one would have selected if the rule had not been changed. In the
context of a reactive behavioral switching paradigm inducing reliable
increase of RTs when successfully switching between rules, but also
premature/fast guess errors when unsuccessful, the fact that the key
HDDM parameter associated with behavioral switches was the initial
level of evidence is consistent with the idea that subjects were able to
prepare the correct response ahead of knowing the rule to be used
and, at switch trials, had to inhibit (or reset) this pre-selected response,
switch to an alternative set of rules and then reassess their choice
according to it, as previously suggested26,27. Interestingly, we also
found that switch probability scaled with pre-rule onset beta activity in
the dmPFC (but not in the STN), suggesting that this structure actively
monitored and predicted these cognitive events.

At the neural level, we compared several neurally-informed
HDDM, in which we tested the benefit of adding either theta or high
gamma trial-by-trial activity, or more complex additive or multi-
plicative models, as factors further modulating HDDM starting point
(against no additional neural information). This analysis revealed that
across the dmPFC-STN circuit, the most parsimonious mechanism
explaining our behavioral results was that trial-by-trial theta fluctua-
tions in this circuit negatively scaled with the starting point parameter
of the HDDM.Moreover, this negative correlation was much larger for
switch trials (compared to non-switch trials). In other words, when
theta power increased at switch trials, it pushed the starting point
further toward the lower (erroneous) boundary of the HDDM. This
mechanism simply explains how a moderate theta increase allowed
patients to buy some time to form their decision when switching to a
new set of rules (thus predicting longer correct responses), but also
why incorrect switches were more frequent and characterized by very
fast reaction times, as more theta activity was observed on average
during those trials and its effect on the starting point was amplified,
pushing it further toward the lower (erroneous) boundary. The pro-
posed mechanism echoes previous findings from neuroimaging stu-
dies in healthy participants suggesting that neural activity in the
dmPFC-STN loop may be associated with decision threshold changes
captured by drift diffusion models9,37 and from studies reporting that
applying deep brain stimulation to the subthalamic nucleus of patients
with Parkinson’s disease yield complex changes in the regulation of the
decision threshold8,28,36,38,39. To conclude, note that within the theore-
tical framework of DDMs, only a shift in a starting point can generate
such a pattern of RTs combining slower correct and faster erroneous
responses for switch trials, aswell as an increased error rate (all relative
to non-switch trials). Explaining such behavioral patterns is the original
motivation behind the introduction of changes (and variability) in
DDM’s starting point40. Hence, it is especially meaningful that using
trial-by-trial neural variability actually improve the HDDM fits (see
Fig. 4e–g).

An obvious limitation of this study is that our data were collected
from patients with neuropsychiatric disorders so that disease-related
factors could have influenced the neural or cognitive processes of
interest. However, it was reassuring to observe that the behavior of
patients and healthy subjects was remarkably similar while the neural
results were consistent with the results of the animal literature3,4.
Another limitation is that the dmPFC and STN were recorded in two
different groups of subjects, so that direct comparisons between brain
regions should be interpreted with caution. That said, differences in
pathology or recording modality between the two groups cannot
explain the almost identical behavioral and neural patterns we found
within each group. The only direct comparison we report pertains to
the latencies of theta activity, with earlier onset/peak observed in the
dmPFC group compared to the STN group. This is in line with the
literature4 and with computational models of the cortico-basal ganglia
architecture thought to underlie behavioral switching41. In addition,
some key brain regions consistently found to exhibit task-switching

signals are absent in our results because an inherent limitation to
intracranial EEG recordings is their limited spatial sampling. Yet, we
could observe that the anterior insula differentially contributes to
behavioral switching compared to the dmPFC (with later timings and a
distinct frequency regimes), confirming the interest of intracerebral
data to distinguish the functional role of the dmPFC and the anterior
insula35, which are regions often co-activated in functional neuroima-
ging studies so that their respective functions are still debated.
Examining more precisely the dynamics of task-switching signals in an
extended fronto-insular-parietal task-switching networkwould require
additional experiments across a much larger population of implanted
epileptic patients performing a task-switching paradigm.

