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In this paper, a novel methodology for characterizing the morphology distribution of filler 19 

agglomerates in Elastomer composites is presented, based on laboratory sourced X-ray 20 

Tomography. Various feature extraction methods (via e.g. Image processing filters, 21 

segmentation) and selection tools (Spearman's rank correlation coefficient) combined with K-22 

means unsupervised clustering algorithm were developed for identifying the distinct 23 

morphological classes in model materials (carbon filled ethylene propylene diene monomer 24 

rubber). The interest of this methodology was demonstrated by precisely differentiating the 25 

materials compounded with different processing parameters. For instance, in this example, 26 

thanks to this analysis, it was found that introducing the filler before the elastomer in internal 27 

mixer tends to favor more structured agglomerates. 28 

1 INTRODUCTION 29 

Elastomers are used in many applications such as load-bearing components, anti-vibration 30 

mounts, seals etc… The optimisation of properties for these applications requires the addition 31 

of many ingredients in the pristine polymers. The ingredients used are fillers (Carbon black CB, 32 

Silica), processing aids (paraffin wax), crosslinking agents (Sulphur, Peroxide), cure activators 33 

(zinc Oxide ZnO, Stearic Acid) and accelerators (to control the cure rate). A good dispersion of 34 

these ingredients, especially fillers, is achieved through their mixing, in an internal mixer and 35 

a two roll mill machine. Studies have shown that the choice of processing parameters such as 36 

fill factor, shear rate, ram pressure applied in the internal mixer, mixing energy etc… impacts 37 

the morphology (e.g size, shape factor), the spatial distribution and the volume fraction of the 38 

filler agglomerates (hereafter referred as CBaggl)1–5. Apart from them, other microstructural 39 

heterogeneities can also exist in the rubber compounds such as unreacted ZnO inclusions, voids 40 

etc..6 Studies have demonstrated the potential impact of all these so called “flaws” or “defects” 41 

on  crack mechanisms during monotonic and dynamic solicitation of the material7–16. Different 42 
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research works emphasize the importance of quantifying their morphology. For instance, Gent 43 

et al. proved the dependence of the initiation of cavities in silicone elastomer on the size and 44 

spatial distribution of model flaws (using spherical glass beads)17. In addition, Chow et al. have 45 

shown theoretically the importance of the aspect ratio of rigid flaws on these mechanisms, as it 46 

impacts the stress concentration at their poles18.   47 

In literature, the characteristics of filler agglomerates of carbon black (CBaggl) in an elastomer 48 

are obtained from the roughness measurement of their micro-tomed sections (ASTM D2663), 49 

or from the light  reflexion analysis of a freshly cut sample surface with a Dispergrader 50 

technique or from high resolution electron microscopy such as SEM or TEM10,19. However, the 51 

main drawback of these techniques is that they can only provide 2D information and therefore 52 

a full description of the morphology or spatial distribution of CBaggl cannot be ascertained. X-53 

ray Tomography can be used to obtain 3D information on the polymer at the micron scale20–24. 54 

Due to the similar attenuation contrast of filler agglomerates (CBaggl) and elastomer matrix, to 55 

the authors’ knowledge, only one paper reports their detection and morphological 56 

characterization using non-synchrotron sourcing X-ray tomography in an elastomer 57 

composite25. To do so, the authors had to adapt the laboratory Tomography parameters. 58 

However, a methodology is missing to extract, from the obtained data, the pertinent descriptive 59 

features, which can help in relating the agglomerates morphology and spatial dispersion to the 60 

material mechanical properties. This is the motivation of the work presented here.  61 

Such methodology could use different tools that have been developed for the classification of 62 

filler aggregates. Medalia et al. 26–29, through a series of publications, used various Euclidean 63 

geometric features, such as bulkiness factor, anisometry, area and structuring factor, to analyse 64 

TEM images. Differently, Bourrat et al.30 proposed to use mass fractal analysis, which also 65 

applied to the same type of images. This mass fractal approach was extended later by Rieker et 66 

al.31 for N330 carbon black dispersed in a polymer matrix, characterized by small-angle X-ray 67 
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scattering (SAXS) which provides information in the bulk. It was also used by Baeza et al.32 68 

for analyzing the morphology of silica aggregates in an elastomer. Herd et al 33 have shown, 69 

when analyzing the morphology of nineteen different carbon blacks dispersed in an elastomer, 70 

that the results of both approaches, Fractal vs Euclidean geometry, are correlated22. However, 71 

Euclidean geometry approach appears to be the most pertinent for specific shape classification 72 

and for this reason, will be preferred in this paper.  73 

The outline of this article is as follows. The proposed methodology for analyzing filler 74 

agglomerates in elastomers is developed using experimental data obtained from model 75 

materials. After the description of the model materials and testing methods in section 2, feature 76 

extraction and selection techniques are presented (section 3). Following the review of clustering 77 

techniques for morphological clustering (section 4), the results and discussion on the 78 

classifications are then presented in section 5 and 6 respectively. Such classification is 79 

performed for the agglomerates morphology in the different model materials. Our methodology 80 

enables to differentiate two materials with identical composition, not only by the volume 81 

fraction of CBaggl, but also through various morphological features. It also provides a valuable 82 

tool to understand the impact of operating parameters during the compounding process on the 83 

morphology of CBaggl.   84 

2 MATERIALS AND METHODS 85 

2.1 Composition and materials processing 86 

Model elastomers have been fabricated using a non-crystallizing Ethylene Propylene Diene 87 

