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Crack onset at a v-notch. Influence of the notch tip radius

DOMINIQUE LEGUILLON1 and ZOHAR YOSIBASH2,
1Laboratoire de Modélisation en Mécanique - CNRS UMR 7607, Université Pierre et Marie Curie, Paris, France

2Division of Applied Mathematics, Brown University, Providence, U.S.A.

Abstract. A criterion to predict crack onset at a sharp notch in homogeneous brittle materials has been presented

in a previous paper of one of the authors. It is reviewed and improved herein. It fulfils both the energy and the

strength criteria and takes an Irwin-like form involving the generalized intensity factor of the singularity governing

the elastic behaviour in the vicinity of a notch tip. The prediction agrees fairly well with the experiments although it

slightly underestimates the experimental measures. A cause of this discrepancy can be that a small notch tip radius

blunts the sharp corner. It is analysed in this paper by means of matched asymptotics involving 2 small parameters:

a micro-crack increment length and the notch tip radius. A correction is brought to the initial prediction and a

better agreement is obtained with experiments on PMMA notched specimens. Experiments performed on a stiffer

material (Alumina/Zirconia) show that it is less sensitive to small notch tip radii. A remaining small discrepancy

between experiments and predictions can be due to some non linear behaviour of the materials near the notch tip.

In addition, without new developments, the method allows to determine the stress intensity factor at the tip of a

short crack emanating from a sharp or a rounded v-notch.
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1. Introduction

One of the authors performed 3-point bending experiments on PMMA and Alumina-Zirconia

(AZ) notched specimens (Yosibash et al., 2003). These tests allowed him to check the pre-

diction capacity of different failure criteria. One of these was proposed by the other author in

a previous paper (Leguillon, 2002) to predict crack onset at sharp notches in homogeneous

brittle materials. In plane elasticity, it is of the Irwin form

k ≥ kc , (1)

where k is the generalized intensity factor (also called GSIF) of the singular term governing

the elastic behaviour near the notch tip, i.e. the factor k = k1 of the most singular term in an

expansion of the elastic solution in power terms

U(x1, x2) =
∑

i

kir
λiui(ϕ) , 0 < λ1 ≤ λ2 ≤ . . . , (2)

where r and ϕ are polar coordinates with origin at the notch tip, see Section 2.1 for more

details.

The critical value kc can be expressed in terms of the strength σc, the toughness Gc of the

material, the singular exponent λ (= λ1 in (2)) and a scaling coefficient K̄
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Figure 1. (a) The 3-point bending test on a notched specimen, (b) the notch tip radius a, (c) the short additional

crack with length ℓ.

kc =
(

Gc

K̄

)1−λ

σ 2λ−1
c . (3)

It enjoys the desirable property to coincide with the Griffith criterion for a crack (λ = 0.5)

and with the strength criterion for a straight edge (λ = 1). It has been shown that the pro-

posed failure criterion (the predicted k at failure) is in good agreement with the experimental

observations (kc measured at the instant of failure (Yosibash et al., 2003)), but slightly under-

estimates it. This is for one part a consequence of the assumption that the V-notch tip is sharp

whereas, in reality, a small radius exists at the tip. The derivation of the failure criterion for

a sharp v-notch is briefly reviewed in Section 3 where an improved calculation of the scaling

term K̄ involved in relation (3) is proposed. Results agree fairly well with experiments (Dunn

et al., 1997; Yosibash et al., 2003) respectively on PMMA and AZ specimens, as will be dis-

cussed below (see Sections 4.2 and 4.3). Extensions to non-homogeneous situations: failure of

a butt or scarf joint (Leguillon, 2002) with a comparison with experiments (Reedy and Guess,

1993, 1997, 1999; Qian and Akisanya, 1998), failure of a bimaterial wedge (Leguillon and

Siruguet, 2002) again with a comparison with experiments (Mohammed and Liechti, 2000),

prove the generality of the criterion although the presence of different materials makes the

analysis more complex.

Nevertheless, Figure 11 in Section 4.2 shows that the predicted values slightly underestim-

ate the experimental ones in PMMA specimens particularly. For the notch openings ω = 60◦,

90◦ and 120◦, a notch tip radius reported to be around 25.4 µm by the authors of the experi-

ments can be the cause of this small discrepancy. The influence of such a notch tip blunting

is analyzed in the present paper by means of matched asymptotics (Section 2). The solution

is split in two connected parts: a far field ignoring at the leading orders any small geometrical

perturbation (blunting, new micro-crack), i.e. with an apparent sharp notch, and a near field

defined in the vicinity of these perturbations. The two fields must match in an intermediate

area. The knowledge of the near field allows, first to calculate the potential energy change due

to the nucleation of a micro-crack of length ℓ, and second to know precisely the influence of

the rounding on the tension acting in the material along the anticipated path of the new crack.

They are the necessary elements to extend the criterion (1) to this special case of blunting.
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This kind of analysis, based on the change in potential energy, is sometimes baptised ‘Finite

Fracture Mechanics’ (Hashin, 1996). It is almost rough, no description of a continuous process

between 0 and ℓ is necessary. At this step ℓ is an unknown parameter, it must be small (asymp-

totic assumption) but cannot be infinitely small, the energy balance gives a lower bound to this

length that vanishes only for a sharp crack tip. The generally non zero lower bound shows that

the first stage of propagation is a sudden process. The crack length is assumed to jump from 0

to ℓ = ℓ0 determined by a stress argument: the tension must be above the strength σc all along

the anticipated crack path, i.e. from 0 to ℓ0.