To conclude, we used intracerebral recordings in humans to
specify the neural and computational mechanisms through which
humans switch between behaviors: theta activity in the dmPFC-STN
circuit adjusts the initial level of evidence such that an optimal level of
activity is required to successfully reconfigure the task-set (i.e.,
stimulus-responsemapping rule, here). Our resultsmayprove useful in
the development of new deep brain stimulation procedures. Recent
studies have demonstrated that stimulating the STN when a patholo-
gical level of beta oscillation is detected in the sensorimotor territory
of the STN is clinically effective in the context of Parkinson’s disease42.
Nevertheless, the non-monotonic functional associations between
theta/gamma activity and complex cognitive processes revealed in our
study indicate that a threshold-based closed-loop neurostimulation
strategy applied to theta oscillationsmaynot always be sufficient in the
context of neuropsychiatric diseases.

Methods
Patients and electrode implantation
The study was approved by local ethics committees (CPP 09-CHUG-12,
study 0907 and 2011- A00083-38). All patients volunteered to parti-
cipate and provided written informed consent prior to participation.

OCD participants. We included four patients (1 male; mean age 36 ± 3
yearsold) undergoingbilateral surgical implantationofDBSelectrodes
with 4 contact leads of 1.5mm height and 0.5mm apart (Model 3389;
Medtronic, Minneapolis, Minnesota, US) implanted in the STN to treat
severe treatment-resistant OCD. These patients were enrolled for STN-
DBS according to standard inclusion/exclusion criteria43 andwere kept
on medication during the experiment (detailed clinical and demo-
graphical data are reported in Table S1-a).

Epileptic participants. Three epileptic patients (no males; mean age
32 ± 2 years old; clinical and demographic details in Table S1-b) suf-
fering from drug-resistant focal epilepsy participated in the study.
These patients underwent intracranial cortical recordings by means of
stereotactically implanted depth macroelectrodes for therapeutic
purposes. All target structures were selected according to clinical
considerations independent fromthis study. We recruited patients
with at least one electrode in the dorsomedial prefrontal cortex
(dmPFC). Nine to twenty semi-rigid macroelectrodes were implanted
for each patient. Each macroelectrode had a diameter of 0.8mm and,
depending on the target structure, contained 6–18 contact leads of
2mm wide and 1.5–4.1mm apart (Dixi Medical, Besançon, France).

STN intracranial recordings
We performed intracranial EEG recording from quadripolar DBS elec-
trodes bilaterally implanted in the STNs of four severe and treatment
resistant OCD patients using standard clinical procedures (Neurosur-
gery Department of Grenoble University Hospital) 2–4 days after sur-
gery. LFPs were recorded using temporary lead extensions connected
to an EEG acquisition system (Micromed SD MRI, bandwidth
0.15–600Hz, sampling rate 2048Hz) before the definitive connection
between the electrodes and the stimulationdevice. EachDBSelectrode
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consisted of 4 contacts with a length of 1.5mm, separated by 0.5mm
(macro-electrode 3389, Medtronic, Minneapolis, US). We used the tip
of the left electrode as reference and computed offline the bipolar
derivations between the 3 adjacent pairs of contacts of each electrode
tominimize the contributionof sources outside the STN to LFPs. In this
study, we only report results based on bipolar derivations because it
allows for better signal artifacts removal and achieve high spatial
resolution (about 3mm) by canceling out contributions of distant
sources, which spread equally to adjacent recording sites.