Monomer Rubber (EPDM), and an N300 series carbon black, N326 as reinforcing filler. Table 88 

I presents the compound composition, which was kept constant, and the compounding process 89 

conditions, which were varied. The crosslinking agent is unsupported Bis(α,α-dimethylbenzyl) 90 

peroxide. The processing of the samples was performed in a Haake Rheomix 600 OS mixer 91 
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(chamber volume: 120 cm3) using Banbury rotors (42 cm3).  All the components, except 92 

peroxide, were mixed in the internal mixer (IM) for 2 min, and then passed 10 times in the two 93 

roll-mill where the peroxide was added. The rotor speed of the internal mixer is specified for 94 

each material in Table I, as well as the sequence for introducing the ingredients. USD protocol 95 

refers to “upside down”, i.e. the elastomer was added after carbon black. The resulting model 96 

materials from this procedure are referenced as 30_rpm_usd and 60_rpm_usd. TD protocol 97 

refers to “top down”, i.e. carbon black was introduced after the elastomer in the internal mixer, 98 

and the resulting model materials are referenced as 30_rpm_td and 60_rpm_td. After the mixing 99 

steps, the samples were molded as 2mm thick films by hot pressing at 170°C under 190 MPa 100 

for 12 min. Cure time was estimated from the torque measurements, performed using a 101 

Monsanto rheometer analyzer. 102 

2.2 X-ray tomography  103 

The X-ray Tomography device is EasyTom from RX solutions. The Tungsten target current is 104 

45 µA and a LaB6 cathode filament is used, along with a CCD detector. Two sample specimens 105 

extracted from each material is used for the experiments (only one was used for morphological 106 

clustering analysis).  Cutting of the specimen is performed with a scalpel. Specimen length and 107 

width is adapted for monitoring within the field of view of X-ray Tomography: The volume 108 

analyzed is in the order of 4-6mm3. The sample is rotated over 360 degrees in front of the X-109 

ray beam. Image acquisition is performed every 0.09° (4000 projections in total). Each 110 

projection step lasted 0.45s resulting in a total time per scan of 30 minutes. The voxel resolution 111 

in these experiments is 1µm3. Imaging was performed at a tube voltage of 40kV for an 112 

optimised attenuation contrast between the elastomer and agglomerates as discussed in a 113 

previous paper25 .   114 
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3 FEATURE EXTRACTION 115 

3D images obtained from X-ray Tomography show different flaws like carbon black 116 

agglomerates, voids, etc... The feature extraction methodology involves applying different 117 

algorithms of image processing to selectively display CBaggl from the acquired tomography 118 

scans. Thereby, various statistical information related to their morphology can be obtained. A 119 

methodology to extract the CBaggl spatial distribution was also applied on the same samples. It 120 

is described in Appendix A along with the obtained results. 121 

3.1 Image processing  122 

Various functions such as geometry offset, ring filter, and phase contrast are applied to the raw 123 

images to reduce artefacts and to improve the contrast between the matrix and the filler 124 

particles. Image stacks are then built using a filtered back projection reconstruction algorithm. 125 

Several Python modules are then used for image processing on the 3D reconstructed volume. 126 

The general approach of feature segmentation by segregating the greyscale cannot be applied 127 

in our case, since there is no significant difference in the attenuation contrast between the matrix 128 

and the CBaggl. Therefore, various image filters are applied again on the image stack (Figure 1a) 129 

to optimise the contrast and to remove additional noise. Typical denoising filters such as the 130 

median filter are not effective. For this reason, a different workflow of image processing is 131 

devised, which is inspired from the works of Emmanuelle Gouillart34,35. After intensity 132 

rescaling (to improve the brightness and contrast) (Figure 1b), bilateral (Figure 1c) and non-133 

local means (Figure 1d) filters are applied on the image stack. In bilateral filter, the intensity of 134 

each pixel in the image is replaced with a weighted average intensity of nearby pixels for noise 135 

reduction and edge preservation. In non-local means filter (effective for images with fine-136 

grained texture), each target pixel value is replaced by an average of all the neighbourhood 137 

pixels value, weighted by how similar  these pixels are to the target pixel36. Subsequently, 138 

segmentation of the image is carried out, which is a crucial step for obtaining pertinent 139 
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information. Here we are using a supervised segmentation algorithm called Random Walker for 140 

which was developed by Grady to reduce manual intervention and user bias36,37. The 141 

segmentation is directly carried out on 3D images. The different image treatments have been 142 

implemented through the scikit-image module in Python38. The output of the image processing 143 

and segmentation is presented in Figure 1e. The final process of removal of the particles 144 

touching the edges of the stack, as these may intervene in the morphological classification of 145 