The aim is not to perform a thorough phenomenological analysis of the crack onset at a

v-notch that needs to account for actual fracture mechanisms including plasticity (and crazing

in PMMA). On the contrary, the study do not enter into the details and proposes a simple

and robust criterion to predict crack initiation at v-notches in brittle materials. It is based on

elasticity, requires few material parameters and seems to give quite satisfactory predictions.

It can be included for instance in a FE code to optimize the design of structures. Indeed,

plasticity and crazing take place also at the tip of long cracks in PMMA, however the Griffith

criterion, based on elasticity and a very simple energy argument, gives good approximations

in the prediction of growth of such cracks. One reason is probably that in small scale yielding

materials the toughness Gc, measured in a DCB test for instance, contains a large part of

the plastically dissipated energy. As a well-known fact, Gc does not reduce to the reversible

surface energy. It is observed in this paper that the correction accounting for a small notch tip

radius still underestimates the measures. The remaining small discrepancy is certainly due to

these neglected or averaged non linear effects.

Finally it is found that the predicted values using the sharp notch criterion must be in-

creased by 13.5%, 11% and 4.7%, respectively, for ω = 60◦, 90◦ and 120◦ in PMMA. Similar

conclusions are drawn from a comparison with experiments on AZ specimen (Yosibash et al.,

2003) although, the material being stiffer, it seems to be less sensitive to small notch tip radii.

Such an analysis provides also the threshold value of the v-notch tip radius (for each material)

that does not influence the failure criteria.

In addition, without new developments, the method allows to determine the stress intensity

factor at the tip of a short crack emanating from a sharp or a rounded v-notch (Section 2.5).

2. Matched asymptotics

The major difficulty in applying the usual procedure of matched asymptotic expansions lies in

the presence of two competing small (with respect to the notch depth for instance) parameters:

the notch tip radius a and the new micro-crack increment length ℓ. In the framework of crack

nucleation these two parameters are not independent and moreover they play different roles

in the asymptotics. To highlight this point the solutions to the two problems (i.e., prior to and

following the onset of a short crack) write respectively

U a(x1, x2, 0) and U a(x1, x2, ℓ) . (4)

Formally one of the small parameters is treated as a variable while the other is an index.

2.1. THE FAR FIELD

Mainly for practical reasons (as seen later in the remark at the begining of Section 2.5) we

decide to expand (4) first with respect to the notch tip radius a. The far field is expressed as the
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Figure 2. The unperturbed structure with a sharp notch tip.

solution U0(x1, x2, ℓ) to the unperturbed (i.e., without notch blunting: a = 0, see Figure 2)

problem plus a small correction

U a(x1, x2, ℓ) = U 0(x1, x2, ℓ) + f1(a)U 1(x1, x2, ℓ) + . . . , (5)

with f1(a) → 0 as a → 0. The above expansion holds for ℓ = 0 (no crack) and ℓ > 0.

In the unperturbed domain �0 (Figure 2), the notch tip is sharp, thus U 0(x1, x2, 0) under-

goes the classical singularities

U0(x1, x2, 0) = U 0(0, 0, 0) + k1r
λ1u1(ϕ) + k2r

λ2u2(ϕ) + . . . , (6)

where r and ϕ are polar coordinates with origin at the notch tip. The characteristic exponents

1/2 ≤ λ1 < 1 and λ2 ≥ λ1 are associated respectively with a symmetric mode u1(ϕ) and

an antisymmetric one u2(ϕ). The coefficients k1 and k2 are the associated generalized stress

intensity factors (GSIF). Depending on the notch opening either λ2 < 1 or λ2 ≥ 1. In the later

case an intermediate term corresponding to λ = 1 (the rigid rotation) inserts in between in (6).

However, in the present 3-point bending test problem, the antisymmetric terms do not play

any role and in particular k2 vanishes. Moreover, as a consequence of the symmetry properties

of the specimen and of the loading, fracture occurs along the bisector (ϕ = π − ω/2 = ϕ0).

Remark: In the forthcoming equations we shall consider (6) with k2 = 0 and simplified

notations: λ1 = λ, u1(ϕ) = u(ϕ) and k1 = k

U0(x1, x2, 0) = U 0(0, 0, 0) + k rλu(ϕ) + . . . (7)

In addition, the singular mode has been normalized in such a way that the tension acting along

the bisector is rλ−1

σn(r
λu(ϕ0)) = σ ((rλu(ϕ0)).n.n = rλ−1s(ϕ0).n.n = rλ−1 , (8)

where n is the normal to the bisector. The quantities k, λ and the function u(ϕ) can be com-

puted numerically (see for example (Leguillon and Sanchez-Palencia, 1987; Yosibash and

Szabo, 1995)).
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Figure 3. The unbounded domain �in, (a) prior to any crack extension, (b) with a new small crack. The fictitious

boundary Ŵ	 is extended to infinity.

2.2. THE NEAR FIELD

The previous expansion gives an accurate approximation of the solution far from the perturba-

tion formed by the notch tip radius. Let us consider now the stretched dimensionless variables

yi = xi/a (i = 1, 2). The notch tip radius is now 1 whatever its actual size. The change

of coordinates assumes implicitly that ℓ is not infinitely large with respect to a. Then the

(dimensionless) relative crack extension length defined by

µ = ℓ/a (9)

remains finite.

