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Abstract—Underwater communication receivers usually rely
on the fine-tuning of numerous hyperparameters to perform
optimally. This fine-tuning process is challenging and time-
consuming, and must be carried out by domain experts. Using
a receiver with a decision-feedback equalizer (DFE), it is shown
that finding optimal hyperparameters can be formalized as a
black-box optimization problem for which an objective function
is minimized. This objective function is designed to address the
degenerate states of the DFE, known as “DFE hallucinations”,
where the DFE produces small apparent mean square errors yet
very high bit error rate. We propose a method for automating
the tuning of hyperparameters using a tree-structured parzen
estimator (TPE) approach, an algorithm belonging to the large
family of Bayesian optimization algorithms. Results obtained
from synthetic and real channels demonstrate the efficiency of
the method, allowing significant reduction of the packet error
rate.

Index Terms—Decision-Feedback Equalizer (DFE), Tree-
Structured Parzen Estimator (TPE), Underwater Acoustic Com-
munications, Bayesian Optimization

I. INTRODUCTION

Receivers in underwater acoustic communications (UAC)
systems encounter a variety of challenges including multi-
path reflections and Doppler, which depend on geographical
locations and operational conditions. Furthermore, a channel
itself undergoes changes during transmission, sometimes in an
unpredictable manner [1]. For optimal performance, receivers
must be robust to the changes of conditions and channel
variability. To achieve this, the hyperparameters of the re-
ceivers’ algorithms must be set with great care. Examples of
hyperparameters that have a strong impact on the performance
of the UAC receiver are the length of the feedforward diversity
combining filters, the adaptation rate of the adaptive equalizer
and the bandwidth of the time and phase recovery loop. Setting
these parameters can be a complex task given that they can be
coupled [2] [3]. This can be made even more more difficult
depending on the choice of the adaptive algorithm, which
might require additional sets of hyperparameters [4] [5]. The
tuning of these values is commonly determined empirically
by domain experts to ensure that the chosen parameters
provide the best average performance over a given range of
operating conditions. Once selected, they are consequently
hardcoded. This process of gathering examples and testing sets
of parameters can be costly and time-consuming, and it does
not guarantee optimal performance in the event of changes in
operational conditions.

Without precise and extensive prior knowledge of the operat-
ing conditions, the task of identifying optimal hyperparameters
is akin to searching for a needle in a haystack. To the best of
our knowledge, there is no general consensus on techniques
that allow for the selection of optimal values. This paper
presents a method for automating the process of tuning the
hyperparameters of a UAC receiver without any prior knowl-
edge. Bayesian optimization is employed for this purpose,
specifically the tree-structured parzen estimator approach [6].
This work focuses on the receiver component of an UAC,
where we examine the impact of automated hyperparameter
tuning on the performance of a DFE implemented within the
receiver.
This paper is organized as follows. Section II provides a brief
introduction to Bayesian optimization and the TPE approach.
Section III presents the DFE architecture and an objective
function giving access to the optimal hyperparameters of a
DFE. Finally, Section IV presents the performance of the self-
configurable receiver. The emphasis is on simulated channels
using the UAC parametric MAXENT model [7] as well as a
real channel recorded in the freshwater Loch Ness, in Scotland.

II. BAYESIAN OPTIMIZATION

A. Objective model

Bayesian optimization (BO) algorithms are widely used to
tackle the problem of finding an optimal solution to objective
functions that are expensive to compute, do not provide an
efficient mechanism for computing their gradient, and for
which there is no useful analytic expression [8]. BO was
crafted for black-box optimization, which can be formalized
as follows:

θ∗ ≜ argmin
θ∈Θ

(f(θ)) (1)

where f is the objective function, Θ is the domain of the hy-
perparameters θ, and θ∗ is the target optimal hyperparameter.
Given a budget of N iterations, the main steps of a BO
algorithm are

• First, a warm-up session in which a data set with n–
usually random–hyperparameters and associated observa-
tions is initialized (D0 ≜ {(θi, f(θi))}ni=0).

• In the remaining N − n iterations, a careful decision is
made about the next observation point θj , given Dj−1,
using a policy π, and Dj is updated with {(θj , f(θj))},
where j is the iteration index.



In BO, the unknown quantities are treated as random. f is thus
modeled as an infinite collection of Gaussian random variables
fθ representing a score associated with θ.