CBaggl, is performed using ImageJ © free software. A sample sub volume of the reconstructed 146 

3D image is shown in Figure 2 and Appendix B.   147 

3.2 Morphological features extracted 148 

Each agglomerate is labelled in the binary image after its segmentation from the matrix. The 149 

X ray tomography resolution being 1m (i.e one voxel), and given the possible error in the 150 

identification of agglomerates border (at least 1 voxel), agglomerates with volume below 5x5x5 151 

(i.e. 125 voxels) have not been considered. This way, we reduce the errors in the calculation of 152 

the morphological parameters of the small agglomerates (note also that this volume roughly 153 

corresponds to the minimum cutoff volume in the D2663 ASTM method for evaluating carbon 154 

black dispersion in rubber). Geometric features such as Eccentricity E, Anisometry Q, Bulk 155 

factor B, Volume V, Equivalent Diameter Eqdiam, Length of major principle axis a, and Length 156 

of minor principle axis b of each CBaggl are extracted using the regionprops module in Python38.   157 

The volume V of a CBaggl is calculated by counting the number of voxels it contains. The 158 

Equivalent diameter (𝐸𝑞ௗ௜௔௠ ) represents a diameter of a fictive spherical inclusion having the 159 

same volume as the analyzed CBaggl. The 𝐸𝑞ௗ௜௔௠ of CBaggl with a volume of 125µm3 (1 voxel 160 

=1µm3) is equal to 6.2µm.  Length of major (a) and minor principal axis (b) are those of an 161 

ellipsoid that has similar normalized 2nd central moment36 as the CBaggl. Eccentricity (E) of an 162 

ellipse is defined as the ratio between its distance of two foci and the major principal axis length. 163 
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Here, E is the eccentricity of the centered elliptic section of the ellipsoid, perpendicular to the 164 

c axis (with a > c > b): 165 

   (1) 166 

For E=0, the morphology is a sphere and for E close to 1  the morphology get closer to that of 167 

a 1D or 2D object. Anisometry (𝑄) is the ratio of radii of gyration  and corresponds to 168 

anisometry of the agglomerates as calculated by Medalia et al. 26:  169 

 𝑄 = 𝑏 𝑎⁄   (2) 170 

Bulk factor (B) corresponds to the ratio of the free space (volume in this case) between the 171 

agglomerates and the convex hull constructed around the agglomerate (∆𝑉) to the total volume 172 

of the convex hull (𝑉௖௛), as shown in Figure 3: 173 

𝐵(Δ𝑉) = 1 − 𝑉/𝑉௖௛      (3) 174 

This definition is slightly different from the approach used by Medalia et al. 26  who proposed 175 

to express bulkiness as a ratio of the area of radius-equivalent ellipse drawn around the object 176 

to its projected area.   177 

3.3 Feature selection 178 

Using all the features V, Eqdiam, B, E, b, a, and Q for clustering presents some disadvantages. 179 

Firstly, if the two relevant features chosen are strongly correlated to each other, they add more 180 

weight to the classification process and thereby generate biased clusters. Secondly, the 181 

computation complexity of clustering increases as the number of features increases. Therefore, 182 

feature selection techniques have to be applied to evaluate the relevance of each one. Such step 183 

is very critical when defining the morphology classes by unsupervised pattern recognition, since 184 

we lack prior knowledge of each morphology class features. First, the relevance of each feature 185 

was checked using Laplacian Score technique (described in Appendix C). Then Spearman's 186 

rank correlation coefficient (𝜌 ) has been used to discard the redundant feature.  𝜌 characterises 187 

the monotonic relations (linear or not) between two features. It varies between -1 to 1. A value 188 

𝐸 = ඥ1 − 𝑏ଶ 𝑎ଶ⁄  
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close to |1| implies that they are correlated. Here, if two features have a coefficient value below 189 

|0.7|, they will be considered to be distinct. All the calculated 𝜌 values are reported in Figure 4 190 

along with their distribution. All data from all studied materials have been used for the analysis. 191 

They show that a, b, and Eqdiam are correlated to each other and also to V. As expected, E is 192 

negatively correlated to Q (aspect ratio). B is only correlated to a and feature a is correlated to 193 

other features (V, Eqdiam and b). Feature B has been retained because it can provide information 194 

on the fact whether the agglomerates are structured or not and the two other relevant retained 195 

features are V (size) and E (Eccentricity).    196 

The distributions of V, E and B for the 4 model materials are plotted in Figure 5. V 197 

distribution is similar for all the materials, with a slight difference in the domain 1.25*103-198 