Expanding U a(x1, x2, 0) in the new variables allows to describe the near field

Ua(x1, x2, 0) = Ua(ay1, ay2, 0)

= F0(a)V 0(y1, y2, 0) + F1(a)V 1(y1, y2, 0) + . . . ,
(10)

with F1(a)/F0(a) → 0 as a → 0. The functions V i(y1, y2, 0) are defined in an unbounded

domain �in (see Figure 3). Their behaviour at infinity is governed by the matching rules

(Leguillon and Sanchez-Palencia, 1987): the near field (10) away from the perturbation must

match the far field (7) approaching the corner. This conditions yield:

F0(a) = 1 ; V 0(y1, y2, 0) = U 0(0, 0, 0) (11)

and

F1(a) = k aλ ; V 1(y1, y2, 0) = ρλu(ϕ) + V̂
1
(y1, y2, 0) , (12)

where ρ = r/a and where V̂
1
(y1, y2, 0) is solution to a well-posed problem in the unbounded

domain �in. In particular, it decreases to 0 at infinity.

By analogy, considering a short crack at the rounded tip, the near field expands as

Ua(x1, x2, ℓ) = Ua(ay1, ay2, aµ)

= U0(0, 0, 0) + k aλ[ρλu(ϕ) + V̂
1
(y1, y2, µ)] + . . .

(13)
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Remark: The functions V 1(y1, y2, µ) (or V̂
1
(y1, y2, µ)) for µ equal to zero or not are in-

dependent of the applied loads. These applied loads intervene in (10) and (13) through the

generalized intensity factor k thanks to F1(a) = k aλ (see (12)).

2.3. THE ENERGY RELEASE RATE

The initial state, prior to any crack nucleation, and the final one with a short additional crack,

are described respectively by Ua(x1, x2, 0) and U a(x1, x2, ℓ). The change in potential energy

δW between these two states can be expressed by a contour independent integral (Leguillon,

1989, 2002):

δW = ψ(U a(x1, x2, ℓ), U
a(x1, x2, 0)) , (14)

where the definition of ψ relies on Betti’s theorem

ψ(U, V ) = 1

2

∫

Ŵ

[

σ (U).N.V − σ (V ).N.U
]

dx . (15)

Here Ŵ is any contour surrounding the crack, starting and finishing on the free edges of the

notch, N its normal pointing inside the surrounded domain. The stress field associated with U

is denoted σ (U)

σ (U) = C : ∇xU(x1, x2) , (16)

where C is the elasticity matrix and ∇x the (symmetric) gradient operator with respect to the

space variables xi .

The integral (14) can be computed either in the outer (unperturbed) domain spanned by

x1 and x2 or in the inner one spanned by y1 and y2 (inner and outer refer to a vicinity of the

perturbations). This later case is adopted, taking into account the expansion (13) used first

with ℓ �= 0 and second with ℓ = 0. Thanks to differerent properties of the integral (15), it is

expressed finally at the leading order

δW = k2a2λ[K(µ) − K(0)] + . . . , (17)

with

K(µ) = ψ(V̂
1
(y1, y2, µ), ρλu(ϕ))

= ψ(V 1(y1, y2, µ), ρλu(ϕ)) ,
(18)

since as in (12)

V 1(y1, y2, µ) = ρλu(ϕ) + V̂
1
(y1, y2, µ) . (19)

Remark: The integral ψ computed in �in is formally identical to (15)

ψ(U, V ) = 1

2

∫

Ŵ

[

σ̃ (U).N.V − σ̃ (V ).N.U
]

dy , (20)

with

σ̃ (U) = C : ∇yU(y1, y2) , (21)

∇y being the (symmetric) gradient operator with respect to the space variables yi .

In two dimensional elasticity, the incremental energy release rate is
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G = δW

ℓ
. (22)

The usual differential definition is the limit of the above ratio as ℓ → 0, it is known to vanish

as λ > 1/2. In the present case it writes

G = k2a2λ−1 K(µ) − K(0)

µ
+ . . . = k2ℓ2λ−1 K(µ) − K(0)

µ2λ
+ . . . (23)

The right hand side expression involves ℓ2λ−1 and recalls that obtained in the classical case

(see (31) below). The function K(µ) depends on the notch opening angle ω, it is omitted in

the above equations for simplicity.

2.4. COMPUTATION OF K(µ)

The function V 1(y1, y2, µ) (either with µ = 0 or µ > 0) is the solution to an ill-posed problem

(within the classical framework of the Lax-Milgram theorem) due to an unbounded energy. It

is defined on an unbounded domain and must behave like ρλu(ϕ) at infinity. The splittings (12)

and (19) are necessary to ensure the existence of the solutions. Nevertheless, from a numerical

point of view, the domain �in must be artificially bounded at a large distance 	 (compared

to 1, the dimensionless notch tip radius and to µ, the dimensionless crack length, say 	 =
100×Max(1, µ) for example, Figure 3). Then the finite element approximation V 1h(y1, y2, µ)

to V 1(y1, y2, µ) can be computed directly, the behaviour at infinity being prescribed on the

fictitious boundary Ŵ	 either as a Dirichlet condition

V 1h(y1, y2, µ) = ρλu(ϕ) on Ŵ	 , (24)

or as a Neumann one

σ̃ (V 1h).n	 = σ̃ (ρλu(ϕ)).n	 on Ŵ	 , (25)

where n	 is the outer normal to Ŵ	. Then K(µ) is computed using the contour integral ψ

(see (18), (20)). For simplicity, the selected contour is the fictitious outer boundary Ŵ	. Even

if the computation of K(µ) is not accurate, the computation of the difference K(µ) − K(0)

is, by balancing the errors. An algorithmic approach for the computation of K(µ) is given in

Appendix A.