B. Tree-Structured Parzen Estimator

The heart of a BO algorithm is its policy [9]. Based on
previous observations, a policy suggests the next hyperparam-
eter θj at iteration j–theoretically better than those observed
in Dj−1—thus approaching the optimal hyperparameters. The
policy maximizes an acquisition function such as the proba-
bility of improvement (PI):

αPI(θ, Dj−1) ≜ Pr(fθ ≤ y∗) (2)

where y∗ is the best score observed in Dj−1. This acquisition
function gives higher scores to hyperparameters θ that are
likely to yield scores better than or equal to y∗.
The resulting policy is the following:

πPI(Dj−1) ≜ argmax
θ∈Θ

(α(θ, Dj−1)) (3)

The tree-structured parzen estimator (TPE) is probably the
most popular BO algorithm [6]. The TPE approach essentially
segments the dataset Dj−1 into a good population Dg

j−1

and a bad population Db
j−1 using a quantile γ. These two

populations respectively contain the γ × L best elements of
Dj−1 in terms of f(θ) and the remaining (1−γ)×L elements.
The random variable S, corresponding to the next observation
hyperparameter θ, is then introduced, allowing the estimation
of the following probability density functions [10]:

p(S ∈ Dg
j−1) =

1

Ng

∑
θ∈Dg

j−1

k(S,θ) (4)

where k(S,θi) is usually a Gaussian kernel. p(S ∈ Db
j−1)

is defined analogously to (4). It has been shown in [11] [12]
that optimizing PI is equivalent to optimizing r(S,Dj−1) =
p(S∈Dg

j−1)

p(S∈Db
j−1)

. The TPE policy is thus expressed as follows:

θj = πr(D) ≜ argmax
θ∈Θ

(r(S,Dj−1)) (5)

This policy has the characteristic of being less computationally
expensive than the original PI (2)In practice, θj can be
determined by avoiding an optimization. In this case, nc

candidates are drawn from p(S ∈ Dg
j−1), and the choice of

θj corresponds to the candidate with the highest r(S,Dj−1).
For this study, nc = 24, as in [10].

III. DFE TUNING

A. Hyperparameters

In this work, we apply the TPE algorithm for the tuning
of equalization hyperparameters. Equalization is a crucial
component of underwater receivers, compensating for
distortions caused by the propagation channel. We use a DFE
whose architecture is illustrated in Fig. 1. The transversal
filter A is used for precursor inter-symbol interference (ISI)
mitigation, supported by a feedback equalizer B to deal with
residual postcursor ISI.

To track channel variability, the filter taps are updated for
each decided symbol using a variant of the least minimum
square (LMS) algorithm. One of the most used algorithms
is the improved proportionate normalized LMS (IPNLMS)
[5], which incorporates both the rapid convergence of the
proportionate normalized LMS in sparse channels [4] and the
robustness of the normalized LMS in dispersive channels.

The filter update is performed as follows:

A(k) = A(k − 1) + µA
GA(k − 1)x(k)e(k)∗

x(k)†GA(k − 1)x(k) + δA
ejϕ(k−1)

(6)

B(k) = B(k − 1)− µB
GB(k − 1)d̂(k)e(k)∗

d̂(k)†GB(k − 1)d̂(k) + δB
(7)

where µA and µB are the step sizes of the feedforward and
feedback filters of A and B and k is the symbol index.
LA and LB are the filter lengths of A and B. x(k) =
[x(k), x(k − 1), . . . , x(k − LA + 1)]T are the input samples,
d̂(k) = [d̂(k − 1), d̂(k − 2), . . . , d̂(k − LB)]

T are the decided
symbols, and e(k) = d̂(k)− z(k) the error signal, z(k) being
the soft symbol.
GA is a diagonal matrix, the elements of which are

g
(i)
A (k) ≜

1− β

2LA
+ (1 + β)

| Ai(k) |
2 || A(k) ||1 +ϵ

(8)

Ai is the ith tap and ϵ is a regularization term. GB is defined
similarly for the filter B.
These matrices give estimates of the contribution of each tap in
a filter based on its magnitude relative to other taps. Tuning
β thus makes the update more or less dependent on these
magnitudes. In particular, β = −1 corresponds to the NLMS
case, while β = 1 updates each tap purely on its magnitude.
These update equations have several hyperparameters that are
optimized:

• β ∈ [−1, 1]: channel sparseness;
• µA ∈ [10−5, 1]: update step of the feedforward filter;
• µB ∈ [10−5, 1]: update step of the feedback filter;
• LA ∈ [10, 3000]: length of the feedforward filter;
• LB ∈ [0, 1000]: length of the feedback filter.