STN electrode localization
We reconstructed STN contact locations using a 3D histologic atlas of
the basal ganglia warped onto a pre-surgery T1 weighted MRI co-
registered to a post-surgery 3D helical TDM44. By analogy with tract
tracing data from previous monkey studies, this atlas distinguishes 3
functional territories in the STN45: posterior/sensorimotor (green in
Fig. 2b), intermediate/associative (purple), and anterior/limbic parts
(brown). STNcontacts shown in Fig. 2b are in between the two contacts
used for computing the bipolar derivations.

dmPFC intracranial recordings
Cortical recordings were performed using video-EEG monitoring sys-
tems that allowed for simultaneous recording of 128 depth-EEG
channels sampled at 512Hz. Acquisitions were made with the Micro-
med (Treviso, Italy) system and online band-pass filtering from 0.1 to
200Hz. Data were acquired using a referential montage with a refer-
ence electrode chosen in the white matter. Before analysis, all signals
were re-referenced to their nearest neighbor on the same electrode,
yielding a bipolar montage.

dmPFC electrode localization
The electrode contacts were localized and anatomically labeled using
the IntrAnat Electrodes software45. Briefly, the pre-operative anatomi-
cal MRI (3D T1 contrast) and the post-operative image with the sEEG
electrodes (3D T1 MRI or CT scan), obtained for each patient, were co-
registered using a rigid-body transformation computed by the Statis-
tical Parametric Mapping 12 (SPM12)46 software. The gray and white
matter volumes were segmented from the pre-implantationMRI using
Morphologist as included in BrainVisa. The electrode contactpositions
were computed in the native and MNI referential using the spatial
normalization of SPM12 software. Coordinates of recording sites were
then computed as themeanof theMNI coordinatesof the two contacts
composing the bipole. For each patient, cortical parcels were obtained
for the MarsAtla46. Each electrode contact was assigned to the gray or
white matter and to an anatomical parcel by taking the most frequent
voxel label in a sphere of 3mm radius around each contact center.
Note that data from both hemispheres were collapsed to improve
statistical power. Contact-pairs were assigned to the dmPFC region of
interest if theybelonged to either the caudaldorsomedial PFCor to the
rostromedial PFC in the MarsAtlas parcellation scheme.

Behavioral task
We administered a task-switching paradigm adapted from Isoda and
Hikosaka (2007; Fig. 1a). The task included four to five sessions of 200
trials. Each trial started with two colored squares (yellow/pink) ran-
domly displayed on each side (left/right) of a white central square for
500msbefore revealing theongoing rule (white central square turning
either yellow or pink during 200ms to indicate the current target
color). Patients indicated their response (left/right with a gamepad
Logitech F310S) within a 1000ms interval by pressing one of two
buttons with the index of the corresponding hand. Presentation of
visual stimuli and acquisition of behavioral data were performed on a
PC (19 inch TFT monitor with a refresh rate of 60Hz) using presenta-
tion software (v14.1; Neurobehavioral systems, Albany, CA). In addi-
tion, a time pressure was used to encourage speeded response during

non-switch trials; it was initially set to 500ms. This time window was
adaptively adjusted by 40ms steps according to patients’ responses: it
was shortened after successful switches, increased after failed switches
and could not be inferior to 300ms. Trials ended with a 1.5 s feedback
screen displayed immediately after the response or after 1000ms in
the absence of response to indicate the response time and score of the
patient using green fonts if the response was correct or a red font if it
was incorrect. The score was incremented (decremented) by 1 after
each successful (erroneous) non-switch trial and by 5 after each suc-
cessful (erroneous) switch trial. This procedure ensured that speed
and accuracy were balanced: time pressure promoted speeded
response while our reward policy promoted high accuracy throughout
the task. In between trials, a white square was displayed centrally for
fixation (1–1.5 s). The rule (yellow/pink) randomly changed after 2 to 6
trials, so that there were 50 switch trials (and 200 non-switch trials)
per session.We trained the patient prior to the recording session. First,
we provided written instructions and, if necessary, reformulated them
orally to ensure they were understood. Then, patients performed a
training session of 20 trials (5 switch and 15 non-switch trials) that was
eventually followed by a longer training session (maximum 200 trials)
to ensure that the patient felt comfortable with the task. The electro-
physiological acquisition system was synchronized to the system used
to run the behavioral task via TTL pulses signaling the onset of the task
events.

Behavioral analyses
Statistical analyses were performed with Matlab Statistical Toolbox
(Matlab R2018a, The MathWorks, Inc., USA). All means are reported
along with the standard error of the mean. Trials were excluded from
further behavioral and electrophysiological analyses if patients
responded before rule onset, if they took more than one second to
respond or in the case of response omission.