2.25*103 µm3. The relative frequency is lower for the materials processed with the upside-down 199 

protocol (USD) in this domain (cf Figure 5a, b). The distribution curves of B (structure factor) 200 

have a similar shape for all the materials (Figure 5c). The curves also indicate that the 201 

agglomerates of the 60_rpm_td are the less structured, and those in the 30_rpm_usd are the 202 

most structured. The E distributions of the 4 materials (cf Figure 5d) have similar Gaussian 203 

shape with mean values around 0.75 for all the materials, indicating that their agglomerates are 204 

not spherical.  205 

To sum up, there are only slight differences between the 4 materials, regarding their E, B, 206 

and V distributions. Moreover, as they can only be discussed separately, it is impossible to know 207 

for instance, if the largest number fraction of agglomerates with a low structure factor in the 60 208 

rpm_td is related to the smallest or the biggest agglomerates. In other words, these distributions 209 

do not provide a clear picture of the differences in the agglomerates morphology. This motivates 210 

the use of the clustering methodology described in the following.  211 
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4 CLUSTERING 212 

Manual clustering of all agglomerates using all the relevant features is a cumbersome task. 213 

Some authors have recently used unsupervised clustering techniques (Machine learning 214 

algorithms) such as hierarchical  clustering,  or principle component analysis 39 to solve this 215 

problem39–41 . For practical reasons, we chose K-means unsupervised clustering algorithm. 216 

Classification using other clustering algorithms (agglomerative clustering, hierarchical 217 

clustering etc...) did not provide interpretable results. K-means algorithm was implemented 218 

using scikit-learn machine learning module in Python42 . 219 

4.1 K-means unsupervised clustering  220 

K-means clustering algorithm attributes a set of data points 𝑥௜ (𝑥௜ is defined by p coordinates) 221 

describing n agglomerates (1 ≤ 𝑖 ≤ 𝑛)  by p features (V, B, E)) into 𝑘 clusters C= {𝐶ଵ, 𝐶ଶ,..,𝐶௞}. 222 

Each cluster can be described by the mean j of the observations in the cluster, commonly called 223 

as cluster centroid.  The algorithm tries to find a centroid that minimizes the inertia or the 224 

variance of the squared Euclidean distance within the cluster, ||xi-j||2 225 

∑ ∑ ฮ𝑥௜ − 𝜇௝ฮ
ଶ

௫∈஼ೕ

௞
௝ୀଵ       (4) 226 

As the number of clusters k is not known a priori, 2 validation criteria were used to determine 227 

the optimal number of clusters. 228 

 Calinski Harabasz (CAH): this ratio is sometimes called variance ratio criterion.   229 

𝐶𝐴𝐻 =  (𝑆𝑆஻/𝑆𝑆ௐ)  × (𝑁 −  𝑘) / (𝑘 −  1)     (5) 230 

 Where SSB is the overall “between-cluster” variance, SSw is the overall “within cluster” 231 

variance, k is the number of clusters and N is the total number of data points (i.e. 232 

agglomerates). CAH metric works very well for clustering algorithm based on squared 233 

Euclidean distances such as K-means43 . The ideal number of clusters corresponds to the 234 

highest CAH score. 235 



 

11 
 

Internal 

 The Davies and Bouldin index (DBI) can be used to infer the average similarity of a cluster 236 

with its most similar cluster44 .  In this context, it is given by the equation as follows: 237 

𝐷𝐵𝐼 =
ଵ

௞
∑ max

௝ஷ௜
൬

௦೔ା௦ೕ

ௗ೔ೕ
൰௞

௜ୀଵ      (6) 238 

𝑠௜ is the average distance between each data points in cluster 𝑖 and its centroid (similarly 239 

for 𝑠௝ ) , 𝑑௜௝ is the average distance between the clusters centroids 𝑖 and 𝑗. DBI index is the 240 

lowest for the ideal number of clusters.  241 

The workflow deployed in this article to have a generalized morphological cluster analysis is 242 

schematized in Figure 6. Across-over sampling between model materials 30_rpm_usd, 243 

60_rpm_usd, 30_rpm_td and 60_rpm_td has been applied. 30% of the overall data points 244 

(163907 data points) have been randomly chosen to train the clustering algorithm. This step is 245 

repeated 10 times to remove the effect of sampling on the determination of the number of 246 

clusters. The trained model is later on applied to all the data of each material to build their final 247 

clustering.  248 

4.2 Statistical analysis of geometric features 249 

As shown in the relative frequency distribution of V (cf. Figure 5), the 75% quartile and 250 

mean values indicate that most of the data lie close to the lower side of the distribution. In the 251 

case of B and E, they are more uniformly distributed. Since these features have a different order 252 

of magnitude, clustering on the raw data of V might bring biased clusters. For this reason, we 253 

applied standardization calculation to each feature f as follows:  254 

𝑓௦௧௔௡ௗ௔௥ௗ =
௙(௫)ି௙೘೐ೌ೙

ఙ
    (8) 255 

which scales the data to unit variance and 0 mean. fmean and σ are the mean and standard 256 

deviation of the distribution of the observations of the feature f. Other standardization 257 

techniques exist, such as rescaling the data to [0, 1], scaling the data according to the quantile 258 

range, or transforming data from various distributions to a normal distribution. These 259 
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techniques were discarded as it was found that they do not provide relevant results. The 260 

normalized distribution for each feature is presented in Appendix Figure D. 261 

4.3 Number of clusters  262 

The number of clusters is chosen from the calculations of the metrics DBI and CAH. As said 263 

previously, they have been calculated from 10 random samplings of data. These samplings have 264 

a very small influence on the found metric values. Their average is given in Table II for DBI, 265 

and reported in Figure 7 for CAH. Note that a third criteria,  Silhouette coefficient (Savg) has 266 

also been used to determine the optimal number of clusters45 . However, this metric does not 267 

seems relevant for the choice of the cluster number (Appendix E). For a cluster number of 9, 268 