The vector of the DFE hyperparameters is therefore denoted
as θ ≜ [LA, LB , β, µA, µB ]

T . Note that µA, µB , and β are
real numbers, while the filter lengths are integers numbers.

Fig. 1. Decision-feedback equalizer structure.

B. Objective function

Finding the optimal hyperparameters θ ∈ Θ is equivalent
to finding the global optimum of an objective function that



measures the performance of the equalizer when it operates
under θ. The objective is to identify the optimal θ for a specific
packet. A simple objective function is f : Θ → ℜ:

f(θ) ≜
1

Ns

Ns∑
k=1

|e(k)|2 ≜
1

Ns

Ns∑
k=1

|d̂(k)− z(k)|2 (9)

f is the average mean squared error (MSE) computed for a
packet of size Ns.
A major challenge with the use of an MSE error term is the
degenerate DFE state coined as “DFE hallucination” illustrated
in Fig. 2. In this state, the norm of the feedforward output
norms decreases toward zero, while that of the feedback filter
output increases toward the norm of the constellation.
The hyperparameters θ that produce hallucinations are those
with the best f(θ) in decision-directed mode. In fact, the
decision device converges to a state where decisions are made
only by the feedback filter and no longer by the feedforward
filter. DFE hallucinations need to be detected and penalized
by the objective function. The detection is done by setting a

threshold τ such that if µm(τ) =

Ns∑
k=Ns−m

|z1(k)|2 ≤ τ , the

objective function is strongly penalized. m is the number of
the feedforward outputs used to test this hypothesis. Detecting
hallucinations in long packets can be effectively achieved by
setting a small τ , as suggested by the trends in Fig. 2. Selecting
the appropriate threshold τ involves balancing the risk of false
positives, which increases with higher threshold values, against
the risk of missed detections, especially for short packets,
which is more likely with lower threshold values. For of
our simulation, we opted for a threshold of τ = 0.1, which
was chosen experimentally for our large packet size (3375
symbols).

Fig. 2. DFE hallucination example. The curve marked with –o– represents the
feedforward L2 output norm, whereas the curve marked with –*– corresponds
to the feedback output L2 norm. The red curve — shows the MSE evolution
corresponding to this hallucination.

IV. NUMERICAL RESULTS

This study focuses on optimizing the lengths of equalizer
filters and the parameters governing the adaptive filter updates.
Addressing additional critical hyperparameters, including time
and clock recovery loops, is not being investigated here but
will be part of future work.
Furthermore, the algorithmic complexity of the TPE procedure
is O(N × max(LA, LB)), making it challenging to execute
on every packet. This complexity is N times higher than that

of the legacy algorithm, posing significant difficulties in low-
complexity real-time applications. In practical applications, we
will consider deploying the TPE procedure at regular intervals
or using it to recover high-importance data packets in an offline
decoding scenario, by finding θ best suited for a given packet,
maximizing the objective function presented in subsection
III-B. Similarly, the execution scenarios of TPE for real-time
application remains outside of the scope of this study and
will be considered separately. As a first attempt to explore
the potential of BO for UAC receivers, we focus here only
on evaluating the performance gain in terms of bit-error or
packet-error rate.

A. Simulation setup

We consider a single-input single-output communication
architecture, where QPSK symbols are generated and encoded
with a convolutional error correction code. The transmitted
signals consist of packets of a preamble signal followed by
the payload symbols.
The default DFE hyperparameters are set to values θd =
[L̂A, L̂B , 0.25, 0.05, 0.01]

T . These default values have been
chosen by domain experts and are integrated into the modem
code, used in numerous sea trials. These values are used
as a benchmark for the default DFE and is referred to as
DFEd in what follows. The delay τm of the last detected
arrival is used to set the values of L̂A and L̂B . A uniformly
most powerful invariant based detector is employed to identify
the channel arrivals using the preamble. A threshold derived
from a false alarm probability of PFA = 10−8 is set.
Once the arrivals have been detected, the feedforward length
is selected to be L̂A = max(80, 2τmnssr + 1). Similarly,
L̂B = max(20, τmsr + 1), where sr is the symbol rate and
ns is the number of samples per symbol at the DFE input.