The next section is not strictly in the scope of the paper. Nevertheless, it introduces useful

notations for a following calculation (Section 3.1). In addition it gives an interesting result

concerning an expression of the stress intensity factor at the tip of a short crack emanating

from a sharp or a rounded v-notch. The reasoning is the same, the roles of the small parameters

a and ℓ are simply exchanged.

2.5. STRESS INTENSITY FACTOR AT THE TIP OF THE NEW CRACK

An analogous result could have been obtained by expanding first with respect to the crack

extension length. However, this will lead to a dimensionless crack length equal to 1 in the

stretched domain �in and a variable notch tip radius 1/µ. Indeed, it is numerically easier

(automatic meshing) to have a constant notch radius and a variable crack length.

Nevertheless, this remark offers a method to determine the classical mode I stress intensity

factor (SIF) kI at the tip of a new short crack of given length ℓ. Let us consider the near field

expansion (13) with respect to the small parameter ℓ instead of a (the domain is stretched by

1/ℓ instead of 1/a)
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Table 1. Computed values of the geometry term κI (0) compared to

known theoretical ones (ω = 0◦ and 180◦), for sharp notches of

different openings ω.

ω (◦) 0 30 60 90 120 150 180

κI (0) (comp.) 1.01 1.01 1.02 0.99 0.95 0.90 0.81

κI (0) (theor.) 1. 0.79

Ua(x1, x2, ℓ) = U 0(0, 0, 0) + k ℓλ[ρ̄λu(ϕ) + Ŵ
1
(ȳ1, ȳ2, µ̄)] + . . . , (26)

with ȳi = xi/ℓ, ρ̄ = r/ℓ and µ̄ = 1/µ = a/ℓ. The term Ŵ
1
(ȳ1, ȳ2, µ̄) plays the role of

V̂
1
(y1, y2, µ) in (13). It is independent of the crack length (stretched to 1) but depends now

on the stretched notch tip radius µ̄. It undergoes the classical mode I singularity at the tip of

the new crack and expands as

Ŵ
1
(ȳ1, ȳ2, µ̄) = Ŵ

1
(0′, 0′, µ̄) + κI (µ̄)

√

ρ ′ uI (ϕ′) + . . . (27)

The singularity is expressed in terms of the local stretched polar coordinates ρ ′ = r ′/a and ϕ′

(the prime denotes coordinates with origin at the tip O ′ of the new crack).

The coefficient κI (µ̄) is a geometry parameter. It is independent of the global geometry

of the structure as well as of the applied loads (see the remark at the end of Section 2.2)

but depends on the opening ω and on the dimensionless stretched notch tip radius µ̄. As a

particular case, κI (0) corresponds to a crack emanating from a sharp notch (see Table 1).

In physical (i.e., unstretched) coordinates, the expansion at the tip of the new crack is

Ua(x′
1, x

′
2, ℓ) = U a(0′, 0′, ℓ) + kI

√
r ′ uI (ϕ′) + . . . (28)

Then using (26)–(28) leads to

kI = k ℓλ−1/2κI (µ̄) + . . . (29)

This relation highlights the dependency in the crack length ℓ of the actual stress intensity

factor kI and the influence of the notch singularity through its generalized intensity factor k

and the exponent λ.

Table 1 gives values of the geometry term κI (0) corresponding to a crack emanating from a

sharp notch (µ̄ = 0). They are computed using a contour integral ψ like (20) (Leguillon and

sanchez-Palencia, 1987) and compared to known theoretical data.

For ω = 0◦, i.e., a straight growing crack, κI (0) = 1 corresponds to the leading term of an

expansion of kI in powers of the extension length (Amestoy and Leblond, 1992). Equation (29)

reduces to kI = k + . . .

For ω = 180◦, the theoretical value κI (0) = 0.79 derives from the well known formula

giving the stress intensity factor at the tip of a crack at a stress free edge in a half-space (Lawn,

1993) (keep in mind the normalization (8) and see the remark in Section 3.2).
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3. The crack onset criterion at a sharp notch

3.1. A BRIEF REVIEW OF THE CRITERION

At a perfectly sharp notch a = 0, the criterion (Leguillon, 2002) is also a consequence of an

expansion of the solution with respect to the crack extension length ℓ (Section 2.5). In that

case it is the single small parameter. As above, the change of variables ȳi = xi/ℓ leads to the

near field expansion (see (26))

U0(x1, x2, ℓ) = U0(ℓȳ1, ℓȳ2, ℓ)

= U0(0, 0, 0) + kℓλ[ρ̄λu(ϕ) + Ŵ
1
(ȳ1, ȳ2, 0)] + . . .