DBI and CAH metrics show a local minimum and maximum respectively, suggesting that 9 is 269 

the optimal number of clusters.   270 

5 RESULTS  271 

5.1 Classification of the agglomerates 272 

Morphology features of the centroids (VC, EC, BC) of the 9 classes are presented in Table 273 

III. They can also be visualised in (V, B) or (E, B) plots (cf. Figure 8).   274 

The agglomerates in classes #1, #2, #3 are the smallest and most similar in size (Appendix 275 

Figure Fa and Figure 8a). They differ from each other by their EC values and E distributions 276 

(Figure 9a).  These distributions are well separated from each other with small overlap. The 277 

class #3 agglomerates have the lowest eccentricity (most spherical) and structure (lowest bulk 278 

factor), whereas class #2 has the highest eccentricity (EC = 0.804). The representative BC and B 279 

distributions (Appendix Figure Fb and Figure 8b) for the 3 first classes suggest that they contain 280 

low structured agglomerates (low BC values). Class #1 and #3 have similar B distribution, 281 

whereas B values for class #2 is higher (meaning its CBaggl are more structured).  282 
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The agglomerates belonging to classes #2, #4 and #6 have an intermediate size (even 283 

though the class #6 agglomerates are significantly bigger than those from classes #2 and #4) 284 

(Appendix Figure Ga). Their eccentricity is the largest suggesting that they are the most 285 

elongated in one or both directions (cf Table III, Appendix Figure Gb).   The main difference 286 

between these three classes lies in their structure factor B, as shown in Figure 9b, the class #6 287 

agglomerates are the most structured, followed by the class #4 agglomerates.  288 

 The agglomerates belonging to the #7, #8 and #9 classes are the biggest of all 289 

agglomerates. The differentiating parameter between these classes is the size of the 290 

agglomerates: the higher the class, the bigger the agglomerates. Their eccentricity distribution 291 

is very similar. Moreover, the bigger the agglomerates, the more structured they are, as shown 292 

on Figure 8a. Finally, the class #5 agglomerates have an intermediate size and a B distribution 293 

close to that of class #4 agglomerates (cf. Figure 9b), and an E distribution close to that of 294 

agglomerates in class #1  (cf. Appendix Figure Gc). 295 

5.2 Application of the methodology to the model materials 296 

Model materials presented in Materials and Testing section have been processed differently. 297 

Two rotor speeds (30 rpm vs 60 rpm) along with 2 ways of introducing the fillers and rubber 298 

into the internal mixer (Upside-down and Top-down approach) have been tested. The analysis 299 

has been performed on a volume which actually could have been eight times lower than the 300 

used volume, as shown by the spatial clustering analysis described in Appendix A. Note also 301 

that the same experiment and volume fraction analysis have been made on a second sample, 302 

and gave the same results (∓0.3%). Cumulated volume fraction cumul of CBaggl in the model 303 

mixes is clearly correlated to the rotor speed (30_rpm_usd: 10.4%, 30_rpm_td: 11.6%, 304 

60_rpm_usd: 6.0%, 60_rpm_td: 5.6%). Note that the cumulated volume fraction of the 305 

agglomerates of size below 125 voxels, which have not been taken into account in the 306 

morphological analysis, is around 0.4% for all the materials.  From  cumul , we can estimate a 307 
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dispersion index46 (cumul divided by the CB volume fraction, without any factor accounting for 308 

the possible elastomer content in the agglomerates) equal to 0.54, 0.6, 0.31, 0.29 for 309 

30_rpm_usd, 30_rpm_td, 60_rpm_usd and 60_rpm_td respectively. Deeper analysis of the 310 

agglomerates morphology and spatial distribution is required to understand the differences 311 

induced by the USD and TD approaches. Actually, as described in Appendix A, the 312 

consequences of changing from TD to USD protocol on the CBaggl spatial distribution is small. 313 

An analysis of the morphology classes of the agglomerates appears to be much more insightful 314 

and is presented in the following. 315 

5.2.1 Differentiation of model mixes using CBaggl morphology clustering 316 

CBaggl volume fraction in each morphological class for the 4 model mixes is presented in 317 