Intracranial EEG analyses
iEEG data were first epoched from −3000ms before rule onset to
3000ms after rule onset. Time-frequency analyses were carried out
using the Fieldtrip toolbox forMatlab. Spectral analyses were analyzed
in two distinct frequency ranges using a multitaper approach. For the
lower frequencies (4–32Hz), we used adaptive temporal window
lengths shifted in steps of twenty mswhile fixing the number of cycles
(6 cycles and 3 tapers per window. Conversely, for higher frequencies
(32–200Hz),we used a timewindow length of 187.5ms shifted in steps
of twenty ms with an adaptive number of tappers (4–31 tapers: the
number of tappers decreased with increasing frequency). This
approach uses a constant number of cycles across frequencies up to
32Hz (hence a time window whose duration decreases when fre-
quency increases), and a fixed timewindowwith an increasing number
of tapers above 32Hz to obtain more precise power estimates by
adaptively increasing smoothing at high frequencies. Spectral power
was log-transformed to improveGaussianity of thedata, which allowed
us to use standard parametric tests to assess the statistical significance
of the observed effects. Theta (5–10Hz) or high-gamma (60–200Hz)
activity time-courses were extracted by averaging spectral powers (in
dB). Theta and gamma activities were normalized (Z-scored) using a
[−1500 to −500ms before rule onset]. We used the full time-frequency
analysis to choose upper and lower boundaries for the frequency
bands that were identical for dmPFC and for STN recordings, and
consistent with previous intracranial studies47–50.

Analyses of switch hit compared to non-switch hit trials in the time-
frequency domain (Figs. 2a, 3a). For each contact, we computed the
unpaired difference in frequency powers at each time step (in the
−3000 to 3000ms relative to rule onset) for every frequency
(4–200Hz) between correct switch vs/ correct non-switch trials. We
then computed the corresponding T-values, whichwe averaged across
contacts and participants for each region of interest (dmPFC or STN).
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Statistical inferences were performed with a corrected for multiple
comparison (corrected p values, noted pc < 0.05; Bonferroni-Holmes
Family-Wise-Error corrections at the cluster level;n = 150permutations
within contacts, n = 50000 permutations between contacts).

Selection of task-responsive contact-pairs
For each frequency band of interest (theta or high-gamma), we first
selected contact-pairs exhibiting a significant switch-related activity.
Switch responsive contact-pairs were identified by (1) extracting the
(5–10Hz) or (60–200Hz) single-trial power averaged in the time
windows during which there was a significant cluster-corrected
increase of power time locked to the rule during correct switch trials
relative to non-switch trials (dmPFC: [−150 to 560ms]; STN:
[0–1100ms]. We next used these power estimates to contrast for each
contact theta or high-gammapower during switch vs. non-switch trials
(student unpaired t-test thersolded at p <0.05). All dmPFC contact
pairs displaying a significant effect for each frequency band were kept
for further analyses because of the spatial sampling heterogeneity
inherent to sEEG recordings from epileptic patients. In contrast, all
OCDpatientswere implanted bilaterally within the STN so thatwe kept
one recording site per hemisphere for the STN (choosing the highest
T-value among the three contact-pair for each hemisphere), in linewith
previous human local field potential studies.

Analyses of switch error compared to switch hit trials in theta or
high-gamma bands (Figs. 2c, e and 3c, e). For each task-responsive
contact, we next computed the unpaired difference in powers at each
time step (in the −3000 to 3000ms relative to rule onset) between
incorrect switch vs/ correct switch trials. We then computed the cor-
responding T-values, which we averaged across contacts and partici-
pants for each region of interest (dmPFCor STN). Statistical inferences
were performedwith a corrected formultiple comparison (correctedp
values, noted pc < 0.05; Bonferroni-Holmes Family-Wise-Error correc-
tions at the cluster level; n = 150 permutations within contacts,
n = 50,000 permutations between contacts).