B. Illustration of the objective function

Fig. 3 shows the 2D section of the objective function at LA

and LB calculated for a realization of one channel power-delay
profile and noise. The figure on the right shows the MSE error
of the DFE in decibels in color, while the grey areas indicates
regions for which the DFE hallucinates. It is noticeable that
the value of LB is crucial, which can be explained by the
important delay of the second most important echo.
The plots in Fig. 4 further illustrate how the step sizes µA

and µB depend on β. It is evident that larger values of β
perform better, highlighting the effect of the channel sparsity.
Fig. 3 and Fig. 4, show several grey regions corresponding to
hallucinations detected with m = 200.It should be noted that
the regions of interest are non-intuitive and cover large areas
prone to hallucinations. The roughness of this objective func-
tion highlights the fact that most gradient-based approaches
would perform poorly for the hyperparameter tuning task.

C. Performance

Fig. 5. shows an estimate of the cumulative distribution
function (CDF) of the bit-error rate (BER) for DFEd vs the
CDF of the DFE with optimized hyperparameters. To generate



Fig. 3. MSE sensitivity for filter lengths. On the left, the power-delay profile
of the considered channel. On the right, the average output MSE (dB) for
pairs of filter lengths LA and LB . µA, µB , and β are set to θd.

Fig. 4. MSE sensitivity for µA, µB , and β. On the left, average output DFE
MSE(dB) for pairs of µB and β. On the right shows MSE for pairs of µA

and β. LA and LB are set to θd.

this graph, 12 channels were created using the MAXENT
simulator [7] with the conditions specified in Table I. A
total of 12,901 packets were generated independently and
distributed uniformly across the channels. Gaussian noise was
added independently to each transmitted packet. In the event
that the default DFEd failed to fully recover a packet, an
optimization was triggered to identify the optimal θ for this
packet. The signal-to-noise ratio (SNR) is within the range of
[10, 15] dB. The budget of iterations is limited to n = 5 for
warm-up and N − n = 45 per optimization, II-A. The overall
results demonstrate that 70% of the packets are successfully
recovered. The average MSE improvement is 3 dB. One can
see in Fig. 5 that the self-configurable receiver yields better
BER.

Configuration Minimum Maximum
Delay spread 6.6 ms 180 ms

Doppler spread 0.46 Hz 1.87 Hz
Water depth 100 m 200 m

Transmission ranges 500 m 1500 m
Rice factor 5 75

TABLE I
SIMULATED CHANNEL CONFIGURATIONS. THE DOPPLER AND DELAY

SPREADS ARE FOUND USING A THRESHOLD OF −20 dB ON THE DOPPLER
POWER SPECTRUM AND THE POWER-DELAY PROFILE, RESPECTIVELY.

D. Real channel

A packet error rate (PER) evolution with respect to SNR
was computed for 300 packets of 3375 symbols transmitted
through this channel for every SNR value. The resulting curves
are presented in Fig. 7. It can be observed that our approach
yields a significant gain in terms of packet recovery for high

Fig. 5. The –*– curve shows the CDF for DFEd. The -x- curve shows the
CDF for hyperparameters obtained from Bayesian optimization.

SNR values, with approximately 20% more packets recovered.
The power profile depicted in Fig. 6 was measured in the
freshwater Loch Ness, Scotland, in November 2023. However,
the channel variability over time was not fully grasped. To
address the lack of temporal variability, the power-delay profile
and estimates of Rice factors for each tap in Fig. 6 were fed
into the MAXENT simulator. A constant Doppler spread of
0.8 Hz was then added, yielding a hybrid channel.

Fig. 6. Channel power-delay profile, measured in Loch Ness, Scotland.

Fig. 7. PER vs SNR. The –*– curve shows the PER vs SNR for θd. The
curve in -x- corresponds to the optimization performance.

V. CONCLUSION

In this study, we investigated the task of optimizing hy-
perparameters for an underwater receiver. Unlike traditional
methods that rely on domain experts for optimization, we
propose to formalize this problem as a black-box optimization
task. Our Bayesian optimization approach identifies hyperpa-
rameters that minimize the MSE error while addressing the
challenges of DFE hallucinations. We conducted a perfor-
mance study on various simulated channels with a limited
number of iterations, demonstrating the relevance of Bayesian
optimization for tuning the hyperparameters of an underwater
receiver. Although this initial proof of concept shows promise,
integrating it efficiently into real-time applications remains an
active area of research we are currently exploring.
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