Figure 10. For a given filler addition protocol, in most of the classes, the agglomerate volume 318 

fraction decreases when the rotor speed is increased, especially for classes with the biggest 319 

agglomerates and/or the most structured ones. Interestingly, the contrary is found for classes #1 320 

and #3, which correspond to relatively small and low structured agglomerates (that have a larger 321 

eccentricity than in class #2).  322 

As mentioned earlier, cumul of CBaggl in the model mixes is not significantly changed when the 323 

filler addition protocol changes.  Compared to TD protocol, Upside Down protocol on model 324 

mixes processed at 30_rpm leads to larger volume fractions of agglomerates in the classes #4 325 

and #6, which correspond to the agglomerates with the largest eccentricity. In the other 326 

morphological classes, the agglomerates volume fraction is lower when the USD protocol was 327 

applied. The impact of changing from USD to TD protocol is different for the materials 328 

processed at 60_rpm. With this rotor speed, the USD protocol leads to a higher volume fraction 329 

of CBaggl in the classes #4 and above, corresponding to agglomerates with V and B distribution 330 

which spread over a domain of values larger than in classes #1, #2 and #3.  331 
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 Knowing the distribution of each feature in each morphological class, the differentiation 332 

between the model mixes can be analyzed even more accurately. One can use for instance, the 333 

cumulative frequency distribution of the features B and E, shown in Figure 11. Increasing the 334 

rotor speed produces agglomerates with lower structure (with a shift in the cumulative 335 

probability distribution of B towards the lowest values). This effect is prominent for the 336 

morphological classes #7 and #8 (Figure 11a, b) (as seen in Appendix Figure H, this effect is 337 

negligible for the other classes), which were the classes for which the differentiating parameter 338 

was the size. Similarly, there is a decrease in E of the agglomerates in class #8 (which 339 

corresponds to the biggest agglomerates) due to an increase in the rotor speed, as shown in 340 

Figure 11c. 341 

6 DISCUSSION 342 

As shown above, the methodology we developed, provides insightful information (and 343 

because of the use of only 3 features, they were easy to visualize, in Figure 8) to evaluate the 344 

influence of the processing parameters on the morphology of the CBaggl. By doubling the rotor 345 

speed, the total shear deformation undergone by the compound in the internal mixer was also 346 

doubled. This promotes more rupture and erosion of agglomerates47,48. As expected, this leads 347 

to a lower cumulative volume fraction of agglomerates with B parameter above 0.2 (10.4% vs 348 

6.0%), corresponding to the classes #4 and above, i.e. this decreases the volume of the large 349 

and more structured agglomerates.  Moreover, the increase in the volume fraction of the less 350 

structured small agglomerates (classes #1 and #3) with the smallest eccentricity (compared to 351 

class #2) suggests that the increase in the rotor speed promotes the creation of more spherical 352 

agglomerates from the erosion of the big ones. This is confirmed by the evolution of the E and 353 

B distributions within the classes #7 and #8. 354 

In the comparison of TD vs USD protocol, interesting differences can be found through 355 

the clustering methodology. The consequences of the carbon black addition protocol seems to 356 
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depend on the rotor speed. At 30 rpm, when changing from TD to USD protocol, one observes 357 

in particular that the volume fraction of the big agglomerates (classes #7, #8 and #9) decreases. 358 

These agglomerates seem to be broken down to lower size agglomerates with large eccentricity 359 

corresponding to an increase in the CB volume fraction in the classes #4 to #6. At 60 rpm, the 360 

trend seems different with a slight increase in the volume fraction of the biggest agglomerates 361 

(classes #7 and #8). In general, TD protocol leads to a more rapid incorporation of CB in 362 

comparison to USD approach, as shown by the higher fraction of remaining CB, not 363 

incorporated after the IM step (Appendix Table I), i.e. prior to the roll mill step. This is actually 364 

in contradiction with the previous observations for the model materials mixed at 30 rpm. This 365 

means that the final CB agglomerates dispersion and morphology are the result of a very 366 

complex interplay between the CB dispersion at the end of the IM step with the following roll 367 

mill step. Only supplementary studies, including a precise CB dispersion characterization as a 368 

function of time during the different mixing steps may help to understand our model material 369 

microstructure. For this, the use of the methodology developed in this paper is required.  370 

7 CONCLUSION 371 

Very few studies have focused on the morphologies of carbon black agglomerates in 372 

industrial rubber compounds. This is mainly due to the limitations in the characterization 373 

techniques available at laboratory scale. Here, we demonstrated that even when using laboratory 374 

sourced X-ray Tomography, a good attenuation contrast between agglomerates and matrix is 375 

attainable provided that a LaB6 X ray source operated at 40 kV is used. The attenuation contrast 376 

between phases can also be increased with the help of various image processing algorithms, 377 

thereby the extraction of various features becomes efficient. Like with carbon black aggregates, 378 

various morphological features can be used to characterize CBaggl. Out of the 7 features 379 

extracted from image analysis, only 3 were retained using feature selection technique 380 

(Spearman's rank correlation coefficient). The relevant features appeared to be the volume, the 381 
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bulk factor and the eccentricity. Morphological classification based on these features was 382 

performed using K-means unsupervised clustering algorithm.  383 

Thus, we developed a complete methodology to obtain a morphological classification on CBaggl. 384 