(30)

The incremental energy release rate writes (see (23))

G = k2ℓ2λ−1K̄ + . . . , (31)

the scaling coefficient K̄ being defined by

K̄ = ψ(Ŵ
1
(ȳ1, ȳ2, 0), ρ̄λu(ϕ))

= ψ(W 1(ȳ1, ȳ2, 0), ρ̄λu(ϕ)) ,
(32)

since as in (12)

W 1(ȳ1, ȳ2, 0) = ρ̄λu(ϕ) + Ŵ
1
(ȳ1, ȳ2, 0) . (33)

As before, K̄ is also a function of the notch opening angle ω, it is omitted for simplicity.

The incremental Griffith criterion writes

G ≥ Gc , (34)

where Gc is the toughness of the material. It derives directly from the energy balance. It

is almost unquestionable and an immediate consequence is that the crack jumps from 0 to ℓ

(Leguillon, 2002). The condition (34) together with (31) gives a lower bound of this admissible

crack jump length

ℓ2λ−1 ≥ Gc

k2K̄
(2λ − 1 > 0) . (35)

On the other hand the tension σn acting along the bisector at a distance ℓ of the tip (i.e., at the

point with coordinates x1 = 0, x2 = ℓ), prior to crack onset, writes at the leading order (see

(8))

σn(0, ℓ, 0) = kℓλ−1 . (36)

Associated with the strength criterion, we wish to find an ℓ so that it is not very large and

satisfies:

σn ≥ σc , (37)

where σc denotes the strength of the material, this equation provides an upper bound for the

crack jump length
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Figure 4. The singular exponent λ.

ℓ1−λ ≤ k

σc

(1 − λ > 0) . (38)

The consistency between the two conditions (35) and (38) leads to an admissible length

ℓ0 = Gc

K̄σ 2
c

, (39)

and the resulting criterion for crack onset at a sharp notch is

k ≥ kc =
(

Gc

K̄

)1−λ

σ 2λ−1
c . (40)

It is an Irwin-like criterion involving the generalized intensity factor k and its critical value kc

expressed in terms of two materials parameters: the toughness Gc and the strength σc. The use

of (40) requires the knowledge of K̄ which can be computed for each ω at a = 0.

Remark: Different angles lead to different units for the generalized intensity factors, it is

not a severe drawback of the method. The aim of this work is to predict failure and the

generalized intensity factor must be compared to a known critical value with the same units.

The computation of this factor is now available or can be easily implemented in finite element

codes. This approach is used by Dunn and other authors (Dunn et al., 1997; Reedy and Guess,

1993, 1997, 1999; Qian and Akisanya, 1998).

3.2. COMPUTATION OF K̄

The procedure described in Section 2.4 is used to compute directly W 1(ȳ1, ȳ2, 0) (instead of

Ŵ
1
(ȳ1, ȳ2, 0)) and then K̄ using the contour integral (18). Nevertheless, if there is no crack

at all, then theoretically Ŵ
1
(ȳ1, ȳ2, 0) = 0 and K̄ = 0. Unfortunately, it is not numerically

true since K̄ is extracted from W 1(ȳ1, ȳ2, 0) (not from Ŵ
1
(ȳ1, ȳ2, 0)). It remains an error K̄e.

Then an accurate value of K̄ is obtained by balancing the errors

K̄ = ψ(W 1(ȳ1, ȳ2, 0), ρ̄λu(ϕ)) − K̄e . (41)
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Figure 5. The universal function γ (ω).

Figure 6. The function h(µ) (squares) for ω = 120◦ and its limit value 1. It is independent of the material stiffness.

Generally, the Dirichlet condition (24) tends to overestimate the value of K̄ while the Neu-

mann one (25) tends to underestimate it.

Remark: The normalization (8) is unusual for the classical opening crack mode I. For ω = 0,

ϕ0 = π , λ = 1/2, it is traditionally

σn(
√

ruI (π)) = 1√
2πr

. (42)

As a consequence, for ω = 0, in plane strain elasticity and accounting for (8) and (42), the

relation (31) is known to be

G = k2
I × 2π

1 − ν2

E
, (43)

with an extra term 2π due to the normalization. Here E and ν denote respectively Young’s

modulus and Poisson’s ratio of the material and k = kI .

Then
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K̄|ω=0 = 2π
1 − ν2

E
. (44)

Moreover, it is clear that K̄ is proportional to 1/E whatever the opening ω. In addition, it has

been checked that, for ν ranging from 0.1 to 0.4, deviations due to Poisson’s ratio are almost

negligible. Thus the criterion rewrites in a general form involving a universal function γ (ω)

k ≥ kc = γ (ω)E∗ 1−λG1−λ
c σ 2λ−1

c , (45)

where we set

E∗ = E

2π(1 − ν2)
(46)

and then

K̄ = 1

E∗γ (ω)1/(1−λ)
. (47)

Introducing the Irwin toughness parameter kIc equivalent to Gc through (43), the criterion

(45) takes the simplified form

k ≥ kc = γ (ω)k
2(1−λ)
Ic σ 2λ−1

c . (48)

Figure 4 plots λ vs. the opening angle ω. In homogeneous materials this exponent is known to

depend only on ω through the equation

sin(λ(2π − ω)) = λsin(ω) (49)

Figure 5 plots the universal function γ (ω). Thus together with Figure 4 and the material data,

it defines the right hand side member of (45) (or (48)) (detailed numerical data are given in

Appendix B).