Analyses of theta or gamma activity expressed in percentile and hit
rate within each trial type (Figs. 2d, f and 3d, f). For each contact
located within our regions of interest, we first sorted theta (or high-
gamma) activity into 10 bins. Across the trials within each bin, we then
computed for each trial type the accuracy. We then regressed neural
activity (expressed in percentiles) and behavioral accuracy separately
for each trial type (switch or non-switch trials) for each contact to
extract a beta estimate for each contact and each frequency band of
interest. We then tested across all contact-pairs within a given ROI
(dmPFCor STN) and for each frequency (theta or high-gamma) and for
each trial-type (switch or non-switch)whether the regressionestimates
(slopes) were reliably different from the chance level (two-tailed one-
sample t-tests).

Hierarchical drift diffusion models (HDDM)
HDDMwith behavioral data. We fit participant’s choices with the drift
diffusion model considering the upper and lower boundaries are
accounted for hit and error trials. We used Python 2.7 and the HDDM30

module to launch all the model fitting. The first step of our HDDM
analysis was to model behavioral results. For this purpose, we con-
sidered each parameter fluctuation as a possible explanation of the
difference of reaction time and error rate observed between switch
and non-switch trials. Once the DIC compares, it results that a fluc-
tuation of the initial level of evidence is the best explanation of RT and
ER difference. We express it as follow:

z = k0 + k1Task ðM1Þ also described with patsy as : z∼ 1 +CðconditionÞ ð1Þ

when considering a, t, v constant and independent to task condition
(switch or non-switch). Here, k0 and k1 are coefficients with k0 equivalent
to the intercept and Task refers to the trial type (0 for non-switch, 1 for

switch). Markov chain Monte Carlo sampling was used for Bayesian
approximation of the posterior distribution of model parameters by
generating 150,000 samples of which the first 100,000 samples were
discarded. Thus we obtain a final chain of 50,000 samples and the
posterior of all parameters [a,t,v,z] for each subject and for the group.
We checked traces of model parameters, their autocorrelation and the
model convergence. To test the significance of parameter differences
across conditions (i.e., switch vs. non-switch trials), we computed the
proportion of samples in which starting point for switch condition was
lower than in non-switch condition over the full simulated posterior
distribution. Model parameters were judged significantly different from
0 if≥95%of the samples drawn from the full posteriorwere below/above
from zero. Even though such posterior probabilities are distinct from
classical parametric statistics (e.g., in a t-test), they can be interpreted in
a similar manner28,30.

HDDM with neural data. In a second step, we analyzed neuro-
computational effects during the task. We consider the neural fluc-
tuation through trials and add this information to the previous model.
We use the mean value of the power during a specific time window as
reflecting the neural state of each trial. We define the initial level of
evidence as follow:

z = k0 + k1 θ sw
nswð Þ ðM2Þ also described with patsy as : z∼ 1 +θ : CðconditionÞ

ð2Þ

where k0 and k1 are coefficients, θ the mean power for the frequency
range 5–10 Hz. k0 acts as an intercept and represents the reference value
of the initial level of evidence calculated for all the trials. k1 is the
coefficient of regression associated with θ which is assigned a certain
distribution for switch trials and another for the non-switch trials.
Here, we generated a chain of 150,000 samples of which the first 100
000 samples were discarded. Thus, we obtain a chain of 50,000 sam-
ples. This time, we calculated the posterior of all parameters for the
grouponly to facilitatemodel convergence. Indeed,wewidely increase
the complexity of the model by adding the neural coefficient of
regression. To calculate θ value, we used the theta single trial
estimation means during the significant increase time window (Figs.
2c and 4c). It gives us a theta estimation per trialswhichwenormalized
by subtracting the mean value and dividing by the standard deviation
per subject and per trial type39,42.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thebehavior andneural data generated in this study are available from
the Figshare database [source data: https://doi.org/10.6084/m9.
figshare.26363740].

Code availability
The custom codes used to generate the figures and statistics are
available from the lead contact (JB) upon request.
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