This provides many insights on the peculiarity of the morphology of agglomerates in the studied 385 

model materials, and enables to distinguish samples with the same measured agglomerates 386 

volume fraction.  The main advantage of our approach is that it enables to understand the impact 387 

of small changes in the materials processing protocol. Notably in the current study, the impact 388 

of two processing parameters, (influence of rotor speed and filler addition protocol) can be 389 

precisely characterized. This paves the way for a better understanding of the incorporation and 390 

desagglomeration mechanisms of carbon blacks during the process. This can also provide useful 391 

information to identify in the final materials, the critical morphology of carbon black 392 

agglomerates for crack initiation and propagation.  More generally, the above presented 393 

methodology and the obtained results bring out new questions and prospects for further works. 394 

Not only we may study the influence of different processing parameters, e.g. mixing time, 395 

milling steps in roll mill etc..,  on the carbon blacks dispersion, but - as long as we obtain 396 

sufficiently contrasted  tomography images - we may also apply the methodology to various 397 

type of elastomer filled with various types of fillers (e.g. glass beads, clay, calcium carbonate, 398 

recovered carbon black from tire pyrolysis, silica etc..).  399 
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10  APPENDIX 489 

Appendix A:  spatial distribution 490 

In addition to the agglomerates morphologies, the spatial distribution of agglomerates in a mix 491 

is another important information to characterise the quality of the filler dispersion. To 492 

understand the aggregation of agglomerates at the micron level, it is interesting to calculate the 493 

distances to the nearest neighbours of each CBaggl. In order to do it, a matrix with the distances 494 

between each agglomerate and all other agglomerates in the model material has to be evaluated, 495 

based on their position. Since the number of agglomerates in each model material is very high, 496 

it requires huge computation power and memory storage. To reduce this computation and the 497 

memory requirement, spatial clustering was performed on each model material using the same 498 

K-means algorithm applied for morphological clustering, except that the data points are the 499 

spatial coordinates of the agglomerates. All the agglomerates that are close to each other 500 

(centroids of the agglomerates) in the model material are clustered into one spatial class. Here 501 

8 classes have been identified as the optimal number, which translates to around 12% of the 502 

volume fraction for each spatial class in the stack (Appendix Figure A1). The distribution of 503 

the spatial distance of each agglomerate in each class to the class centroid Dcentroid (Dcentroid = 504 

(xi-μk)0.5,  where xi is the spatial coordinates of agglomerate center and μk is the centroid of the 505 
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kth spatial class (1≤ k ≤ 8)) gives insight on the agglomerates spatial distribution. The 506 

distributions found for the 8 spatial classes are very close to each other (Appendix Figure A2a) 507 

indicating that each class can be considered as a representative volume of the model mix. As 508 

mentioned earlier, we are more interested in the dispersion at lower scale. The clustering 509 

(equivalent to a reduction of the sample size) being completed, the distances between the 20 510 

nearest neighbours for each agglomerate in one class can therefore be calculated. 20 has been 511 

arbitrarily chosen, knowing that a parallelepiped in which an agglomerate can be bounded, 512 

counts 26 neighbors (in contact through the faces, vertices and edges).   These distances d are 513 

the minimal ones between the surfaces of 2 agglomerates, as depicted in Appendix Figure A2b, 514 

and are calculated as follows: 515 

𝑑௜ = ඥ(𝑥௜ − 𝑥௝)ଶ + (𝑦௜ − 𝑦௝)ଶ + (𝑧௜ − 𝑧௝)ଶమ − ൫𝑟௜ + 𝑟௝൯   (1 ≤ 𝑗 ≤ 20)(1 ≤ 𝑖 ≤ 𝑀)   (9) 516 

Where x, y, z are the spatial coordinates of the agglomerate centre, r its radius calculated from 517 

its Eqdiam, the index i is for the agglomerate considered, j for one of its 20 closest neighbours 518 

and M is the total number of agglomerates in the spatial class considered for the analysis . In 519 

Appendix Figure A3, we have chosen the spatial class n°1 for all the model materials. 520 
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  521 

Appendix Figure A1: Volume fraction of each spatial class for 4 model materials. 522 

 523 

 524 

 525 

  526 

Appendix Figure  A2: a) Distribution of the distances of each agglomerate to its class 527 

centroid. b) Illustration of the nearest-neighbour distance 528 
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Result: Spatial Distribution of CBaggl   529 

  530 

Appendix Figure A3: Distribution of nearest-neighbour distance for various model mixes 531 

along with the mean value for each mix. 𝑑ప
ഥ  corresponds to the mean of the distribution 532 

Model mixes 
WMH 

(µm) 

30_rpm_usd 18.9 

60_rpm_usd 20.9 

30_rpm_td 18.1 

60_rpm_td 20.1 

Appendix Table A : Value of the Width at MidHeight of the peak of the nearest neighbor 533 

distance distribution for the model mixes  534 

The distributions of the distances to the nearest neighbours are presented in Appendix Figure 535 

A3 for all the model mixes. There are slight differences between the different materials. 536 