Remark: Obviously, within the linear fracture mechanics framework, data are often scattered

and inaccurate and a good and simple approximation is γ (ω) ≃ 1 and

k ≥ kc = E∗ 1−λG1−λ
c σ 2λ−1

c = k
2(1−λ)
Ic σ 2λ−1

c . (50)

Seweryn derived a similar formula (up to a multiplicative coefficient λ × 22(1−λ)) based on

Novozhilov’s average stress argument (Seweryn, 1994; Novozhilov, 1969; Leguillon, 2002).

4. The crack onset criterion at a rounded notch

The criterion is still stated to be of the Irwin form (1). We propose herein to estimate the

critical value of the generalized intensity factor k involved in the far field (7). It is a natural

approach in computation of structures by finite elements for instance. The fine microstructure

of the specimen is replaced by a simplified one ignoring the geometrical details and allowing

reasonably reduced mesh sizes.

4.1. THE CRITERION

As in the sharp notch situation, the idea is to get an admissible length ℓ0 (see (39)) compatible

with both the energy and the strength criteria. The incremental Griffith (energy) criterion reads

(see (23))
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Figure 7. Comparison between the singular tension yλ−1
2

(full diamonds) and σ̃n(V 1(0, y2, 0)) (squares) along

the bisector for ω = 120◦. It is independent of the material stiffness. The negative values of y2 correspond to

points located beyond the origin (see Figure 1(b)) in the spew filet.

Figure 8. The function H(µ) for 3 different openings ω = 60◦ (triangles), ω = 90◦ (diamonds), ω = 120◦

(squares). The dotted line corresponds to the limit case of a perfectly sharp notch a = 0.

k2ℓ2λ−1 K(µ) − K(0)

µ2λ
≥ Gc . (51)

Regarding the remarks of Section 3.2 about the dependence of the scaling coefficient K̄ on the

elastic characteristics of the material which apply also to K(µ), we define h(µ) as follows:

h(µ) = K(µ) − K(0)

K̄ µ2λ
, (52)

where K̄ , defined by (47), corresponds to the perfectly sharp notch. The function h(µ) is

independent of the elastic properties of the material. Since µ depends on ℓ, (51) is not an

explicit equation giving a lower bound for the crack extension length ℓ. However, numerical

computations show that h(µ) is an increasing function of µ, tending toward 1 as µ → ∞ as
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Figure 9. The normalized critical value kc of the generalized intensity factor k for PMMA, as a function of the

notch tip radius a, for 4 different notch openings: ω = 45◦, 60◦, 90◦ and 120◦.

Figure 10. The normalized critical value kc of the generalized intensity factor k for AZ, as a function of the notch

tip radius a, for 4 different notch openings: ω = 30◦, 60◦, 90◦ and 120◦.

expected (see Figure 6 plotted for the opening ω = 120◦). Thus, (51) can be used to compute

a lower bound for ℓ, for any given notch tip radius a.

On the other hand, from (10)–(12), the tension along the bisector at a distance ℓ of the

origin, prior to any crack nucleation can be expressed as

σn(U
a(0, ℓ, 0)) = kaλ−1σ̃n(V

1(0, µ, 0)) + . . . (53)

Once again, the stress criterion

σn(U
a(0, ℓ, 0)) ≥ σc , (54)
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together with (53) does not bring an explicit upper bound for ℓ. It is numerically checked that

σ̃n(V
1(0, µ, 0)) is a decreasing function of µ and then (53) can be used to compute this upper

bound for a fixed a. Figure 7 exhibits σ̃n(V
1(0, y2, 0)) compared to yλ−1

2 (keep in mind the

normalization (8)) along the bisector, for ω = 120◦. It is independent of the material stiffness.

Clearly, the singularity disppears in case of a rounded notch, the actual stress field remains

bounded (Figure 7). Nevertheless, the solution recovers very quickly the elastic far field (for

y2 ≥ 1 in the case of Figure 7) explaining the influence of the singular far field on the non

singular local solution.

Remark: Indeed, for a fixed a, if ℓ and then µ increase, the influence of the notch tip radius

becomes negligible and the limit recovers the sharp notch case as shown on Figures 6 and 7.

Very neighbouring figures are obtained for the other openings ω = 60◦ and 90◦.

The consistency between these two bounds leads to an admissible crack extension length

ℓ0 and to a relation between a and ℓ0

a K̄H(µ0) = Gc

σ 2
c

, (55)

where µ0 = ℓ0/a and

H(µ) = µ2λ−1h(µ)

σ̃n(V
1(0, µ, 0))2

. (56)

The function H(µ) is independent of the elastic properties of the material, it is plotted in

Figure 8.

Remark: As µ → ∞ or what is equivalent as a → 0 then h(µ) → 1 (Figure 6) and

σ̃n(V
1(0, µ, 0)) → µλ−1 (Figure 7). As a consequence H(µ) → µ and (55) recovers the

relation (39) providing ℓ0 in case of a perfectly sharp notch.