Increasing the rotor speed leads to a shift in the distribution towards larger values. The Width 537 

of the peak distribution at its MidHeight   (cf Appendix Table A1) is also slightly increased. In 538 
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addition, we know that the agglomerates volume fraction is reduced. Thus, the increase in the 539 

rotor speed improves the CB deagglomeration, reduces the size and volume fraction of the 540 

agglomerates, and logically increases the distance between them. 541 

Appendix Figure B: Sub-section volume of the model material 30_rpm_usd 542 

 543 

Appendix Figure B: Sub-section volume of the model material 30_rpm_usd obtained using 3D 544 

Tomography visualized using ParaView © software 545 

Appendix C:  laplacian score 546 

Laplacian Score (LS) works on the principle that data from the same class tend to be close to 547 

each other and each feature is evaluated based on its “locality preserving power”. LS ranges 548 

from 0 to 1, where score value close to 1 corresponds to a relevant parameter. The algorithm 549 

developed by He et al. 45 has been used to calculate the Laplacian score for each feature 550 

(Appendix Table C). Laplacian score shows that each feature can be used to distinguish 551 

different clusters in the data as all the features have a LS above 0.9, except 𝐵 (0.85). 552 

 553 
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Appendix Table C: Laplacian score for each feature 554 

Appendix Figure D 555 

556 

Appendix Figure D: Statistics on each standardized geometric features(using equation 8), 557 

Vstandard ((a), (b)), Estandard (c) and Bstandard (d)- which have been retained as descriptors of the 558 

morphology of CBaggl for all the model mixes (30_rpm_usd, 60_rpm_usd, 30_rpm_td, 559 

60_rpm_td) - is presented  560 

V Eqdiam B E b a Q 

1.000 1.000 0.851±0.034 0.920±0.009 0.972±0.004 0.970±0.003 0.925±0.010 



 

27 
 

Internal 

Appendix E:  silhouette coefficient 561 

The Silhouette coefficient (S)42 is a validation metric to check the consistency within 562 

clusters of data. It calculates the cohesion of an observation to its own cluster compared to other 563 

clusters using the following equation. 564 

𝑆(𝑖) =
௕(௜)ି௔(௜)

௠௔௫{௔(௜),௕(௜)}
  (7) 565 

Where b(i) is the mean distance of ith data point  to all other data points in the closest 566 

neighboring cluster to which i is not linked, i.e. between an agglomerate and agglomerates from 567 

other clusters (mean nearest-cluster distance) and a(i) is the average distance of ith observation 568 

to all other observations in the same cluster (mean intra-cluster distance). S(i) varies between   569 

-1 and 1, where 1 corresponds to a good partition of a cluster, score near 0 indicates overlapping 570 

of clusters space and negative value signifies that observations have been partitioned wrongly. 571 

We will use Savg  which is the average of all the S(i) values (Appendix Table E). 572 

𝑘 number 

of clusters 

Savg 

2 0.448±0
3 0.450±0
4 0.371±0
5 0.365±0
6 0.347±0
7 0.358±0
8 0.351±0
9 0.344±0
10 0.327±0
11 0.322±0
12 0.326±0
13 0.323±0
14 0.315±0

Appendix Table E: Savg metric evaluation for each number of clusters, deduced from 10 random 573 

samplings 574 

 575 

 576 
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Appendix Figure F 577 

578 

Appendix Figure F: a) and b) Show the relative frequency distribution plot of  𝑉 and 𝐵  for 579 

model material 30_rpm_usd corresponding to morphological classes #1, #2 and #3. 580 

Appendix Figure G 581 

582 

Appendix Figure G: a) and b) Show the relative frequency distribution plot of  𝑉 and E 583 

respectively corresponding to morphological classes #2, #4, #5 and #6, c) shows the relative 584 

frequency distribution plot of E corresponding to morphological classes #1 and #5 . The 585 

agglomerates considered for plotting is from model material 30_rpm_usd  586 

 587 

 588 

 589 
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Appendix Figure H 590 

 591 

Appendix Figure H: Cumulative probability distribution of B within each morphological class 592 

corresponding to each model material. 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 
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Appendix Table I 602 

Protocol Time 

(min) 

Total 

rotation 

(rad) 

Cohesive 

(gm) 

Loose 

Carbon 

Black 

(gm) 

Total 

mass 

(gm) 

% of 

Carbon 

Black 

loose 

USD @ 60 rpm 2 753.6 53.1 1.8 54.9 3.3 

TD @ 60 rpm 2 753.6 54.4 0.2 54.6 0.4 

USD @ 30 rpm 2 376.8 52 2.392 54.392 4.4 

TD @ 30 rpm 2 376.8 51 1.761 52.76 3.3 

Appendix Table I: Amount of Carbon Black incorporated depending on the filler addition 603 

protocol and rotor speed of the internal mixer. (This information was obtained for a mix 604 

fabricated using the filler addition protocol suggested in Materials and Testing). This table 605 

demonstrates the differences in the CB incorporation in the mix depending on the time spent in 606 

the internal mixer. 607 

 608 

 609 

 610 

 611 

 612 

 613 