The notch tip radius a being prescribed, (55) gives ℓ0. Inserted in (51) or in (54), it leads

finally to a critical value kc of the generalized intensity factor k (as a function of a). It is

plotted for the two different materials in Figures 9 and 10 in a normalized form defined by

kc(norm.) = kc/kc |a=0 , (57)

the value 1 refers to the limit corresponding to the perfectly sharp notch a = 0. It is hazardous

to consider radii larger than 100 µm since they must be small (asymptotic assumption) com-

pared to the notch depth. The influence of the notch tip radius decreases as the notch opening

ω increases. This influence vanishes (and the corresponding curve in Figures 9 and 10 would

be flat) for a straight edge (ω = 180◦), indeed the notch tip radius is meaningless in that case.

Remark: The procedure proposed above cannot be extended to very small openings and even-

tually to a primary crack (ω = 0◦), this is obvious from the stretched domain �in (Figure 3).

The distance between the origin O (the sharp notch tip) and the rounded boundary increases

and tends to infinity as ω decreases, since the stretched radius is 1 whatever its actual value.

Another approach must be used, the notch faces must be shifted giving rise to boundary layers.

4.2. COMPARISON WITH THE EXPERIMENTAL RESULTS OF DUNN ET AL. ON PMMA

SPECIMENS

Dunn et al. (1997) performed 3-point flexure experiments on a notched specimen of PMMA

(E = 2.3 GPa, ν = 0.36, σc = 124 MPa, Gc = 394 J.m−2). By varying the specimen

height, the notch depth and the notch opening they showed that the Irwin-like criterion (1) is
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Table 2. Comparison of the critical intensity factor values kc for PMMA, 1)

experiments 2) perfectly sharp notch prediction (45) (or (48)), 3) corrected predic-

tion accounting for the notch tip radius. Unit for kc is MPa.m1−λ and thus differs

from one line to another.

ω kc exp. From kc (45) a (µm) corrected kc

30◦ 0.42 25.4 0.48

45◦ 0.59 (Yosibash et al., 2003) 0.44 30 0.55

60◦ 0.57 (Dunn et al., 1997) 0.49 25.4 0.56

90◦ 0.89 (Dunn et al., 1997) 0.74 25.4 0.82

120◦ 1.91 (Dunn et al., 1997) 1.77 25.4 1.85

Figure 11. Comparison with experiments by Dunn et al. on PMMA specimens (all results are from Dunn et al.

except ω = 45◦ from Yosibash et al.), 1) experiments (error bars), 2) prediction using the sharp notch criterion

(solid line), 3) correction for a notch tip radius a = 25.4 µm (a = 30 µm for ω = 45◦) (full triangles).

Figure 12. Comparison with experiments by Yosibash et al. on AZ specimens, 1) a = 60 µm (squares),

2) a = 100 µm (triangles), 3) prediction using the sharp notch criterion (solid line), 4) correction for a notch

tip radius a = 100 µm (full triangles).
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Figure 13. Detailed comparison between experiments and theoretical predictions on AZ specimens for ω = 90◦.

1) Experiments (squares), 2) perfectly sharp notch prediction (solid line), 3) correction accounting for the notch

tip radius (full triangles).

the appropriate one to predict failure. They determined experimentally the critical values of

kc. In a first step these values are estimated using the sharp notch criterion (45) (or (48)), it

is clear that the prediction underestimates slightly the experimental values. In a second step,

the correction suggested in Figure 9 is applied for a notch tip radius a = 25.4 µm as reported

in the paper of Dunn. The predicted values using the sharp notch criterion must be increased

by 13.5%, 11% and 4.7%, respectively, for ω = 60◦, 90◦ and 120◦. Table 2 summarizes

these results, and Figure 11 presents the comparison between the experimental results and the

predicted values by the failure criterion before and after the v-notch radius tip correction. The

correction still underestimates the measures. The remaining (small) discrepancy is certainly

due to plasticity and crazing effects.

4.3. COMPARISON WITH THE EXPERIMENTAL RESULTS OF YOSIBASH ET AL. ON

ALUMINA-ZIRCONIA SPECIMENS

Yosibash et al. (2002) worked out similar experiments on notched specimen of a ceramic

material made of Alumina/Zirconia (Al2O3/7% ZrO2). Many specimens have been tested with

slight changes on Young’s modulus and different notch tip radii. Among them, for simplicity

we selected those corresponding to the following parameters: E = 350 GPa, ν = 0.233,

σc = 290 MPa, Gc = 45.4 J.m−2. The material is by far stiffer than the previous one studied

in Section 4.2. The sharp notch prediction matches accurately with the experiments for a

small notch tip radius (a = 60 µm) as observed on Figure 12. Figure 13 provides details of

the measures and of the prediction for ω = 90◦. Despite the scattering, the efficiency of the

initial sharp notch criterion and the correction is obvious.

On the other hand a misfit is visible for ω = 120◦ for a large notch tip radius a = 100 µm

between the corrected value and the measures. In the model, the measures would correspond to

a larger notch tip radius a ≃ 340 µm. The question is now: how accurate is the determination

of this radius?
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Figure 14. Comparison at small openings of sharp notch predictions in AZ for different values of the strength:

σc = 290 MPa (solid line), σc = 200 MPa (bottom dotted line), σc = 400 MPa (top dotted line).

5. Conclusion

All this reasoning is based on the smallness of the notch tip radius and the crack extension

length allowing asymptotics of the solution. They must be small with respect to the notch

depth and as a consequence small compared to any characteristic length of the specimen. In

the experiments on PMMA specimens, a ≃ 30 µm and, using (39), ℓ0 is found to be around

20 µm, thus they are from 60 to 200 times smaller than the notch depth depending on the

specimen geometry (the notch depth ranges from 1.78 to 7.11 mm). This is also true for AZ

specimen tests, the notch depth is 5 mm and then 50 times larger than the largest examined

tip radius a = 100 µm leading to ℓ0 ≃ 60 µm (ℓ0 ranges from 40 to 60 µm depending on the

opening ω and the radius a). As a consequence, the corrections are necessary small and the

initial prediction based on the assumption of a sharp notch is still a satisfying approximation

of the critical intensity factor values.

The criterion requires the knowledge of two fracture parameters, the toughness Gc and

the strength σc. Volume effects and surface roughness make this second parameter difficult

to determine. Nevertheless, for openings lower than 135◦, the robustness of the criterion is

shown in Figure 14 where AZ sharp notch predictions are plotted for 3 different values of σc.

The influence of the measured σc arises to be small at small and medium openings. Of course,

the difference would be more significant for large openings leading to a flat geometry close to

the unnotched case.

Regarding Figure 11, it is clear that, in PMMA specimens, the criterion underestimates

(as expected) slightly the experimental results and the correction accounting for a notch tip

radius brings an improvement in the prediction. Below a = 5 µm Figure 9 shows that no

correction is necessary. For a = 25.4 µm the correction ranges between 5% and 13%. The

remaining discrepancy is probably due to micro-mechanisms effects neglected in this analysis

(plasticity and crazing). It must be pointed out that the inital crack length ℓ0 is of same order of

magnitude than the estimated process zone size but not smaller. The tensile stress is calculated

at this distance, i.e., in the elastic field just outside the process zone.
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Table 3. The elastic singularity exponent λ and

the universal function γ as functions of the notch

opening ω.

ω (◦) λ γ (ω) ω (◦) λ γ (ω)

0 0.500 1.00 90 0.545 1.09

5 0.500 1.00 95 0.553 1.10

10 0.500 1.00 100 0.563 1.11

15 0.500 1.00 105 0.574 1.12

20 0.501 1.00 110 0.586 1.14

25 0.501 1.01 115 0.600 1.15

30 0.502 1.01 120 0.615 1.16

35 0.503 1.01 125 0.633 1.17

40 0.504 1.02 130 0.652 1.18

45 0.506 1.02 135 0.673 1.19

50 0.507 1.03 140 0.697 1.20

55 0.510 1.03 145 0.723 1.20

60 0.513 1.04 150 0.752 1.19

65 0.516 1.04 155 0.784 1.19

70 0.520 1.05 160 0.819 1.17

75 0.525 1.06 165 0.858 1.14

80 0.531 1.07 170 0.901 1.11

85 0.537 1.08 175 0.948 1.06

180 1.000 1.00

A conclusion for AZ specimens is not so straightforward. A comparison between Figures 9

and 10 reveals that for a given notch tip radius, stiffer is the material and smaller is the the

correction. For an opening ω = 60◦ and a notch tip radius of 100 µm, the correction does

not exceed 18% for AZ while it is 45% for PMMA. The limit below which no correction is

necessary is a = 10 µm in AZ specimens, it is twice smaller than in PMMA. This could give

way to the temptation to draw the conclusion that stiffer is the material and more insensitive

it is to small notch radii. Unfortunately, measures for ω = 120◦ and a = 100 µm tend to

weaken this statement. They are 22% above the sharp notch prediction and still 14% above

the corrected one.

Appendix A. The algorithm for computing V 1(y1, y2, µ) and K(ω,µ).

A key component in the proposed failure criteria is the computation of K(ω,µ), according

to (18). Herein a detailed algorithm for its computation by means of numerical methods is

presented, for a given opening angle ω0.

– Take a = 0 (sharp v-Notch), and compute the eigen-pairs λ and u(ϕ) for the given ω0

(see methods for computations in (Leguillon and Sanchez-Palencia, 1987) or (Yosibash

and Szabo, 1995) for example). For isotropic materials λ and u(ϕ) can be obtained

analytically.
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– Using the finite element method, construct a domain as shown in Figure 3(b), with a v-

Notch tip radius of 1 and a crack of length µ (this will vary). Take the outer radius of the

domain to be 	 = 100 × Max(1, µ).

– On the outer circular boundary prescribe the boundary conditions 	λu(ϕ) as essential

boundary conditions, or compute the corresponding traction and prescribe these instead.

– Solve the elastic system of equations and obtain the solution denoted by V 1(y1, y2, µ).

– Now, substitute V 1(y1, y2, µ) and ρλu(ϕ) in (18), with the integration taken along a

circular sector of given radius (or any other contour). For simplicity, select the circular

outer boundary of the domain as the path of integration. The obtained value is K(ω0, µ).

– Repeat steps above for various values of µ (various crack length sizes) to generate

K(ω0, µ)).

– Report the values in (55) to get a relation between the notch tip radius a and µ and then

ℓ.

Appendix B. The functions γ (ω) and λ.

Values are numerically determined using the procedure proposed in (Leguillon and Sanchez-

Palencia, 1987) for λ and in Section 3 for γ . Curves are then smoothed and a small discrepancy

on the last digit of λ can be sometimes observed when compared to data from other origins.

Nevertheless, the accuracy provided in Table 3 is by far sufficient to determine the critical

value of the criterion (45) (or (48)).
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